A new method to infer higher-order spike correlations from membrane potentials
- Imke C. G. Reimer,
- Benjamin Staude,
- Clemens Boucsein,
- Stefan Rotter
- … show all 4 hide
Abstract
What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1–2):327–350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.
- Abeles, M. (1982). Role of the cortical neuron: integrator or coincidence detector? Israel Journal of Medical Sciences, 18(1), 83–92.
- Amitai, Y., Friedman, A., Connors, B.W., Gutnick, M.J. (1993). Regenerative activity in apical dendrites of pyramidal cells in neocortex. Cereb Cortex, 3(1), 26–38. CrossRef
- Averbeck, B.B. (2009). Poisson or not poisson: differences in spike train statistics between parietal cortical areas. Neuron, 62(3), 310–311. CrossRef
- Bar-Gad, I., Ritov, Y., Vaadia, E., Bergman, H. (2001). Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations. Journal of Neuroscience Methods, 107(1–2), 1–13. CrossRef
- Barth, A.L., & Poulet, J.F.A. (2012). Experimental evidence for sparse firing in the neocortex. Trends in Neurosciences, 35(6), 345–355. CrossRef
- Benucci, A., Verschure, P.F.M.J., König, P. (2007). Dynamical features of higher-order correlation events: impact on cortical cells. Cogn Neurodyn, 1(1), 53–69. CrossRef
- Berretta, N., & Jones, R.S. (1996). A comparison of spontaneous EPSCs in layer II and layer IV-V neurons of the rat entorhinal cortex in vitro. Journal of Neurophysiology, 76(2), 1089–1100.
- Bohte, S.M., Spekreijse, H., Roelfsema, P.R. (2000). The effects of pair-wise and higher order correlations on the firing rate of a post-synaptic neuron. Neural Computation, 12(1), 153–179. CrossRef
- Boucsein, C., Nawrot, M.P., Schnepel, P., Aertsen, A. (2011). Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Frontiers in Neuroscience, 5, 32.
- Brette, R. (2009). Generation of correlated spike trains. Neural Computation, 21(1), 188–215. CrossRef
- Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967. CrossRef
- Cardin, J.A., Kumbhani, R.D., Contreras, D., Palmer, L.A. (2010). Cellular mechanisms of temporal sensitivity in visual cortex neurons. Journal of Neuroscience, 30(10), 3652–3662. CrossRef
- Cash, S., & Yuste, R. (1999). Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron, 22(2), 383–394. CrossRef
- Câteau, H., & Reyes, A.D. (2006). Relation between single neuron and population spiking statistics and effects on network activity. Physical Review Letters, 96(5), 101–058. CrossRef
- Cohen, M.R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819. CrossRef
- Davies, R.M., Gerstein, G.L., Baker, S.N. (2006). Measurement of time-dependent changes in the irregularity of neural spiking. Journal of Neurophysiology, 96(2), 906–918. CrossRef
- Deger, M., Helias, M., Boucsein, C., Rotter, S. (2012). Statistical properties of superimposed stationary spike trains. Journal of Computational Neuroscience, 32(3), 443–463. CrossRef
- DeWeese, M.R., & Zador, A.M. (2006). Non-gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. Journal of Neuroscience, 26(47), 12206–12218. CrossRef
- Dittgen, T., Nimmerjahn, A., Komai S., Licznerski P., Waters, J., Margrie T.W., Helmchen, F., Denk, W., Brecht, M., Osten, P. (2004). Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18206–18211. CrossRef
- Ehm, W., Staude, B., Rotter, S. (2007). Decomposition of neuronal assembly activity via empirical de-Poissonization. Electronic Journal of Statistics, 1(0), 473–495. CrossRef
- Ganmor, E., Segev, R., Schneidman, E. (2011a). The architecture of functional interaction networks in the retina. Journal of Neuroscience, 31(8), 3044–3054. CrossRef
- Ganmor, E., Segev, R., Schneidman, E. (2011b). Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proceedings of the National Academy of Sciences of the United States of America, 108(23), 9679–9684. CrossRef
- Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F., Petersen, C.C.H. (2010). Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron, 65(3), 422–435. CrossRef
- Gerstein, G.L. (2000). Cross-correlation measures of unresolved multi-neuron recordings. Journal of Neuroscience Methods, 100(1–2), 41–51. CrossRef
- Gilbert, E.N., & Pollak, H.O. (1960). Amplitude distribution of shot noise. Bell System Technical Journal, 39(2), 333–350. CrossRef
- Griffith, J.S., & Horn, G. (1966). An analysis of spontaneous impulse activity of units in the striate cortex of unrestrained cats. J Physiol, 186(3), 516–534.
