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Abstract What is the role of higher-order spike correla-
tions for neuronal information processing? Common data
analysis methods to address this question are devised for
the application to spike recordings from multiple single
neurons. Here, we present a new method which evaluates
the subthreshold membrane potential fluctuations of one
neuron, and infers higher-order correlations among the neu-
rons that constitute its presynaptic population. This has
two important advantages: Very large populations of up
to several thousands of neurons can be studied, and the
spike sorting is obsolete. Moreover, this new approach truly
emphasizes the functional aspects of higher-order statistics,
since we infer exactly those correlations which are seen
by a neuron. Our approach is to represent the subthresh-
old membrane potential fluctuations as presynaptic activity
filtered with a fixed kernel, as it would be the case for a
leaky integrator neuron model. This allows us to adapt the
recently proposed method CuBIC (cumulant based infer-
ence of higher-order correlations from the population spike
count; Staude et al., J Comput Neurosci 29(1–2):327–350,
2010c) with which the maximal order of correlation can
be inferred. By numerical simulation we show that our
new method is reasonably sensitive to weak higher-order
correlations, and that only short stretches of membrane
potential are required for their reliable inference. Finally, we
demonstrate its remarkable robustness against violations of
the simplifying assumptions made for its construction, and
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discuss how it can be employed to analyze in vivo intracel-
lular recordings of membrane potentials.
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Subthreshold activity · Presynaptic population · Correlated
neuronal groups

1 Introduction

Neurons can be sensitive to synchronized input (e.g. Abeles
1982; Rudolph and Destexhe 2003; Cardin et al. 2010;
Rossant et al. 2011; Hong et al. 2012). In particular, the
output firing rate and subthreshold membrane potential fluc-
tuations of a neuron can be affected not only by the pairwise
correlations of the presynaptic spikes but also by the higher-
order structure of the input (Bohte et al. 2000; Kuhn et al.
2003; Benucci et al. 2007; Pelko and van Rossum 2011).

Higher-order spike correlations in vitro and in vivo are
commonly studied in parallel spike trains which have been
recorded extracellularly (Martignon et al. 2000; Shlens et al.
2006; Schneidman et al. 2006; Tang et al. 2008; Montani
et al. 2009; Shlens et al. 2009; Ohiorhenuan et al. 2010;
Ganmor et al. 2011a, b; Ohiorhenuan and Victor 2011; Yu
et al. 2011; Shimazaki et al. 2012). This approach has three
obvious disadvantages: Firstly, the sampled neuronal popu-
lation is restricted and biased in various ways. The sample
size is constrained by the number of electrodes that can be
employed simultaneously. However, pairwise spike correla-
tions are rather weak (e.g. Kohn and Smith 2005; Renart
et al. 2010) and, hence, a really large neuronal population
must be considered to reliably judge on the existence of
higher-order correlations. Moreover, the recorded neuronal
pool is biased towards large and frequently spiking neu-
rons, whereas the majority of cortical neurons fires sparsely
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(Barth and Poulet 2012). Secondly, most methods to infer
higher-order correlations require single unit activity and,
hence, spike sorting is necessary (for exceptions see Ehm
et al. 2007; Staude et al. 2010b, c). Not only is this a trou-
blesome procedure but also is the measurement of neuronal
correlations particularly sensitive to spike sorting errors
(Gerstein 2000; Bar-Gad et al. 2001; Pazienti and Grün
2006; Cohen and Kohn 2011; Ventura and Gerkin 2012).
Thirdly, even if higher-order correlations are statistically
significant, this does not imply that they are “seen” by other
neurons at the next processing stage. In fact, higher-order
events may be a side-effect of the network structure and not
a functional feature.

These problems, however, are resolved if one considers
the neuron as an “electrode” which samples from its own
presynaptic population (see Fig. 1). A neuron receives the
input of thousands of other cells which, at least in corti-
cal networks, are often located far away (Boucsein et al.
2011). Hence, the neuron actually records the activity of a
very large population which is neither restricted to a local
volume with cells of high firing rates nor observable by
us. However, this presynaptic, possibly correlated, spike
activity is encoded in the membrane potential of the post-
synaptic neuron which is observable. Thus, analysis of the

not observable

1 mV
100 msobservable

?

Fig. 1 Relating subthreshold membrane potential fluctuations of a
neuron and its presynaptic input spike trains. A neuron receives spikes
which have been elicited by many presynaptic neurons (raster plot
at top). While this activity is not observable, intracellular recordings
allow to observe the subthreshold membrane potential fluctuations of a
neuron (bottom). This signal contains information about the input spik-
ing dynamics. For instance, coincident spikes give rise to deflections
in the membrane potential. Thus, analysis of this signal may reveal
higher-order spike correlations in the input population (arrow). Mem-
brane potential trace has been recorded intracellularly in vivo in rat
primary visual cortex

subthreshold membrane potential fluctuations can, in prin-
ciple, reveal the higher-order spike correlations “seen” by
this neuron.

So far, this ansatz to infer cooperative dynamics has
only rarely been implemented. Only approaches are avail-
able that either calculate the mean presynaptic pair-
wise spike correlations from conductance fluctuations
(Rudolph and Destexhe 2006), or that yield an order-of-
magnitude estimate of the number of presynaptic neurons
participating in a synchronous event from subthreshold
membrane potentials (Léger et al. 2005; DeWeese and
Zador 2006).

Here, we present a new method to infer higher-order
spike correlations from filtered spike activity, in particular,
from subthreshold membrane potential fluctuations. Simi-
larly to Rudolph and Destexhe (2006), and in line with the
common leaky integrator neuron model, we conceive the
subthreshold activity as presynaptic correlated spike trains
subject to spatio-temporal summation with a fixed filter
kernel. This representation allows to adapt a recently pro-
posed method based on binned population spike activity,
called CuBIC (cumulant based inference of higher-order
correlations by Staude et al. 2010c). This is possible since
counting spikes is identical to filtering with a rectangular
kernel and evaluating at discrete multiples of the bandwidth.
By resorting to the cumulants of the population spike count,
or subthreshold activity, respectively, a lower bound for the
maximal order of correlation can be inferred by a sequence
of hypothesis tests (Section 2). However, as a result of over-
lapping filter kernels sample data points are not independent
of each other and a procedure to correct for the implied
redundancy has to be implemented (see Section 3). On sur-
rogate data we demonstrate that our new method CuBICm
(CuBIC for membrane potentials) is very sensitive to weak
higher-order correlations and requires only small stretches
of membrane potential to give good estimates (Section 4).
Finally, we show that CuBICm is robust against viola-
tions of the underlying model assumptions and discuss its
applicability to real neuronal data (Sections 5 and 6).

2 CuBICm: adaptation of CuBIC

Initially, we describe our model for the subthreshold activity
of a neuron before we explain how higher-order correla-
tions can be inferred from experimental data. The relation
of CuBICm and CuBIC will be clarified in Section 2.1.2.

2.1 Model

The Model comprises two components: the presynaptic
spike activity with higher-order correlations and the postsy-
naptic subthreshold activity.
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2.1.1 Presynaptic spike activity and higher-order
correlations

Figure 2a (bottom) shows the spike trains X1(t), X2(t), . . .,
XN(t) of a population of N presynaptic neurons. As is high-
lighted by red bars, spikes of different neurons can occur
at the same time. We model the summed spike activity of
the population,

∑
i Xi(t), as a compound Poisson process

(CPP)

Z(t) =
∑

n

nYn(t). (1)

Here, the component processes Yn(t)
′s are independent sta-

tionary Poisson processes with intensity νn (Fig. 2a, top).
Each process Yn(t) represents the times of synchronized
activity of n neurons as is indicated by corresponding col-
ors. Thus, if νn > 0 for some n, the spike activity of the
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Fig. 2 Model and measurement. a Presynaptic spike activity. The
sum activity

∑
Xi(t) is described as a compound Poisson process

Z(t) = ∑
nYn(t), where Yn(t) are independent Poisson pro-

cesses with intensity νn. Each process Yn(t) represents the synchro-
nized activity of n presynaptic neurons encoded by the same color.
b Neuronal integration. The biological procedure is modeled as con-
volution with a fixed kernel φ(t). c Postsynaptic subthreshold activity.
Filtering of the presynaptic spike activity yields a shot noise process
S(t) = (Z ∗ φ)(t) with amplitude distribution fS(s). From the cumu-
lants of this distribution the maximal order of correlation ξ can be
inferred via CuBICm (indicated by green arrow)

presynaptic neurons exhibits correlations at least of order n.
Accordingly, we refer to (ν1, ν2, . . . , νN) as the correlation
structure and call ξ = max{n|νn > 0} the maximal order
of correlation. In the example of Fig. 2a νN > 0 and, thus,
ξ = N .