- Häusser, M. (2001). Synaptic function: dendritic democracy. Current Biology, 11(1), R10–R12. CrossRef
- Hay, E., Hill, S., Schürmann, F. , Markram, H. , Segev, I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Computational Biology, 7(7), e1002107. CrossRef
- Hines, M., Morse, T., Migliore, M., Carnevale, N., Shepherd, G. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11. CrossRef
- Hines, M.L., & Carnevale, N.T. (1997). The neuron simulation environment. Neural Computation, 9(6), 1179–1209. CrossRef
- Hodgkin, A.L., & Rushton, W.A.H. (1946). The electrical constants of a crustacean nerve fibre. Proceedings Royal Society of Medicine, 134(873), 444–479. CrossRef
- Holt, G.R., Softky, W.R., Koch, C., Douglas, R.J. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neuropsychology, 75(5), 1806–1814.
- Hong, S., Ratté, S., Prescott, S.A., Schutter, E.D. (2012). Single neuron firing properties impact correlation-based population coding. Journal of Neuroscience, 32(4), 1413–1428. CrossRef
- Jagadeesh, B., Wheat, H.S., Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science, 262(5141), 1901–1904. CrossRef
- Kohn, A., & Smith, M.A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience, 25(14), 3661–3673. CrossRef
- Kuhn, A., Aertsen, A., Rotter, S. (2003). Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation, 15(1), 67–101. CrossRef
- Kuhn, A., Aertsen, A., Rotter, S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. Journal of Neuroscience, 24(10), 2345–2356. CrossRef
- Kumar, A., Schrader, S., Aertsen, A., Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43. CrossRef
- Lang, E.J., & Par, D. (1997). Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. Journal of Neurophysiology, 77(1), 353–363.
- Larkum, M.E., Nevian, T., Sandler, M., Polsky, A., Schiller, J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science, 325(5941), 756–760. CrossRef
- Lefort, S., Tomm, C., Sarria, J.C.F., Petersen, C.C.H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316. CrossRef
- Léger, J.F., Stern, E.A., Aertsen, A., Heck, D. (2005). Synaptic integration in rat frontal cortex shaped by network activity. Journal of Neuropsychology, 93(1), 281–293.
- Ly, C., & Tranchina, D. (2009). Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach. Neural Computation, 21(2), 360–396. CrossRef
- Magee, J.C., & Cook, E.P. (2000). Somatic epsp amplitude is independent of synapse location in hippocampal pyramidal neurons. Natural Neuroscience, 3(9), 895–903. CrossRef
- Mahon, S., Deniau, J.M., Charpier, S. (2001). Relationship between EEG potentials and intracellular activity of striatal and cortico-striatal neurons: an in vivo study under different anesthetics. Cereb Cortex, 11(4), 360–373. CrossRef
- Maimon, G., & Assad, J.A. (2009). Beyond poisson: increased spike-time regularity across primate parietal cortex. Neuron, 62(3), 426–440. CrossRef
- Margrie, T.W., Brecht, M., Sakmann, B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Archiv, 444(4), 491–498. CrossRef
- Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., Vaadia, E. (2000). Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Computation, 12(11), 2621–2653. CrossRef
- Miyakawa, H., Lev-Ram, V., Lasser-Ross, N., Ross, W.N. (1992). Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. Journal of Neurophysiology, 68(4), 1178–1189.
- Montani, F., Ince, R.A.A., Senatore, R., Arabzadeh, E., Diamond, M.E., Panzeri, S. (2009). The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. Philosophy Transactions A Mathematical Physical and Engineering Sciences, 367(1901), 3297–3310. CrossRef
- Nelson, S., Toth, L., Sheth, B., Sur, M. (1994). Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science, 265(5173), 774–777. CrossRef
- Nettleton, J.S., & Spain, W.J. (2000). Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. Journal of Neurophysiology, 83(6), 3310–3322.
- Neubauer, H., Koppl, C., Heil, P. (2009). Spontaneous Activity of Auditory Nerve Fibers in the Barn Owl (Tyto alba): Analyses of Interspike Interval Distributions. Journal of Neurophysiology, 101(6), 3169–3191. CrossRef
- Ohiorhenuan, I.E., & Victor, J.D. (2011). Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. Journal of Computational Neuroscience, 30(1), 125–141. CrossRef
- Ohiorhenuan, I.E., Mechler, F., Purpura, K.P., Schmid, A.M., Hu, Q., Victor, J.D. (2010). Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 466(7306), 617–621. CrossRef
- Okun, M., & Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience , 11(5), 535–537. CrossRef
- Pazienti, A., & Grün, S. (2006). Robustness of the significance of spike synchrony with respect to sorting errors. Journal of Computational Neuroscience, 21(3), 329–342. CrossRef
- Pelko, M., & van Rossum, M.C.W. (2011). The effect of the input correlation structure on pyramidal layer V neurons. In Front Comput Neurosci conference abstract: BC11: Computational neuroscience & neurotechnology Bernstein conference & neurex annual meeting 2011.
- Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527. CrossRef
- Rasch, M., Logothetis, N.K., Kreiman, G. (2009). From neurons to circuits: linear estimation of local field potentials. Journal of Neuroscience, 29(44), 13785–13796. CrossRef
- Reimer, I.C.G., Staude, B., Ehm, W., Rotter, S. (2012). Modeling and analyzing higher-order correlations in non-Poissonian spike trains. Journal of Neuroscience Methods, 208(1), 18–33. CrossRef
- Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., Harris, K.D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590. CrossRef
- Riehle, A., Grün, S., Diesmann, M., Aertsen, A. (1997). Spike synchronization and rate modulation differentially involved in motor cortical function. Science, 278(5345), 1950–1953. CrossRef
- Rossant, C., Leijon, S., Magnusson, A.K., Brette, R. (2011). Sensitivity of noisy neurons to coincident inputs. Journal of Neuroscience, 31(47), 17193–17206. CrossRef
- Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics, 81(5–6), 381–402. CrossRef
- Rudolph, M., & Destexhe, A. (2003). Tuning neocortical pyramidal neurons between integrators and coincidence detectors. Journal of Computational Neuroscience, 14(3), 239–251. CrossRef
- Rudolph, M., & Destexhe, A. (2006). A multichannel shot noise approach to describe synaptic background activity in neurons. European Physical Journal B, 52(1), 125–132. CrossRef
- Schiller, J., Major, G., Koester, H.J., Schiller, Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature, 404(6775), 285–289. CrossRef
- Schneidman, E., Berry, M.J., Segev, R., Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007–1012. CrossRef
- Schnepel, P., Nawrot, M.P., Aertsen, A., Boucsein, C. (2011). Distance and layer-dependent properties of horizontal projections onto layer 5 pyramidal neurons. Front Comput Neurosci conference abstract: BC11: Computational neuroscience & neurotechnology Bernstein conference & neurex annual meeting 2011.