The representation of the summed presynaptic spike
activity as a composition of N independent processes
Yn(t)

′s is crucial for the derivation of our method (see fol-
lowing section). Moreover, the CPP allows the description
of a broad range of spiking neuronal populations (see Ehm
et al. 2007; Brette 2009; Staude et al. 2010a, b, c). In partic-
ular, it is not restricted to a homogeneous pool and neurons
can exhibit different firing rates and pairwise correlations.
For simplicity, the reader can think of the single cell pro-
cesses given by the CPP as stationary Poisson processes.
We will get back to this issue in Section 5.1.2 (Poisson) and
Section 6 (non-stationarity).

2.1.2 Postsynaptic subthreshold activity

Model We consider the postsynaptic neuron as a point-
neuron where the synaptic integration is modeled as equally
weighting, summing and then filtering the input spikes
(Fig. 2b). More precisely, we represent the subthreshold
activity S of a neuron as presynaptic population spike activ-
ity Z (Eq. 1) convolved with a fixed kernel φ (Fig. 2c):

S(t) = (Z ∗ φ)(t) (2)

Note, that the assumption of a fixed kernel means, in
particular, to have either a positively or a negatively signed
filter kernel and, hence, either excitatory or inhibitory input
only.

1. Example: Membrane potential fluctuations If S repre-
sents the subthreshold membrane potential fluctuations
a reasonable choice for the filter kernel φ is an expo-
nential function

φ(t) = A exp

(

− t

τ

)

(3)

where A is the amplitude of the postsynaptic potential
due to one presynaptic spike and τ is the membrane
time constant. In fact, this model is equivalent to the
well-known and frequently employed representation of
a neuron as a leaky integrate and fire neuron with pulse-
like synaptic current input. Its subthreshold activity is
more often described by the differential equation

d

dt
U(t) = −[U(t) − Ur ]

τ
− I (t)

C
(4)

with membrane potential U(t) (i.e., U = S), current
input I (t), membrane capacitance C, and resting mem-
brane potential Ur (Tuckwell 1988). Equation (3) is a
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solution for Ur = 0 and I (t) = ACδ(t) where δ(t) is
the Dirac delta function.

2. Example: Population spike count The original method
CuBIC to infer higher-order correlations operates on
the population spike count where this spike count is
obtained by binning the population spike activity. Bin-
ning can be described as filtering with a rectangular
kernel of length h evaluated at discrete multiples of the
bin size h. Hence, the population spike count can be
expressed in terms of Eq. (2).

Cumulants The estimation of the maximal order of correla-
tion in the presynaptic spike activity will be based on three
characteristics of the distribution fS(s) of the postsynaptic
subthreshold activity S (Fig. 2c, right): the mean postsy-
naptic activity, its variance and a measure similar to the
skewness of the distribution. Statistically this corresponds to
the first, second and third cumulant. For our model where Z
is a CPP (see Eq. (1)), the m-th cumulant of S and, hence, the
first (m = 1), second (m = 2) and third (m = 3) cumulant,
is given by

κm[S] = κm

[
∑

n

(nYn ∗ φ)

]

(5)

=
∑

n

nmκm[Yn ∗ φ] (6)

=
∑

n

nmνn

∫

φm. (7)

From line (5–6) it has been exploited that the processes
Y ′

ns are independent and hence, the additivity of cumulants
applies. Line (6) is a result of the fact that Yn is a Pois-
son process (Yue and Hashino 2001). As line (6) shows, the
cumulants of S contain all informations about the correlation
structure of the presynaptic spike activity. In the follow-
ing section we explain how this information can be used
to infer a lower confidence bound for the maximal order
of correlation.

2.2 Measurement

As depicted in Fig. 2, higher-order events in the input give
rise to large deflections in the subthreshold activity S and,
thus, put weight to the tail of the distribution fS(s) and
increase the skewness of fS(s). This can be characterized
by the first three cumulants of S. More precisely, under the
assumption of our model (Section 2.1) the cumulants of S
are just a weighted sum of the rates of presynaptic syn-
chronized activity of all orders (cf. Eq. (7)). Also, we know
that given the first and second cumulant, the third cumu-
lant cannot exceed a certain value if there are correlations

only up to order k, i.e. νn = 0 for n > k (cf. Staude
et al. 2010c).

2.2.1 Inference of a lower bound for the maximal order
of correlation

As in the original CuBIC we construct a statistical test based
on this feature. The null hypothesis is

Hk
0 : ‘the first three cumulants are consistent with

correlations not exceeding order k’.

Thus, rejection of this null hypothesis tells us that there are
at least correlations of order k. Applying this test succes-
sively for increasing order of correlation k then gives a lower
confidence limit for the maximal order of correlations by

ξ̂ = min
{
k | Hk

0 cannot be rejected
}
.

In order to calculate a p-value pk associated with Hk
0 one

has to proceed as follows: Initially, we need to measure the
first three sample cumulants k1, k2 and k3 of the subthresh-
old activity. Then we must determine an upper bound for the
third cumulant under Hk

0, denoted κ∗
3,k . As we assume the

CPP model, all cumulants have to fulfill Eq. (7). Under Hk
0

there are no correlations of order greater than k and, hence,
νn = 0 for n > k. Taken together, κ∗

3,k is obtained by solving
the maximization problem

κ∗
3,k = max

(ν1,ν2,...,νk,0,...,0)

k∑

n=1

n3νn

∫

φ3 (8)

s.t. k1 =
k∑

n=1

nνn

∫

φ (9)

k2 =
k∑

n=1

n2νn

∫

φ2 (10)

Here, we presupposed
∫

φ3 > 0. The case
∫

φ3 < 0 can
be treated by finding the minimum instead of the maxi-
mum. Following the arguments in Staude et al. (2010b),
the optimization problem can be solved analytically and is
achieved for a correlation structure with non-zero entries
at n = 1 and n = k only, i.e. (ν∗

1 , 0, 0, ν∗
k , 0, . . .)

(see Appendix A ).
Finally, the p-value pk of the associated hypothesis

test can be calculated via noting that the third sample
cumulant is approximately normally distributed under the
null hypothesis with mean κ∗

3,k and a variance σ ∗2

k which
incorporates the m-th cumulants κ∗

m,k up to order six
(see Appendix B):

pk = 1 − 	
((

k3 − κ∗
3,k

)
/σ ∗

k

)
(11)
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where 	 denotes the cumulative distribution function of the
standard normal distribution.

2.2.2 Requirements

The kernel φ and its parameters need to be known in order
to determine the upper bound for the third cumulant under
H3,k

0 (see Eqs. (8–10)) and, thus, to infer the order of cor-
relation ξ of the presynaptic spike activity. However, we do
not need to know the number of input neurons N. Further-
more, the CPP model allows for any correlation structure in
a neuronal population of heterogeneous spike statistics and
is not restricted to e.g. a binomial-like distribution of higher-
order correlations in a homogeneous pool as in Rudolph
and Destexhe (2006). If a membrane voltage trace is ana-
lyzed, an estimate of the resting membrane potential Ur

is required and has to be subtracted from the signal (cf.
Eqs. (3) and (4)). Here, we assume the corresponding case
of Ur = 0.

3 Correction for correlated samples

With the new method at hand we can consider a first
example.

3.1 Example

Initially we treat the simple case of independent presynaptic
processes and ask how CuBICm performs. In so doing, we
modeled the postsynaptic activity by filtering the presynap-
tic spike trains with an exponential kernel φ(t) (see Eq. (3)).
If not stated otherwise, we set A = 1 and simulated the
shot noise process S(
t) via exact integration (Rotter and
Diesmann 1999) with a time resolution of 
t = 0.05 ms
which corresponds to a sample rate of 20 kHz. Moreover,
we avoided onset transients by the use of a warm up time of
1 s.

As can be seen in Fig. 3a (light blue), it can happen
that the actual order of correlation (i.e., ξ = 1) is over-
estimated by CuBICm. More precisely, this bias becomes
more prominent with longer time constants of the kernel.
Therefore, we suggest that this is due to correlated samples:
Recall that the sample cumulants are unbiased estimators
of the true cumulants only if the samples are independent.
In contrast, filtering spike trains with a kernel which has
long time constants may imply a large memory of previous
activity.

We tested our hypothesis by generating data where only
every i-th data point is used for the estimation. In doing so,
we adapted the simulation time accordingly to keep the sam-
ple size L fixed and hence, ensure that the results are really
comparable. One can see in Fig. 3b that with increasing

sampling interval the mean estimated order of correlation
goes down to the true order of correlation. Hence, misesti-
mation of ξ is due to an application of CuBICm to samples
which are not independent.

3.2 Correction

The above approach of skipping samples requires increased
stretches of signals (e.g. membrane potentials) and, there-
fore, it is not applicable to a given sample of experimental
data. Also, adjusting the experimental design accordingly
is not practicable. For instance, for the data set in Fig. 3b
with τ = 10 ms a downsampling with an interval of
10 ms was required to obtain an unbiased estimate of the
order of correlation. For an experimental sample rate of
20 kHz this, however, corresponds to almost 3 h of record-
ing time to get the same sample size as for 50 s. And for
larger membrane time constants the recording time has to
be increased accordingly. Thus, an alternative is required
to overcome the problem of correlated samples. In order
to find a solution we need to better understand what is
going wrong: As CuBICm is based on estimates of the
first three sample cumulants and the variance of the third
sample cumulant under the null hypothesis, the impact of
correlated samples must be visible in these quantities. We
observed that the first three cumulants are estimated quite
well (not shown). In contrast, the standard deviation of the
third sample cumulant is the stronger underestimated the
longer the time constants are. That is, using the hypothe-
sis test we assume a normal distribution of the third sample
cumulant which is too narrow as compared to the actual
one (light blue and yellow line, respectively, in Fig. 3c for
τ = 10 ms). Therefore, the probability that the third sample
cumulant is bigger than assumed under the null hypothesis
is much higher than it should be from the chosen signif-
icance level α (i.e., P(pk ≤ α) > α). Hence, we tend to
falsely reject the null hypothesis (cf. the light red dots in
Fig. 3c) and, as a result, we overestimate the maximal order
of correlation.

In order to correct the standard deviation of the third
sample cumulant we chose the following approach: We esti-
mate the ratio of misestimation of the standard deviation
as a corrective factor fc for independent processes and use
fc · σ ∗

k instead of the theoretical standard deviation σ ∗
k for

the hypothesis test associated with Hk
0. More precisely, we

approximate the rate of independent spike activity by λ =
k1/

∫
φ(t), dt (cf. Eq. (9)) where k1 denotes the first sam-

ple cumulant and use this to generate various times (here:
20 times) a Poisson process with this rate λ. Thereafter, we
filter these spike trains with the same kernel as had been
assumed for the original process. Based on the resulting shot
noise processes we then calculate fc = std(k3)/σ

∗
1 where

std(k3) denotes the empirical standard deviation of the
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Fig. 3 Impact of correlated samples and associated correction.
a Inferred maximal order of correlation in dependence of the filter
time constant τ for a shot noise process with presynaptic activity con-
sisting of N = 200 independent Poisson processes with rate λ = 10
spikes/s each. Average results over 200 simulations for 50 s each are
shown for CuBICm without correction for correlated samples (light
blue) and CuBICm with correction (dark blue, dashed line). b Inferred
ξ for different sample intervals for the same shot noise processes as
in (a) with τ = 10 ms. Simulation time has been adjusted to keep the
sample size fixed. c Distribution of third cumulant of data in (a) with

τ = 10 ms. Kernel density estimate of third sample cumulant (yellow)
is shown in comparison with the mean distribution assumed under H 1

0
for CuBICm without correction (light blue) and CuBICm with correc-
tion (dark blue, dashed line). Additionally, dots indicate the cumulants
of the data sets for which H 1

0 has been rejected by the use of CuBICm
without correction (light red) and CuBICm with correction (dark red)
which corresponds to 22.5 % and 3.5 % of all data sets, respectively.
Inset presents same figure but with different axes limits. Error bars in
(a–b) depict standard deviation. A significance level of α = 0.05 has
been used

third sample cumulants and σ ∗
1 is the theoretical standard

deviation under H1
0. Hence, we suppose that the relative bias

made for σ ∗
1 is the same as for σ ∗

k with k>1. But this proce-
dure implies no assumptions additional to the ones already
made.

Figure 3c illustrates that the average corrected distribu-
tion of the third sample cumulant (dark blue dashed line)
fits the empirical one (yellow line) quite well. As a result,
the actual order of correlation is not overestimated by this
method (Fig. 3a, dark blue dashed line).

In the following chapters we will always use CuBICm
which has this corrective procedure implemented. More-
over, we will focus on the exponential filter kernel and
the interpretation of the subthreshold activity as membrane
potential fluctuations. If not stated otherwise, simulations
were performed with Matlab and the code for CuBICm
will be made available at www.apst.spiketrain-analysis.org/
Analysis Software.

4 Sensitivity

The previous section showed how we can avoid to get more
false positives than allowed by the significance level of the
hypothesis test. Here we illustrate via extensive simulation
studies that this adapted version of CuBICm is sensitive and
able to detect weak higher-order correlations present in the
presynaptic spike activity.

4.1 Data sets

The number of presynaptic neurons, the rate of spiking,
the strength of correlation and the membrane time constant
depend on various factors like brain area, animal, neu-
ron type, experimental preparation and stimulus. Here we
restrict ourselves to two data sets whose parameters we will
vary: First, a small presynaptic population of N = 1000
neurons where a subpopulation of Nc = 100 neurons exhibit
synchronized activity of order 20 with a strength corre-
sponding to a pairwise correlation coefficient of c = 0.05
(cf. correlation structure in Fig. 4c, blue bars). Each presy-
naptic spike train has been realized by a Poisson process
with λ = 5 spikes/s for T = 60 s. These processes
were convolved with an exponential kernel with time con-
stant τ = 20 ms to simulate the subthreshold postsynaptic
membrane potential (Fig. 4a). The second example is a big-
ger and sparser spiking presynaptic population with N =
10000, Nc = 200 and λ = 2 spikes/s for T = 100 s.
Simultaneous spikes occur across 40 neurons with c = 0.02
(Fig. 4a, green bars). The postsynaptic neuron integrates the
incoming spikes with a time constant of τ = 5 ms (Fig. 4b).

4.2 Inferred maximal order of correlation

As Fig. 4a and b show, higher-order correlations are hardly
visible in the postsynaptic activity of both examples (see
arrows, left). Also the distributions of the full data stretches

http://www.apst.spiketrain-analysis.org/Analysis_Software
http://www.apst.spiketrain-analysis.org/Analysis_Software
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Fig. 4 Subthreshold activity and corresponding estimated maximal
order of correlation in dependence of various parameters. Presynaptic
activity is mimicked as N Poisson processes, where a subpopulation
of Nc is correlated with pairwise correlation coefficient c. Each presy-
naptic neuron fires at rate λ. Simulations were performed for time T,
and each data set filtered with an exponential kernel with time con-
stant τ . Blue Data set with default parameters N = 1000, Nc = 100,
c = 0.05, λ = 5 spikes/s, τ = 20 ms, T = 60 s. Green: Data set with

default parameters N = 10000, Nc = 200, c = 0.02, λ = 2 spikes/s,
τ = 5 ms, T = 100 s. a, b Sample of 2 s of subthreshold activity S and
its distribution for the whole data trace. Arrows indicate time stamps
of higher-order events in the presynaptic spike activity. c Correlation
structure. d, e, f Estimated maximal order of correlation averaged over
50 simulations. Error bars represent standard deviation. Black circles
depict results for default parameter settings and triangle mark true
maximal order of correlation

are not obviously skewed which would indicate the exis-
tence of presynaptic multi-neuron events (Fig. 4a and b,
right).
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Fig. 5 Mean inferred maximal order of correlations for imprecise
coincidences. Presynaptic activity as in Fig. 4b. All spike times of the
presynaptic activity have been jittered according to a uniform distribu-
tion with support [−j, +j ]. a Same shot noise process as in Fig. 4b
(blue) and the same data with jitter j = 1 ms (red). b Mean esti-
mated maximal order of correlation in dependence of time constant τ

for various degrees of jitter (blue: j = 0 ms, purple: j = 0.5 ms, red:
j = 1 ms, orange: j = 2.5 ms, yellow: j = 5 ms). Error bars depict
one time standard deviation. Simulation time is 500 s

However, in both cases using the correct exponential
kernel CuBICm can infer a maximal order of correlation
ξ̂ which is close to the true value (compare black circles
with triangles in Fig. 4d). On average, ξ̂ becomes a bit
smaller when the simulation time, i.e. the sample size, is
decreased (blue and green lines, corresponding to Fig. 4a
and b, respectively). But even for data stretches of only 5 s
CuBICm still detects higher-order correlations (Fig. 4d).

Changing the firing rate of the presynaptic neurons
between 0.1 and 20 spikes/s has a less pronounced effect
on the test performance than changing the simulation time
and no clear trend is visible (see Fig. 4e). In contrast, the
inferred maximal order of correlation strongly depends on
the strength of cooperative activity as measured by the pair-
wise correlation coefficient c (Fig. 4f). While for c = 0.1
the actual order is correctly inferred, reasonable results are
obtained also for very weak correlations of c = 0.01. This
is even more surprising given that correlations occur only
within a small subpopulation of the input neurons.

The test performance does not depend on the amplitude
A of the exponential filter kernel (not shown). However, the
smaller the time constant τ the better are the results given
the same sample size which is shown in Fig. 5 (blue line)
for the data set of N = 1000 neurons.

5 Robustness

As we illustrated in the previous section CuBICm can
detect weak higher-order correlations in short stretches of



176 J Comput Neurosci (2013) 35:169–186

subthreshold activity. However, our proposed method to
estimate higher-order correlations “seen” by a neuron rests
on various assumptions. Here, we will investigate its robust-
ness against violations of these assumptions. In doing so, we
will mainly treat aspects which are specific to this adapted
version of CuBIC. Again we simulate and analyze sig-
nals by the use of an exponential filter kernel unless stated
otherwise.

5.1 Presynaptic spike activity

We assume the compound Poisson process (CPP) as a model
for the presynaptic spike activity which implies precise
coincidences and Poissonian spiking of single neurons.

5.1.1 Imprecise coincidences

Synchronized spiking occurs on a time scale of milliseconds
(see e.g. Riehle et al. 1997; Kohn and Smith 2005, for pair-
wise spike time correlations). In order to mimic this scenario
we added to all spike times a random variable with uni-
form distribution on [−j, +j ]. As can be seen in Fig. 5a, a
jitter of j ±1 ms hardly affects the subthreshold activity and
its distribution for our example Fig. 4b with τ = 20 ms. In
accordance with this observation, Fig. 5b demonstrates that
the order of correlation is well estimated if the time con-
stant is sufficiently bigger than the degree of imprecision.
Otherwise, ξ tends to be underestimated. The membrane
time constant of cortical neurons has been shown to be a
crucial determinant for the length of the window for tem-
poral sensitivity (Cardin et al. 2010). Along these lines, our
results do not constitute a weakness of our method but rather
suggest how higher-order spike correlations are processed
by different single neurons in terms of their subthreshold
activity.

5.1.2 Non-Poissonian spiking

Employing the CPP as a model for neuronal population
activity does not necessarily imply that all single-neuron
spike trains obey Poisson statistics (see e.g. Ehm et al.
2007; Staude et al. 2010c). Nevertheless, this scenario rep-
resents a case which is typical for applications of the
concept, and which is well manageable in stochastic simu-
lations. Since neuronal spiking often deviates from Poisson
(see e.g. Averbeck 2009; Davies et al. 2006; Griffith and
Horn 1966; Holt et al. 1996; Maimon and Assad 2009;
Neubauer et al. 2009; Shinomoto et al. 2009) and postsy-
naptic spiking is affected by the non-Poissonian character-
istics of its spiking input (Câteau and Reyes 2006; Deger
et al. 2012; Ly and Tranchina 2009), we have to ask how
reliable the estimates by CuBICm for non-Poissonian pro-
cesses are. To study this we simulated correlated Poisson

processes (PP) and non-Poissonian processes with lognor-
mal distributed inter-spike intervals (nonPP) as described
previously (Reimer et al. 2012). The resulting correlation
structure has a binomial shape for n ≥ 2 (see blue data
set in Fig. 7a). Figure 6 shows the ratio of the inferred
maximal order of correlation for non-Poissonian processes
and Poisson processes, ξ̂nonPP/ξ̂PP. We varied the coeffi-
cient of variation of the lognormal inter-spike intervals and
used different time constants of the filter kernel. For large
time constants of the kernel the maximal order of corre-
lation may be over- or underestimated. For instance, the
actual ξ is underestimated for τ = 50 ms and a lognor-
mal processes with CV = 1 which reflects the fact that
a lognormal process with CV = 1 is not a Poisson pro-
cess. In contrast, the maximal order of correlation is well
estimated for CV = 2 and the same τ . For small time con-
stants the inference is, however, hardly impaired for any
non-Poissonian process.

5.2 Misestimated parameters and kernel

In order to estimate the maximal order of correlation ξ the
kernel and its parameters need to be known. For instance,
for an exponential filter kernel, the time constant τ and the
amplitude a have to be specified. Therefore, we investigated
to which degree errors in the estimation of kernel parameters
can impair the test performance of CuBICm. In so doing,
we specifically consider the case of subthreshold membrane
potential fluctuations.

5.2.1 Subtracting the wrong resting membrane potential

If the signal in question is a subthreshold membrane voltage
trace, the resting membrane potential Ur has to be sub-
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Fig. 6 Impact of non-Poissonian spiking on the inference of higher-
order correlations. Average results for presynaptic processes with
lognormal inter-spike intervals, ξ̂ nonPP , in relation to estimates, ξ̂ PP ,
for presynaptic Poisson processes are depicted. Non-Poissonian and
Poisson processes have the same correlation structure. Lognormal
processes with different coefficient of variations of their inter-spike
interval distribution are considered. Statistics of presynaptic popula-
tion are identical to the blue data set in Fig. 7a. An exponential filter
kernel with amplitude A = 1 and different time constants τ between
1 ms (black) and 50 ms (light blue) has been used. Simulation time is
T = 100 s
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Fig. 7 Impact of misestimated kernel (parameters) on mean estimated
maximal order of correlation. Three surrogate data sets have been ana-
lyzed. Purple: N = 1000, Nc = 1000, c = 0.01, T = 100 s,
λ = 2 spikes/s, τ = 10 ms. Yellow: As purple but with c = 0.
Blue: N = 200, Nc = 200, c = 0.01, T = 100s, λ = 10 spikes/s,
τ = 10 ms. The spike trains have been filtered with an exponential
kernel and the resulting signal has been analyzed with an exponen-
tial kernel with true (or mean in e, respectively) amplitude a and time
constant τ unless stated otherwise. ξ̂ has been averaged over 50 data
sets per parameter setting. Error bars denote one time standard devia-
tion. a Correlation structure of the three sample data sets. b The signal

is considered as subthreshold membrane potential fluctuations where
not the actual resting membrane potential Ur = 0 but Ur + U shift

r

has been subtracted. U shift
r is in units of the amplitude a of the filter

kernel or postsynaptic potential, respectively. c Synaptic current as α-
synapse with time constant τα . d Time constant τ misestimated as τ̂ .
e Amplitude A misestimated as Â. f Presynaptic activity with lognor-
mal distributed amplitude a for various coefficients of variation CV
of the distribution. g Presynaptic activity consisting of an excitatory
correlated population with spike rate λE per neuron and an additional
inhibitory independent population of the same size with spike rate λI

per neuron

tracted before analysis (cf. Section 2.2.2). Figure 7b shows
what happens if one falsely uses Ur + U shift

r for normaliza-
tion. An underestimation of the resting membrane potential
(i.e., U shift

r < 0) leads to an overestimation of the actual
order of correlation, and vice versa. Note, that by assuming
Ur + U shift

r instead of Ur the mean of the signal is changed
to κ1[S] − U shift

r , whereas the second and third cumulant
are shift-invariant and remain the same. Hence, the pairwise
correlation coefficient (cf. Staude et al. 2010c)

c =
(

Nκ2[S] ∫
φ

κ1[S] ∫ φ2
− N

)

/
(
N2

c − Nc

)
(12)

is underestimated if U shift
r < 0. The same magnitude of

the third cumulant, however, can be realized with weaker
pairwise correlations, only if the maximal order of correla-
tion is higher. Thus, CuBICm overestimates the actual ξ for
underestimations of the resting membrane potential.

5.2.2 Choosing wrong kernel type

So far, we considered processes where the presynaptic
spike activity had been filtered with an exponential ker-
nel. That is, if we consider the subthreshold activity S

as membrane potential fluctuations we assumed pulse-like
synaptic current input (cf. Eq.(4)). However, a more realis-
tic description of the postsynaptic potential is to model the
synaptic current as an α-synapse (Tuckwell 1988; Rotter
and Diesmann 1999). The synaptic time constant τα deter-
mines the rise time of the postsynaptic potential evoked
by one spike in the input and for τα → 0 the postsynaptic
potential approaches the shape of an exponential kernel. We
generated corresponding surrogate data for different values
of τα while we normalized the amplitude of the postsynap-
tic potential A to one. The maximal order of correlation
has, however, been inferred by using an exponential kernel.
The membrane time constant τ and the amplitude of the
postsynaptic potential A were chosen as the actual values.
Figure 7c shows that the application of the wrong kernel
impairs the estimate of ξ more for larger synaptic time
constants τα . However, the overall degree of overestimation
of ξ is very small.

5.2.3 Misestimated time constant τ

For an exponential kernel the maximal third cumulant under
Hk

0 does not depend on the time constant τ , as a straight-
forward calculation shows (cf. Eq. (15)). Hence, for the
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hypothesis test the time constant does not need to be esti-
mated. However, in order to account for the correlations of
the samples, a shot noise process similar to the one under
investigation has to be simulated and τ has to be specified.
Figure 7d shows that a value τ̂ different from the true τ has
only a small effect on the test performance of CuBICm. As
was mentioned in Section 3.2, the bigger the time constant
is the larger is the bias in underestimating the standard devi-
ation of the third sample cumulant. Hence, if the estimated
time constant is larger than the true one, due to our correc-
tion method we overestimate the standard deviation of the
normal distribution under the null hypothesis. Therefore, we
underestimate the maximal order of correlation if any cor-
relations are present in the input (blue and purple line in
Fig. 7d).

5.2.4 Misestimated amplitude A

As opposed to the time constant τ the amplitude A of an
exponential kernel affects the cumulant κ∗

3,k according to
Eq. (15). In line with this, misestimation of A has a stronger
impact on the estimation of ξ than the same relative bias in
estimating τ (see Fig. 7e). More precisely, an underestima-
tion of A can lead to an overestimation of the actual order of
correlation and vice versa. Intuitively, this can be explained
in the following way: Imagine one presynaptic spike elic-
its a postsynaptic potential with unit amplitude. If, however,
we assume wrongly that one presynaptic spike results in
a postsynaptic potential with amplitude 0.5, a measured
postsynaptic potential of amplitude 1 has to be interpreted
as being the result of two coincident spikes. This is actu-
ally exactly what we find for the example of 1000 neurons
with synchronized presynaptic spike activity of only one
order (see Fig. 7e, purple line). For less simple correlation
structures the dependence of ξ on Â/A seems to be less
straightforward although qualitatively similar (blue line).

5.3 Fixed filter kernel

In order to infer by CuBICm higher-order correlations from
subthreshold activity not only a kernel and its parame-
ters have to be chosen but rather we are restricted to this
one fixed kernel. We treat here two of its most serious
implications.

5.3.1 Unequal synaptic amplitudes

In our previous simulation studies we assumed that each
presynaptic spike had the same impact on the membrane
potential. This means, in particular, that synaptic inputs at
different locations have the same synaptic efficacy at the
soma which may (see e.g. Häusser 2001) or may not (see
e.g. Williams and Stuart 2002) hold true. We investigated

how reliable the estimates of ξ are when there is no den-
dritic ‘democracy’. In doing so, each input spike train was
filtered with a different amplitude A of the exponential ker-
nel where A was drawn from a lognormal distribution (cf.
Lefort et al. 2009). We set the mean of A to 1 and varied
its variability as measured by the coefficient of variation
CV of the underlying distribution. The resulting shot noise
processes were analyzed with A = 1. We find that for inde-
pendent presynaptic neurons some degree of variability of
A can be tolerated and only for very big CV the maximal
order of correlation is overestimated (Fig. 7f, yellow line).
For our examples with correlated input one can hardly see
any effect of non-identical synaptic efficacies on the esti-
mation of ξ (Fig. 7f, blue and purple). We observed that the
actual shape of the distribution of A does not have a strong
impact and similar results are obtained if A is uniform or
gamma distributed (not shown).

5.3.2 Excitatory and inhibitory input

The assumption of a fixed filter kernel implies in particular
that we consider either excitatory or inhibitory presynap-
tic activity. We mimicked the scenario where the excitatory
activity could not be well isolated experimentally and some
inhibition is still active. More precisely, we generated addi-
tionally N independent spike trains with rate λI and con-
volved them (for simplicity) with the same filter kernel as
we used for the excitatory activity but with opposite sign.
Figure 7g shows that the maximal order of correlation is the
more underestimated the larger the ratio of inhibitory spike
rate λI and excitatory spike rate λE . The decrease/gradient
is very small, though. The underestimation of ξ is due to
the fact, that the third sample cumulant of S, k3, and the
variance of k3 are on average smaller than we assume for
them under Hk

0. These differences increase with both k and
the firing rate of the inhibitory population as we show in
Appendix C.

5.4 Model of layer 5 pyramidal cell

Figure 8 shows the results for a simulation where various
assumptions of CuBICm are violated at the same time. More
precisely, we used a biophysical model of a neocortical
layer 5b pyramidal cell from Hay et al. (2011, morphol-
ogy: Fig. 1, model: Fig. 4 therein) which we obtained
from ModelDB (accession number 139653; Hines et al.
2004). To prevent the neuron from spiking, we removed
the sodium channels but kept the various other channels
similar to a block with TTX. We generated an excitatory
presynaptic population of 10,000 Poisson neurons which
either fired independently with 1 spike/s (Fig. 8a), or 200
of the neurons showed correlated spiking with a pairwise
correlation of 0.2 and exhibited correlations of order 50
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Fig. 8 Inferred maximal order of correlation from the membrane
potential fluctuations of a multi-compartment model of a reconstructed
layer 5 pyramidal cell (Hay et al. 2011). Mean results of five sim-
ulations are shown for different estimated EPSP amplitudes Â and
estimated resting membrane potential Ûr (color coded). The model
has various active ionic currents where we removed the sodium chan-
nels to prevent the neuron from spiking. 10,000 (2,000) conductance
based AMPA (GABA) synapses with rise time 0.2 ms (1 ms), decay
time 1.7 ms (10 ms) and peak value 3 nS were randomly distributed,
where all presynaptic neurons fired 1 (2.5) spikes/s. All spike trains
were simulated as Poisson processes, which were independent of each
other within the inhibitory population. a Uncorrelated excitatory popu-
lation. b 200 neurons of the excitatory population are correlated with a
pairwise correlation coefficient c = 0.2, and an order of correlation of
50. Black triangles mark maximal order of correlation. Yellow crosses
mark the result which is obtained if Â and Ûr are closest to the true
values. Simulation time was 100 s

(Fig. 8b). Additionally, we simulated an inhibitory indepen-
dent Poisson population of 2,000 neurons which elicited
on average 2.5 spikes/s each. The input spike trains were
assigned to randomly placed synapses, where the synap-
tic integration was simulated using the Python interface for
the NEURON simulation environment (Hines and Carnevale
1997). The conductance transients of the AMPA (GABA)
synapses were modeled as difference of two exponen-
tials with rise time 0.2 ms (1 ms), decay time 1.7 ms
(10 ms) and peak value 3 nS. Since the EPSP amplitude
is state-dependent, and may be reduced during synaptic
bombardment (Kuhn et al. 2004), we compared the mem-
brane potential fluctuations for uncorrelated presynaptic
spiking with those where each of 2,000 randomly chosen
synapses was additionally stimulated with one extra spike.
We obtained an average effective EPSP (IPSP) amplitude
of 0.24 mV (−0.14 mV), with a coefficient of variation
of 0.98 (−0.9).

Simulations were performed for 100 s and for five
different realizations of the presynaptic spiking activity.
We applied CuBICm to the membrane potential fluctu-
ations by choosing the true membrane time constant of
10 mV. The mean EPSP amplitude was set to values

between 0.05 mV and 0.55 mV. Moreover, we analyzed
not only data where the true resting membrane poten-
tial of −77.25 mV had been subtracted, but we also
investigated traces where different Ûr were used. If the
presynaptic spiking activity is not correlated, the maxi-
mal order of correlation ξ is only slightly overestimated
(Fig. 8a). If correlations are present, ξ̂ depends more
strongly on the assumed mean EPSP amplitude Â (Fig. 8b).
For optimal parameters of Â and Ûr , we obtain ξ̂ ≈
15. Similar to our findings in Section 5.2.4, ξ̂ increases
with smaller Â and it decreases with most of the bigger
amplitudes. Subtracting the wrong resting membrane poten-
tial has qualitatively the same impact as we revealed in
Fig. 7b.

6 Discussion

We presented a novel method, CuBICm, to infer higher-
order correlations in neuronal network activity from fil-
tered spike activity, in particular, subthreshold membrane
potentials. Our method has two major advantages: first,
it captures features of the correlation structure of net-
work activity which go way beyond pairwise correla-
tions, and second, it can extract this information from
recordings from one cell, thus making multiple electrode
recordings and error-prone spike sorting obsolete. Inher-
ent to the nature of intracellular recordings, our approach
puts emphasis on the higher-order correlations effectively
seen by a single neuron. This is in contrast to previ-
ously suggested methods, which were employed to assess
the distance dependence of correlations. In this sense, our
method constitutes a way to infer the functional aspect
of correlations (e.g., how correlations are effectively seen
by cells), rather than structural features of neuronal net-
works or crosstalk between different brain areas (e.g.,
Ohiorhenuan et al. 2010; Ganmor et al. 2011a). Our new
method is applicable to intracellular recordings of short
duration, and shows a high sensitivity to weak higher-order
correlations.

We devised CuBICm by adaptation of the previously
proposed method CuBIC (Staude et al. 2010b, c), which
was designed to analyze population spike trains. As a
result, CuBICm can provide the same type of infor-
mation about higher-order correlations, i.e. the maximal
order of correlation ξ . For population spike trains, another
method exists which can reveal even more details on
the higher-order correlations: empirical de-Poissonization
(EDP; Ehm et al. 2007). The full correlation structure
(ν1, ν2, . . . , νN) can be estimated with it. Thus, EDP can
highlight differences in the higher-order statistics of two
or more populations, which are not reflected in the max-
imal order of correlation. EDP “extracts” νn from the
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characteristic function of the population spike count. Con-
sequently, considering the characteristic function of shot
noise processes (cf. Gilbert and Pollak 1960) may be
an ansatz to develop a method for membrane potential
fluctuations which can estimate the correlation structure
(ν1, ν2, . . . , νN) as well.

6.1 Applicability of CuBICm to in vivo intracellular
recordings

The basic working principle of the family of CuBIC meth-
ods is to perform a sequence of statistical hypothesis tests,
where the cumulants of measured data with higher-order
correlations of unknown order are compared to the cumu-
lants of a model with correlations only up to a certain order
included (Staude et al. 2010b, c and Section 2). Apparently,
the reliability of such a testing procedure depends on how
much the physiological characteristics of the measured sys-
tem deviate from the assumed model and its parameters.
Our model is based on the following set of assumptions:
(i) lumped input spike trains are well characterized by
a compound Poisson process, (ii) PSPs can be described
by a fixed kernel function, (iii) all inputs to the neuron
are integrated linearly and, (iv) all inputs are of the same
sign, i.e. we have either only excitatory or only inhibitory
PSPs. In addition, the resting membrane potential, the mem-
brane time constant and the mean PSP amplitude must
be known.

We found that CuBICm is remarkably robust against vio-
lations of model assumptions and misestimation of model
parameters—even when the recording situation differs in
several respects from the underlying model (see Section 5).
As Eq. (7) directly shows, a synchronous event of order
n makes a contribution to the k-th cumulant of the mem-
brane potential of order nk . Our results suggest that all other
perturbations considered here rather affect all cumulants
equally, and thus hardly impair the inference of the max-
imal order of correlation. Here, we discuss the robustness
of CuBICm when applying it to in vivo intracellular record-
ings of membrane potentials, specifically with respect to the
appropriateness of model assumptions and the estimation of
model parameters.

6.1.1 Appropriateness of model assumptions

From the above mentioned assumptions, number (iv)
appears most problematic. A well-regulated interplay
between excitation and inhibition is a generic feature of
many known biological networks, and only rarely will a cell
in the brain get exclusively either excitatory or inhibitory
input. However, as demonstrated in Section 5.3.2, CuBICm
is stunningly robust against additional inhibitory input,

if higher-order correlations within the pool of excitatory
presynaptic neurons are to be measured. To which extent a
correlation between excitatory and inhibitory inputs com-
promises the performance of CuBICm was not tested in our
present study. However, such correlations have been exper-
imentally demonstrated in the rat brain (Okun and Lampl
2008; Gentet et al. 2010) and the primate and mouse retina
(Cafaro and Rieke 2010). Experimentally, problems associ-
ated with inhibition confounding the measurement of HOCs
in excitatory inputs can be minimized with the help of phar-
macological blockers of GABAergic receptors that act from
the cytoplasmic face and can simply be added to the pipette
solution (see e.g. Nelson et al. 1994; Lang and Par 1997).
Another less invasive method to isolate excitatory input dur-
ing the measurements would be to clamp the membrane
potential to the reversal potential of inhibitory currents using
the slow voltage clamp technique (Sutor et al. 2003), which
annihilates slow deviations of the membrane potential from
the prescribed clamping potential, but does not affect fast
deflections like PSPs.

To what extent the assumption (iii) of linearity of PSP
summation is justified in cells within an active network is
still a matter of debate. Obviously, because of their cable
properties (Hodgkin and Rushton 1946; Rall 1959), neu-
rons without specific non-linear mechanisms will integrate
in an essentially linear fashion (however, see Kuhn et al.
2004). Indeed, work in acute brain slices has experimen-
tally demonstrated linear integration (Cash and Yuste 1999;
Magee and Cook 2000), and even in the intact animal, sum-
mation of artificially evoked inputs has been shown to be
linear (Léger et al. 2005; Jagadeesh et al. 1993). On the
other hand, a rich repertoire of non-linear integration mech-
anisms has been described in dendritic regions of a number
of neuron types, mostly in acute brain slices (Miyakawa
et al. 1992; Amitai et al. 1993; Schiller et al. 2000; Larkum
et al. 2009), and accordingly non-linear integration prop-
erties in single neurons have been described (Nettleton
and Spain 2000; Yoshimura et al. 2000). To which extent
these mechanisms are actually effective in the intact brain
remains a matter of debate until today, and clear evidence
for their functional relevance is still lacking. As soon as
clear ideas evolve where and when non-linear summation
effects play a role, appropriate compensation mechanisms
should be included into CuBICm. Given the present uncer-
tainty concerning non-linear summation in the intact brain,
it does not seem appropriate to formulate the conditions
for such a correction, however. Similarly, sub-threshold,
voltage-dependent conductances like Ih could be taken into
consideration for an adapted version of CuBICm, but to
date, most quantitative data for channel densities and over-
all conductances originate from slice work, and it is difficult
to estimate their abundance in vivo.
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While linear summation might be, at present, the most
reasonable model, assumption (ii) of all PSPs having the
same fixed amplitude and decay time constant does def-
initely not apply to most biological recordings. Even in
a simple cable model of a cell, filtering effects will
lead to attenuation and slowdown of PSPs from distant
synapses. Indeed, in certain cortical neuron types mech-
anisms for normalization of amplitude (Magee and Cook
2000) or time course (Williams and Stuart 2000) have been
described. However, they seem to be specific to the cor-
responding cell type or even to certain dendritic regions
(Williams and Stuart 2002). In general, PSP amplitudes
vary strongly from synapse to synapse, and the distribu-
tion of amplitudes at one synapse sometimes shows a heavy
tail (Berretta and Jones 1996; Lefort et al. 2009). As was
demonstrated in Section 5.3.1, CuBICm works well in
similar scenarios. In principle, an adaptation of CuBICm
for randomly distributed amplitudes would be feasible.
Methodologically this would be similar to the adaptation
for non-stationary presynaptic spike activity, which is out-
lined below. As we also demonstrated in Section 5.2.2, the
shape of the PSP does not need to be exactly matched, but
an approximation also yields good results.

While the compound Poisson process (i) is a flexible
model, it does not capture all features of spiking in biologi-
cal neurons. We investigated the robustness of CuBICm for
non-Poissonian spiking in Section 5.1.2. In fact, our results
are in line with our previous findings, where we employed
the method empirical de-Poissonization (Ehm et al. 2007;
Reimer et al. 2012). It infers higher-order correlations from
the population spike count, again assuming the CPP model.
We therefore expect that, similarly, the degree of misesti-
mation of ξ by CuBICm does not only depend on the time
constant, but also on the detailed spike statistics like firing
rate, inter-spike interval distribution, spiking irregularity,
and population size. In particular, the results will be most
reliable for large populations of sparsely firing neurons—
a parameter regime reported for the neocortex (see Barth
and Poulet 2012, for a review). Especially in networks
which are engaged in the processing of sensory informa-
tion, spike rates are often strongly fluctuating on a short
time scale. The component processes Yn(t) of the compound
Poisson process are, however, stationary in the CPP model
(see Section 2.1.1), which restricts the type of time variation
of spike rates in single neurons. A simple example would
be that half of the population spikes only within the first
half of the observation interval, while the remaining neu-
rons are silent in this period and fire only in the second
half (see Staude et al. 2010b, for less obvious examples).
In order to capture also scenarios like rapidly co-fluctuating
firing rates of all neurons (Staude et al. 2010b), we extended
the CPP model and adjusted CuBIC accordingly. The same

approach is also applicable to CuBICm. Briefly, the com-
ponent processes Yn(t) are conceived as doubly stochastic
Poisson processes with a common (but random) rate profile.
The cumulants of the population spike count, or postsy-
naptic subthreshold activity, respectively, are obtained by
the law of total cumulance. In doing so, only assuming a
parametric family of distributions for the rate fluctuations,
and not a specific rate profile, the inference of higher-
order correlations for non-stationary processes is made
possible.

6.1.2 Estimation of model parameters

Among the three parameters which have to be estimated and
inserted into the model for proper analysis, the mean PSP
amplitude is the most problematic issue. As is shown in
Section 5.2.4, an underestimation of the mean PSP ampli-
tude by 50 % can lead to a substantial overestimate of
correlation order. The opposite effect occurs for an over-
estimated PSP size, but it is much less pronounced. This
asymmetric dependency of CuBICm suggests that the lat-
ter scenario (assumed PSPs bigger than in reality) leads to a
conservative use of the method. The order of correlation will
in this case, if at all, be slightly underestimated. Estimating
PSP amplitudes in individual cells within intact networks
is, in fact, not really feasible based on experimental meth-
ods available to date. The only reliable measurements of
PSP amplitudes come from recordings in acute brain slices,
where spontaneous activity is low and individual presy-
naptic cells can be stimulated repeatedly (either by paired
recordings or via light-induced activation). Data from such
experiments demonstrate a wide range of amplitudes which
strongly depend on age, species, presynaptic/postsynaptic
cell type and brain region (for a review see Thomson and
Lamy 2007). Most PSP amplitude distributions reported
in recent years have their peak below 1 mV, and this
number seems to be a good approximation even if inputs
from different layers or different cell populations are con-
sidered (Schnepel et al. 2011). However, neurons in vivo
receive the spiking activity of thousands of other neurons
which can reduce the PSP amplitude drastically (Kuhn
et al. 2004). Thus, estimates should be adapted accordingly
(Kumar et al. 2008).

To get a reasonable estimate of the resting membrane
potential is, compared to the mean PSP amplitude, much
easier in practice, since the only requirement is to block
all synaptic inputs for a limited period of time. In the
intact animal, this could be achieved either by local appli-
cation of ion channel or receptor blockers, or, alterna-
tively, by administration of anesthetics which generate pro-
nounced up/down states (Steriade et al. 1993; Mahon et al.
2001). Such pharmacological manipulations can only be
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performed after the recordings intended for the assessment
of higher-order correlations, and the choice of manipulating
agent depends on the details of the experimental proce-
dure. In any case, an over- or under-estimation of the resting
membrane potential of a few millivolts would not be too
detrimental for the estimation of the degree of higher-order
correlations, as we demonstrated in Section 5.2.1. However,
the resting membrane potential during intracellular record-
ings can depend on the pipette solution, and drifting offset
potentials may lead to a considerably erroneous read-out, so
one of the above mentioned pharmacological interventions
seem advisable wherever possible.

In general, the PSP decay time constant should (as far as
dendritic filtering effects are neglected or covered by work-
ing with distributions of time constants rather than a single
fixed value) conform to the membrane time constant. This
value can, even in in vivo intracellular recordings, be eas-
ily assessed by brief current pulse injections (Waters and
Helmchen 2006; Léger et al. 2005). Moreover, CuBICm is
hardly affected by misestimated membrane time constants
(see Section 5.2.3).

6.2 Outlook

Recently, intracellular recording techniques have been sub-
stantially improved and today allow us to perform single
cell recordings from awake freely moving animals (Margrie
et al. 2002), or from genetically identified sub-populations
of cells (Dittgen et al. 2004). In combination with our
new analysis tool, the occurrence of higher-order correla-
tions can now be studied in different activity regimes, brain
regions, or populations of neurons. If combined with opto-
genetic approaches, CuBICm could even help to reveal the
contribution of defined groups of cells to correlated activity
in neuronal networks.

CuBICm is applicable to any signal which can be con-
ceived (or approximated) as linearly filtered spike activity,
and it is not restricted to subthreshold membrane potential
fluctuations. For instance, conductance fluctuations could
also be analyzed by CuBICm (cf. Rudolph and Destexhe
2006). More recently it has been shown that also the time
course of local field potentials in neocortex can be well
estimated by convolving a spike train with a linear filter ker-
nel (Rasch et al. 2009) and, thus, suggests an analysis for
higher-order correlations by CuBICm.
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Appendix A: Solution of optimization problem

The optimization problem in Section 2.2.1 can be solved
via proceeding as in Staude et al. (2010b). The optimum is
achieved for νn = 0 for n = 2, . . . k − 1 and

ν∗
1 = 1

k − 1

(
ξk1∫

φ
− k2∫

φ2

)

(13)

ν∗
k = 1

k(k − 1)

(
k2∫
φ2

− k1∫
φ

)

(14)

Thus, the m-th cumulant maximal cumulant under the
null hypothesis Hk

0 is given as

κ∗
m,k =

∫
φm

∫
φ · ∫

φ2

(

k2

∫

φ ·
(
km−2 + km−3 + . . . + 1

)

− k1

∫

φ2·
(
km−2 + km−3 + . . . + k

))

.

(15)

Appendix B: Variance of third sample cumulant

The variance of third sample cumulant is given by (Stuart
and Ord 1987):

Var(k3) = 1

L
κ6 + 9

L − 1
κ4κ2 + 9

L − 1
κ2

3

+ 6L

(L − 1)(L − 2)
κ3

2 (16)

Thus, the variance of the third sample cumulant under the
null hypothesis, denoted (σ ∗)2, is given by plugging-in κ∗

m,k

according to Eq. (15) for each κm.

Appendix C: Excitatory and inhibitory presynaptic
spiking activity

We show here how our simulation results in Section 5.3.2
can be explained theoretically. In doing so, we compare
the m-th cumulant of the shot noise process S, κm(S),
and the upper bound for the m-th cumulant assumed
under Hk

0, κ∗
m,k(S). The shot noise process S can be

represented as

S = SE + SI (17)
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where SE (SI ) is the shot noise process of the excitatory
(inhibitory) population.

For the inhibitory spike trains we made the following
assumptions:

i) the excitatory and inhibitory spike trains are indepen-
dent of each other

ii) the m-th integral of the inhibitory filter kernel can be
decomposed as

∫
φm

I = (−1)m
∫

φm
I∗ where

∫
φm

I∗ > 0
iii) the inhibitory population consists of NI independent

Poisson processes with rate λI

iv) the firing rate of the excitatory population, λENE ,
relates to the inhibitory population via λINI = q ·
λENE .

E
(
κ∗
m,k(S)

)
(18)

=
∫

φm
E∫

φE · ∫
φ2

E

(

E(k2)

∫

φE · (
km−2 + km−3 + . . . + 1

) − E(k1)

∫

φ2
E · (km−2 + km−3 + . . . + k

)
)

(19)

=
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φm
E∫

φE · ∫
φ2

E

(

κ2(S)

∫

φE · (
km−2 + km−3 + . . . + 1

) − κ1(S)

∫

φ2
E · (

km−2 + km−3 + . . . + k
)
)

(20)

= E(κ∗
m,k(SE)) +

∫
φm

E∫
φE · ∫

φ2
E

(

qκ1(SE)

∫

φ2
I∗

(
km−2 + km−3 + . . . + 1

)

+ qκ1(SE)

∫
φI∗

∫
φ2

E∫
φE

(
km−2 + km−3 + . . . + k
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(21)

= E(κ∗
m,k(SE)) + qκ1(SE)

∫
φm

E∫
φE

·
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φ2
I∗∫

φ2
E

· (
km−2 + km−3 + . . . + 1

) +
∫

φI∗∫
φE

(
km−2 + km−3 + . . . + k
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︸ ︷︷ ︸
b2

(22)

Then, the m-th cumulant of S is given by

κm(S) = κm(SE + SI ) (23)

i)= κm(SE) + κm(SI ) (24)

ii)+iii)+Eq. 7= κm(SE) + λINI · (−1)m
∫

φm
I∗ (25)

iv)= κm(SE) + q · λENE ·
∫

φE · (−1)m

∫
φm

I∗∫
φE

(26)

Eq. 7= κm(SE) + q · κ1(SE) · (−1)m

∫
φm

I∗∫
φE

︸ ︷︷ ︸
b1

(27)

Thus, the actual m-th cumulant of S deviates from the
m-th cumulant of the excitatory component SE by b1. This
amount does not depend on the “fraction” or strength of
higher-order correlations, but only on the first cumulant
(i.e., population firing rate) of the excitatory population, the
relative strength of the inhibitory population firing q, and on
the respective kernels. In particular, this “bias” is positive
for m even and negative for m odd.

Under Hk
0 we assume Eq. (15) where we set

∫
φ = ∫

φE .
If the impact of the correlation among samples can be
neglected (see however Section 3), the k-statistics are unbi-

ased estimators, i.e. E(km) = κm(S). Thus, one obtains from
Eq. (15) the results in Eq. (22).

Under Hk
0 , we assume for the third sample cumulant k3

that k3 ∼ N
(
E
(
κ∗

3,k(S)
)
, σ ∗) where σ∗ denotes the stan-

dard deviation obtained by plugging Eq. (22) into Eq. (16).
However, k3 ∼ N (κ3(S), σ ) with Eqs. (27) and (16). By
comparing b1 of Eq. (27) and b2 of Eq. (22) one can see, that
for m odd κ∗

m,k(S) is bigger than κm(S). Yet, the variance
is composed of the cumulants up to order 6. For the special
case of φ = φE = φI∗ , which we considered in Section
5.3.2, we find

b2 =q · κ1(SE) ·
∫

φm

∫
φ

· (2 · (km−2 + km−3+. . . + k)+1).

(28)

As a result, we find

a) κ∗
3,k(S) is bigger than κ3(S)

b) σ∗ is bigger than σ

c) the difference increases with k.

The null hypothesis Hk
0 has to be rejected if the p-value

is smaller than the significance level α. p < α is equivalent
to k3 > c where c denotes the (1 − α)-quantile, i.e. c =
F−1

N
(
κ∗

3,k
(S),σ ∗

)(1−α). The probability to get a value smaller
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than c for the third sample cumulant is, however, bigger than
1 − α in our setting:

FN
(
κ3(S),σ

)(c) (29)

= FN (κ3(S),σ )

(

F−1

N
(
κ∗

3,k
(S),σ ∗

)(1 − α)

)

(30)

= FN (κ3(S),σ )

(
κ∗

3,k(S)+σ ∗√2 erf−1(2(1−α)−1)
)

(31)

≥ FN(κ3(S),σ )

(
κ3(S)+σ

√
2 erf−1(2(1 − α) − 1)

)
(32)

= 1 − α (33)

Here, erf denotes the error function. From line Eq. (32) to
Eq. (33) we made use of the properties a) and b), and the
monotonicity of a cumulative distribution function. Thus,
the null hypothesis is more frequently “accepted” and, as a
result, the actual order of correlation ξ is underestimated.
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