- Shimazaki, H., Amari, S.I., Brown, E.N., Grün, S. (2012). State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Computational Biology, 8(3), e1002385. CrossRef
- Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fujita, I., Tamura, H., Doi, T., Kawano, K., Inaba, N., Fukushima, K., Kurkin, S., Kurata, K., Taira, M., Tsutsui, K.I., Komatsu, H., Ogawa, T., Koida, K., Tanji, J., Toyama, K. (2009). Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Computational Biology, 5(7), e1000433. CrossRef
- Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.J. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26(32), 8254–8266. CrossRef
- Shlens, J., Field, G.D., Gauthier, J.L., Greschner, M., Sher, A., Litke, A.M., Chichilnisky, E.J. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29(15), 5022–5031. CrossRef
- Staude, B., Grün, S., Rotter, S. (2010a). Higher order correlations and cumulants. In S. Grün & S. Rotter (Eds.), Analysis of parallel spike trains. Springer Series in Computational Neuroscience.
- Staude, B., Grün, S., Rotter, S. (2010b). Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference. Frontiers in Computational Neuroscience, 4, 16. CrossRef
- Staude, B., Rotter, S., Grün, S. (2010c). CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. Journal of Computational Neuroscience, 29(1–2), 327–350. CrossRef
- Steriade, M., Nuez, A., Amzica, F. (1993). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience, 13(8), 3252–3265.
- Stuart, A., & Ord, J.K. (1987). Kendall’s advanced theory of statistics (5th ed.). London: Griffin.
- Sutor, B., Grimm, C., Polder, H.R. (2003). Voltage-clamp-controlled current-clamp recordings from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials. Pflügers Archiv European Journal of Physiology, 446, 133–141.
- Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J.L., Patel, H., Prieto, A., Petrusca, D., Grivich, M.I., Sher, A., Hottowy, P., Dabrowski, W., Litke, A.M., Beggs, J.M. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28(2), 505–518. CrossRef
- Thomson, A.M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Frontiers in Neuroscience, 1(1), 19–42. CrossRef
- Tuckwell, H.C. (1988). Introduction to theoretical neurobiology. Cambridge studies in mathematical biology, 8. Cambridge, UK: Cambridge University Press. CrossRef
- Ventura, V., & Gerkin, R.C. (2012). Accurately estimating neuronal correlation requires a new spike-sorting paradigm. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7230–7235. CrossRef
- Waters, J., & Helmchen, F. (2006). Background synaptic activity is sparse in neocortex. Journal of Neuroscience, 26(32), 8267–8277. CrossRef
- Williams, S.R., & Stuart, G.J. (2000). Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. Journal of Neurophysiology, 83(5), 3177–3182.
- Williams, S.R., & Stuart, G.J. (2002). Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science, 295(5561), 1907–1910. CrossRef
- Yoshimura, Y., Sato, H., Imamura, K., Watanabe, Y. (2000). Properties of horizontal and vertical inputs to pyramidal cells in the superficial layers of the cat visual cortex. Journal of Neuroscience, 20(5), 1931–1940.
- Yu, S., Yang, H., Nakahara, H., Santos, G.S., Nikoli, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31(48), 17514–17526. CrossRef
- Yue, S., & Hashino, M. (2001). The general cumulants for a filtered point process. Applied Mathematical Modelling, 25(3), 193–201. CrossRef
- Title
- A new method to infer higher-order spike correlations from membrane potentials
- Open Access
- Available under Open Access This content is freely available online to anyone, anywhere at any time.
- Journal
-
Journal of Computational Neuroscience
Volume 35, Issue 2 , pp 169-186
- Cover Date
- 2013-10-01
- DOI
- 10.1007/s10827-013-0446-8
- Print ISSN
- 0929-5313
- Online ISSN
- 1573-6873
- Publisher
- Springer US
- Additional Links
- Topics
- Keywords
-
- Shot noise process
- Intracellular recording
- Subthreshold activity
- Presynaptic population
- Correlated neuronal groups
- Industry Sectors
- Authors
-
- Imke C. G. Reimer (1)
- Benjamin Staude (1)
- Clemens Boucsein (1)
- Stefan Rotter (1)
- Author Affiliations
-
- 1. Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany