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Abstract
In studies of the visual system as well as in computer vision, the focus is often on contrast edges. However, the primate visual 
system contains a large number of cells that are insensitive to spatial contrast and, instead, respond to uniform homogene-
ous illumination of their visual field. The purpose of this information remains unclear. Here, we propose a mechanism that 
detects feature homogeneity in visual areas, based on latency coding and spike time coincidence, in a purely feed-forward 
and therefore rapid manner. We demonstrate how homogeneity information can interact with information on contrast edges 
to potentially support rapid image segmentation. Furthermore, we analyze how neuronal crosstalk (noise) affects the mecha-
nism’s performance. We show that the detrimental effects of crosstalk can be partly mitigated through delayed feed-forward 
inhibition that shapes bi-phasic post-synaptic events. The delay of the feed-forward inhibition allows effectively controlling 
the size of the temporal integration window and, thereby, the coincidence threshold. The proposed model is based on single-
spike latency codes in a purely feed-forward architecture that supports low-latency processing, making it an attractive scheme 
of computation in spiking neuronal networks where rapid responses and low spike counts are desired.

1 Introduction

Humans recognize the presence of a face in an image in as 
little as 150 ms, which strongly suggests that object recogni-
tion in humans must be achieved in a feed-forward manner, 
with at most 1–2 spikes per neuron per processing stage 
(Thorpe and Imbert 1989). Mechanisms for object recogni-
tion in the brain that involve recurrent processing for seg-
mentation (Körner et al. 1999; Ullman 2000) are inherently 
too slow to account for this kind of rapid face detection.

Gewaltig et al. (2003) proposed a mechanism that sup-
ports rapid image segmentation by using information on 
homogeneous image regions to confine edge detection to 
borders between those regions. Here, we present a straight-
forward spiking network model that implements this effect. 
The application of this model is not limited to vision but 
could be applied universally to detect homogeneous distribu-
tions of features in any spiking sensory code.

The model was inspired by the response properties of a 
neuron population in the primate visual pathway, the so-
called koniocellular neurons. In primates, the lateral genic-
ulate nucleus (LGN) relays visual information from the 
retina to the primary visual cortex. Three parallel pathways 
relay information through the LGN: the magno-, parvo-, 
and koniocellular pathways. Magno-cells in the LGN have 
large receptive fields and are highly sensitive to local con-
trast (Sclar et al. 1990). Parvo-cells have smaller receptive 
fields, and their contrast sensitivity is comparatively low; 
however, many of them are sensitive to color (Livingstone 
and Hubel 1988). The koniocellular pathway is less well 
investigated. Koniocellular neurons form a heterogeneous 
group, intercalated between the magno- and parvo layers 
in the LGN. Many of them have response properties dis-
tinct from those found in magno- and parvocellular neu-
rons, with large and nonclassical receptive fields with lower 
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spatial and intermediate temporal resolution compared to 
parvo- and magno-cells at matched eccentricities, without 
center-surround organization, and/or insensitive to flashes or 
moving bars (Irvin et al. 1986; White et al. 2001; Xu et al. 
2001). Different types of K-cells with “blue-on” and “blue-
off” characteristics have been described, and even cells sup-
pressed by contrast (Szmajda et al. 2006; Tailby et al. 2007; 
Solomon et al. 2010). These observations indicate that at 
least a subset of the koniocellular pathway transmits infor-
mation about homogeneous illumination in large receptive 
fields, rather than local contrast patches as in the magnocel-
lular and parvocellular pathways.

Subgroups of Konio-cells also show unusual projection 
patterns to striate cortex. Their projections to V1 largely 
avoid the magno- and parvocellular-targeted Layer 4, but 
instead terminate in the cytochrome-oxidase blobs of the 
superficial layers (Hendry and Yoshioka 1994; Lund et al. 
1994; Hendry and Reid 2000) and directly influence activ-
ity in supragranular layers (Klein et al. 2016). Moreover, 
while magno- and parvocellular projections are restricted 
to V1, koniocellular inputs have been identified in area MT, 
a higher area of the ventral visual pathway (Sincich et al. 
2004; Jayakumar et al. 2013). These extrastriate projections 
have been associated with “blindsight” in subjects that have 
V1 ablated but are still able to perceive rudimentary visual 
information (Hernández-González et al. 1994).

These unique response profiles and projection patterns 
provoke the question what role konio-cells play in vision. 
Here, we propose that information about homogeneous 
regions of the visual scene, as provided by a subset of konio-
cells, can be used to filter bottom-up information on con-
trast edges. The particular projection pattern from the LGN 
directly to Layers 2/3 suggests that konio-cell axons “skip” 
a synapse and can interact with contrast-edge information 
provided by magno- and parvocellular neurons entering V1 
in Layer 4, before being relayed to Layers 2/3. Filtering bot-
tom-up information on contrast edges could thereby suppress 
the output of contrast-sensitive cells in Layers 2/3 in regions 
with homogeneous brightness, potentially supporting rapid 
image segmentation.

Rapid processing of information in spiking network has 
also been associated with latency coding. There is convinc-
ing experimental (Reinagel and Reid 2000; Johansson and 
Birznieks 2004; Nelken et al. 2005; Gollisch and Meister 
2008) and theoretical (Reinagel and Reid 2000; Van Rullen 
and Thorpe 2001; Delorme 2003; Kupper et al. 2005; Van-
Rullen et al. 2005; Masquelier and Thorpe 2007) evidence 
that the spike latency of neurons encodes their stimulation 
strength, such that the stronger a neuron is activated, the 
sooner it produces a spike. Latency can readily be assessed 
with the first spike of a neuron, usually after a few millisec-
onds, whereas the read-out of spike rates requires integrat-
ing many spikes over time or space. Latency codes are thus 

preferred when there is a need to quickly arrive at a hypoth-
esis about the stimulus (VanRullen et al. 2005). The model 
we present here combines spike latency coding of with coin-
cidence detection to identify regions of homogeneous illu-
mination that could assist rapid feed-forward segmentation.

In the visual system stimuli are generally mapped topo-
graphically, such that feature-selective neurons projecting 
to a single post-synaptic neuron have their receptive fields 
located in a small local region of the input space (e.g., a 
small local region in the field of view, Fig. 1, left). Assuming 
those neurons respond to visual input with a latency code, 
the level of coincidence of the first spikes after the common 
reference point (i.e., stimulus onset, termination of a sac-
cade) will encode the amount of variance in the input patch. 
In the case of low variance, i.e., homogeneous stimulation, 
the ensemble will produce a spike packet within a small 
temporal window. This enables post-synaptic neurons to 
detect homogeneous stimulation by coincidence detection 
(Fig. 1, right). Therefore, a spike in the post-synaptic neuron 
becomes a statement on the homogeneity of the distribution 
of the respective feature in this region of the input space.

By definition, a latency code requires a reference point 
in time. In the visual system of mammals, this reference 
point could be provided, e.g., by the onset and termination 
of saccades (Ito et al. 2011; Niemeyer and Paradiso 2018). 
Such “reset” mechanisms synchronize the internal state of an 
ensemble of neurons (e.g., the membrane potential), thereby 
erasing their stimulus history, which is a necessary condi-
tion for reliable mapping of local luminances on the spike 
latencies in a population of neurons (Kupper et al. 2005).

The above example applies to vision and luminance-
encoding neurons. But this principle of detecting feature 
homogeneity by spike coincidence applies to any topo-
graphically arranged set of neurons that use a latency code 
to represent the strength of their activation. It can easily be 
extended to retinotopically arranged orientation-selective 
cells in V1, or retinotopically arranged directionally sensi-
tive neurons in MT. Moreover, it is not limited to vision—
any sensory modality that supports latency coding and some 
sort of topographical mapping could be processed in the 
proposed fashion.

2  Models and methods

To design a generic homogeneity-detecting circuit we started 
from a set of neurons selective for some arbitrary feature f, 
with the aim to create a set of cells selective for the homo-
geneous appearance of f. We required that feature-selective 
neurons are topographically arranged over the (potentially 
abstract) input space, and that this topography is preserved 
in convergent projections across layers.
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The design pattern for the neural detection of topographi-
cal feature homogeneity was chosen to be as follows (cf. 
Fig. 2):

1. A sending neuronal population Ns is a set of latency-cod-
ing neurons selective for the feature f. That is, spiking of 
a neuron in Ns corresponds to the appearance of feature 
f, and the spike latency corresponds to some gradual 
quality q of f (e.g., illumination, contrast, orientation). 
The gradual quality of q allows it to be mapped to the 
spike latency.

2. The neuronal population Ns is arranged across the corti-
cal surface, while preserving the topography of a stimu-
lation space � , e.g., retinotopically, tonotopically, soma-
totopically, chemotopically etc.

3. Neurons in a receiving population Nr receive convergent, 
topography-preserving inputs from local sub-popula-
tions of Ns with a fixed extent (or, in the case of visual 
receptive fields, diameter) d measured in � , and with a 
fixed transmission delay. This makes Nr topographically 
arranged according to �.

Then, activity of a neuron in population Nr indicates the 
appearance of feature f  with homogeneous quality q across a 
local region of diameter d in the stimulation space � , and at 
the location corresponding to the respective neuron’s topo-
graphical position. Note that the quality q of feature f  is still 
encoded in the firing latency of this neuron.

We applied this general design principle in two network 
models: First, a model of V1 where homogeneity-selective 
cells identified surfaces in natural images, and second, a 

generalized model where we analyzed the effect of neu-
ronal crosstalk (or, colloquially, noise) on the performance 
of homogeneity detection. We show that surface detection 
in the V1 model can support stimulus processing in the 
primate visual cortex. The model consists of two retino-
topically arranged sets of spiking neurons in feed-forward 
fashion (Fig. 2). The sending network stage Ns models a reti-
notopic set of LGN-konio-cells that encode local luminance 
to spike latency. The receiving network stage Nr applies 
spike-latency-based homogeneity detection to the output of 
Ns , making Nr selective for image regions of homogeneous 
luminance (surfaces). Since regions of homogeneous lumi-
nance and contrast edges excluded each other, the output of 
surface-selective neurons can be used to suppress unsought 
responses in orientation-selective cells, which do not define 
borders between mid-sized visual objects (Gewaltig et al. 
2003).

In the generalized model, we focused on the coding prop-
erties of our latency-based principle for homogeneity detec-
tion. We examined the robustness to neuronal crosstalk at 
levels to be expected in the brain.

We used the NEST simulator developed in collaboration 
with the Neural Simulation Technology Initiative (Gewaltig 
and Diesmann 2007) for simulating the structured neuronal 
network. The simulation had a temporal resolution of 0.1 ms.

2.1  A model of cooperative feature detection in V1

Our first model is a specific application of the design pattern 
described above. We modeled LGN and V1 responses for the 
koniocellular and the parvo- or magnocellular pathways. For 

Fig. 1  The principle of spike-latency-based homogeneity processing; 
example from the visual domain. Left: edge regions in the stimulus 
typically have high variance of luminance, whereas surface regions 
typically have low variance of luminance. Right: a set of visual neu-
rons respond at latencies depending on the luminance inside their 

receptive fields. The receiving neuron responds when the incoming 
action potentials coincide. This makes it selective for homogeneous 
luminance inside its receptive field. In the visual domain, this allows 
identifying surface regions
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this model, we assume for mathematical conveniency two 
classes of konio-like cells that respond to homogeneous illu-
mination of their receptive field, responding to bright (ON) 
and dark (OFF) stimuli. We further assume a population of 
coincidence detecting neurons in V1 that these konio-like 
cells project to.

The schematic model setup is shown in Fig. 3. It consisted 
of four retinotopic network stages:

1. a retinal input layer where natural grayscale images were 
applied,

2. a layer of cells in the LGN that responded to homogene-
ous illumination, as in a subpopulation of the konio-like 
pathway (Ns), consisting of ON- and OFF-cells,

3. a layer of homogeneity-selective coincidence detecting 
neurons in V1, driven by the konio-like LGN population 
(Nr, ON and OFF),

4. a layer of parvo- or magnocellular orientation-selective 
cells in V1 (four orientations).

2.1.1  LGN cells responding to homogeneous illumination 
(konio‑like) ( N

s
)

We applied a two-step process to model the responses 
of konio-like LGN cells responding to homogeneous 
illumination.

First, we convolved the input image I(x, y) with a Gauss-
ian kernel G(x, y) , mimicking the effect of a large receptive 
field, and subsequently passed the result through a sigmoidal 
activation function Θ (Gewaltig et al. 2003):

where

(1)A ∶= Θ(I ∗ G )

Fig. 2  Detecting feature homogeneity from spike latency in a topo-
graphical arrangement of feature-selective neurons. Homogeneity is 
detected in two network stages. Ns is a topographically arranged set 
of neurons, selective for feature f. They generate a spike-latency code 
for the quality of feature f at the respective location in the input space 
T. A single Nr neuron receives action potentials from a local patch of 
Ns neurons. Its sensitivity for coincident synaptic events makes this 
neuron selective for the homogeneous appearance of feature f inside 
its receptive field. All Nr neurons receive action potentials from topo-
graphically corresponding local patches of Ns. This makes Nr a topo-
graphically arranged set of neurons, selective for the homogeneous 
appearance of feature f. In our generalized model (Sect. 3), two noise 
pools np1 and np2 provided random spikes, mimicking crosstalk from 
20,000 unrelated neurons

Fig. 3  Illustration of the V1 
model. Surface-selective 
neurons inhibit orientation-
selective cells, suppressing 
their responses in homogeneous 
image areas. For details, see 
main text
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with σ being the spatial standard deviation of the Gaussian, 
and θ,b the threshold and slope of the sigmoid. The thresh-
old � was chosen according to the mean of pixel values in 
the image. The other parameters were arbitrarily set to b = 4 
and � = 2 for illustration purposes.

Second, the activation values A (x, y ) were transformed 
into spike trains by a leaky integrate-and-fire model. We 
used a current-based leaky integrate-and-fire neuron model 
(Lapicque 1907; Tuckwell 1988) with post-synaptic currents 
shaped as α-functions. Their membrane potential dynamics 
are given by

where �m is the membrane time constant (set to 10 ms), Rm 
the membrane resistance (40 MΩ ), and El the leakage, i.e., 
resting potential (70 mV). An action potential was produced 
when the membrane potential V crossed the firing thresh-
old Vth (− 55 mV) in upgoing direction. Each neuron was 
allowed to fire only one spike.

We transformed the activation values of konio-like LGN 
cells into neuronal spike responses by injecting currents of 
corresponding magnitude into a retinotopically arranged 
layer of these model neurons. An ON- and an OFF-cell was 
located at each retinotopic position. The interval of activa-
tion values 

[

0, amax

]

 was linearly mapped to an interval of 
injection currents 

[

I0, I1
]

:

with

The time of the first spike in the leaky integrate-and-fire 
neuron model after the onset of a constant injection current 
I was taken to be:

provided that the current was strong enough to drive the 
neuron to cross threshold (Dayan and Abbott 2001). Vstart 
was the membrane potential at which the neuron started 

(2)G ∶ (x, y) ↦
1

�

√

2�
exp

�

−
x2 + y2

2�2

�

(3)Θ ∶ z ↦
1

1 + exp (−2b (z − � ) )

(4)�m
dV

dt
= El − V (t ) + RmI(t),

(5)
[

0, amax

]

↦

[

I0, I1
]

(6)a → I0 +
(

I1 − I0
) a

amax

(7)
[

I0, I1
]

=

{

[450, 750] pA for ON cells,

[750, 450] pA for OFF cells.

(8)tcross = −�m ln

(

RmI + El − Vth

RmI + El − Vstart

)

,

integrating the stimulus current. We will later consider its 
effect on the neuronal latency code. Here, we assumed that 
the neurons had relaxed to their resting membrane poten-
tial at the time of stimulus onset ( Vstart = El ). Thus, Eq. (8) 
becomes

The benefit of ON- and OFF-cells becomes apparent in 
Fig. 4, which depicts the nonlinear relation between the 
injection current I and the first-spike latency tcross . The injec-
tion current is a function of pixel luminance (Eqs. 1–3) and 
represents the post-retinal activation. The mapping between 
current and spike latency is logarithmic (cf. Eq. 9). Conse-
quently, the temporal spread of a spike packet created from 
an image patch will depend on the overall brightness of 
the patch. For example, consider a dark patch that results 
in injection currents between 450 and 500 pA. ON-cells 
responding to that image patch will fire their spikes within 
a 4 ms wide window (Fig. 4). The same image patch, at 
higher brightness (600 to 650 pA), yields a spike packet only 
1 ms wide. The homogeneity information may be identical 
in both patches, yet the bright patch might elicit a spike in 
coincidence-detecting surface-selective cells in Nr , whereas 

(9)tcross = −�m ln

(

1 −
Vth − El

RmI

)

.

Fig. 4  Current/latency relation (Eq. 9) for the injection of a constant 
current I into a leaky integrate and-fire model neuron ( �

m
= 10 ms , 

E
l
= −70 mV , V

th
= −55 mV , R

m
= 40 MΩ ). t

cross
 denotes the time 

of the first spike after stimulation onset. The grayscales below the 
abscissa indicate how post-retinal activation maps to injection cur-
rents of 400–750 pA. The sigmoidal transfer function of LGN konio-
cells is mirror-symmetric for ON- and OFF-cells. Current is mapped 
nonlinearly; a range of 50 pA maps to different latency ranges 
depending on the absolute amplitude (dotted lines). This motivates 
the use of ON- and OFF-channels, to better resolve small differences 
in pixel luminance toward the extreme ends of the current spectrum 
(Sect. 2.1.1)
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the dark patch might fail to do so, because the temporal 
spread of the spike packet is too large.

Hence the problem arises that surface-selective neurons 
would rarely respond to homogeneous dark image regions 
with homogeneity thresholds that yielded good results for 
bright image regions. Likewise, tuning the model to detect 
dark homogeneous regions by loosening the coincidence 
threshold would lead to spurious responses to nonhomo-
geneous bright regions.

Using two classes of LGN-konio-cells (ON and OFF) 
with inverse characteristics for post-retinal activation 
(Eq. 7) mitigated the most extreme effects of this nonline-
arity (although it did not completely eliminate them). ON- 
and OFF-cells projected separately to two corresponding 
classes of surface-selective V1 neurons: V1-ON-cells, 
the firing threshold of which was set to accurately detect 
bright homogeneous regions, i.e., mapping bright pixel 
luminance to a large range of spike latencies, and V1-OFF-
cells, with the same firing threshold but inverse lumi-
nance-to-current characteristics, and therefore accurately 
detecting dark homogeneous image regions. Parameters 
were adjusted such that both ON- and OFF-detectors still 
performed reasonably well in areas of medium luminance.

2.1.2  V1 homogeneity‑selective neurons (Nr)

The konio-like LGN acted as the sending population Ns in 
our coincidence-based feature detection scheme (Fig. 2). The 
V1 neurons in our network model corresponded to konio-
driven neurons in the cytochrome-oxidase (CO) blobs of the 
superficial layers 2/3 in the primary visual cortex. We mod-
eled the konio-driven V1 neurons as a retinotopic layer of 
leaky integrate-and-fire model neurons, playing the role of 
the receiving population Nr in our design pattern for feature 
homogeneity detection (Fig. 2). Konio-driven V1 neurons 
received spike input from locally restricted populations of 
luminance-selective LGN-konio-cells, as shown in Fig. 2.

We used the same neuron model as for the LGN cells, 
with α-shaped excitatory post-synaptic currents with a time 
constant of �syn = 0.63 ms . Receptive field size was 5 × 5 
pixels with uniform weights (0.4, unitless), except for the 
four pixels in the corners, which had zero weight to approxi-
mate a circular receptive field. We used a very short mem-
brane time constant of �m = 30 μs to obtain a point neuron 
model that is sensitive to spike coincidence, rather than rate 
input.

2.1.3  V1 orientation‑selective neurons

We modeled the response of parvo- or magnocellular orien-
tation-selective cells in V1 in a two-step process, similar to 
the one used for the LGN-konio-cells:

1. We computed activation values for four classes of 
orientation-selective neurons by convolving the input 
image with Gabor filters of four orientations, spaced at 
45-degree intervals.
2. The activation values were then transformed into 
spike trains by current injection into a leaky integrate-
and-fire model, as described before for LGN cells.

At each position of the retinotopic layer, four orienta-
tion-selective neurons were located (preferring contrast 
orientations of 0, 45, 90, 135 degrees, respectively).

2.1.4  Cooperation between orientation‑ 
and homogeneity‑selective features in V1

In the initial phase of visual scene interpretation, the 
information provided by the surface-selective neurons can 
potentially be helpful in a quick segmentation of the visual 
input. To obtain a suitable hypothesis on the main contents 
of the scene “at a first glance,” the rich information in the 
stimulus needs to be reduced to its most salient parts.

Orientation-selective and homogeneity-selective neu-
rons convey information that is mutually exclusive, as the 
presence of an oriented contrast edge contradicts the fact 
that the receptive field is illuminated homogeneously. Sup-
pressing responses of orientation-selective cells in areas 
where homogeneity-selective neurons with co-located 
receptive fields are active could therefore support rapid 
feed-forward segmentation (Gewaltig et al. 2003).

Such feed-forward interaction between the K-pathway 
and the M/P pathways is supported by anatomical and 
physiological evidence. Many K-neurons project directly 
to the CO blobs in V1, skipping a synapse in layer 4, com-
pared to M and P cells (Ding and Casagrande 1998). The 
temporal properties of K-cells are otherwise comparable 
to those of M and P cells (Solomon et al. 1999). Never-
theless, electric field potentials evoked in human V1 by 
S-cone isolating stimuli appear earlier (latencies of about 
40 ms) than the common luminance-defined motion-spe-
cific potentials (Morand et al. 2000). This indicates that 
koniocellular responses in V1 are present at least as early 
as the responses of orientation-selective neurons. Since 
edges and surfaces of physical objects exclude each other, 
the output of surface-selective konio-neurons can be used 
to suppress the responses in orientation-selective cells that 
are might be less useful in this initial phase of scene analy-
sis, i.e., those orientation responses which do not define 
borders between visual objects (Gewaltig et al. 2003). We 
modeled this process by feed-forward inhibitory coupling 
from surface-selective konio-cells onto the retinotopically 
corresponding orientation-selective parvo- or magno-cells 
in V1.
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2.2  Generalized model

In the following we use a generalized network architecture 
similar to the V1 model (Fig. 2), albeit with a simpler 
stimulation scheme. We dropped the OFF-channel because 
it is functionally identical to the ON-channel, and we 
dropped the low-pass filtering and contrast enhancement 
stages that were used to mimic the koniocellular properties 
of the primate LGN.

To mimic and control the influence of neuronal cross-
talk, each neuron in Nr received input from two pools of 
Poissonian background noise (Fig. 2), the excitatory pool 
np1 with 16,000 neurons firing independently at 2 spikes/s, 
and an inhibitory pool np2 with 4000 neurons firing at 
0.787 spikes/s. The rates and weights of the two noise 
pools were calibrated using a “balanced neuron” paradigm, 
such that the model neuron spiked at a mean rate of 2 
spikes/s background activity per neuron, i.e., as if it were 
a member of the noise pool. Synaptic currents were set to 
15 pA for excitatory and 150 pA for inhibitory synapses. 
These values are well within the physiological range (see, 
e.g., Thomson and Lamy 2007). Taken together, each 
neuron in the Nr population received background input 
from 20,000 independent neurons, maintaining them at a 
spontaneous rate of 2 spikes/s in the absence of external 
stimuli.

2.2.1  Stimulation

We used a 100 × 100 pixels patch from a grayscale image 
from an in-house database, representing a section of 
10 × 10 degrees in the visual field. Pixel luminance l 
was linearly mapped to an injection current l without 
preprocessing:

with

The currents were injected into a layer of 100 × 100 
leaky integrate-and-fire neurons ( Ns ). The spatial map-
ping of image pixels to stimulated neurons was retino-
topic. Luminance was mapped to a slightly different cur-
rent range compared Sect. 2.1 that starts at the minimum 
current that will elicit a spike. The absolute value of the 
range was not relevant to the general principle we intended 
to illustrate.

(10)[black, white]=̂ [0, 1] ↦
[

I0, I1
]

(11)l ↦ I0 + l
(

I1 − I0
)

(12)
[

I0, I1
]

= [376, 800]pA

2.2.2  Neuronal reset

The relation between injected current I and the time of 
the first spike after stimulus onset is described by (Eq. 8). 
Previously we assumed the membrane potential Vstart at 
which the neuron starts integrating the stimulus current to 
be fixed. However, it is obvious that the crossing time tcross , 
i.e., the neuron’s spike latency, will vary if Vstart varies, 
depending on the individual neurons’ stimulation history. 
These variations can be quite dramatic, as illustrated in 
Fig. 5. Small variations in Vstart cause strong variations in 
tcross , especially in the physiologically relevant excitation 
regime below 600 pA (corresponding to 100 spikes/s of 
tonic firing, i.e., a latency of 10 ms starting from rest-
ing potential; Fig. 5, thick curve). A reset mechanism that 
ensures identical starting membrane potentials is therefore 
required to generate a coherent latency code across the Ns 
population. In V1, such a reset which erases a neuron’s 
stimulus history can be generated by saccades (Ito et al. 
2011; Niemeyer and Paradiso 2018). In our model, we 
reset the neurons’ membrane potentials to resting potential 
at the beginning of the stimulus presentation, which was 
meant to represent the termination of a saccade. Visual 
stimulation was applied constantly thereafter for 100 ms.

This procedure made the Ns population a retinotopically 
arranged set of latency-coding neurons, selective for local 
luminance (luminance, in this example, was the feature f).

2.2.3  Homogeneity‑selective cells

Sub-populations of Ns in circular regions of diameter d = 11 
neurons (representing d = 1.1 degree visual angle) projected 

Fig. 5  Current-latency relation (Eq.  8) for different starting mem-
brane potentials Vstart. Thick curve, starting from resting state 
(Vstart = El, corresponds to Fig.  4); thin curves, starting from depo-
larized states (Vstart < El); gray curves, starting from hyperpolarized 
states (Vstart < El); dashed line, I = 385 pA, at which no spike is gener-
ated
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in a convolutional, topography-preserving fashion onto the 
100 × 100 Nr population (Fig. 2). Transmission delays and 
synaptic weights were identical for all connections. Hence, 
Nr is a retinotopically arranged set of neurons, selective 
for spatially homogeneous luminance across distances of 
d = 1.1 degree visual angle. Figure 9a illustrates receptive 
field sizes for Ns and Nr neurons.

3  Results

3.1  Cooperative homogeneity detection in a model 
of V1

The simulated homogeneity-selective LGN cells formed a 
retinotopically arranged set of latency-coding feature-selec-
tive neurons. The firing latency of these neurons represented 
the average luminance in their large receptive fields.

We applied grayscale images from an in-house database 
to our model retina and recorded the spike responses of all 
model neurons. From these data we derived topographically 
arranged response maps for the different layers of model 
neurons.

Since LGN neurons encode the mean luminance in 
their receptive fields, V1 neurons will fire if their recep-
tive field is illuminated homogeneously. One could argue 
that regions of homogeneous luminance can often be 
attributed to the surfaces of mid- to large-sized objects, 
and, hence, describe the konio-driven V1 neurons as sur-
face-selective (Gewaltig et al. 2003). These V1 neurons 
correspond to targets of the koniocellular pathway that 
are found in V1 layer 2/3. Since parvo- and magnocel-
lular pathways usually terminate in layer 4 and project 
to layer 2/3 from there, the koniocellular inputs in layer 
2/3 are “one synapse ahead.” This provides the potential 
for homogeneity-selective neurons to suppress bottom-up 
input from contrast-edge sensitive parvo-/magnocellular 
neurons before it arrives in layer 2/3.

Figure 6 illustrates the effect of inhibiting edge-detec-
tor responses in regions where model konio-driven cells 
respond to homogeneous illumination. The input image in 
Fig. 6a is processed by orientation/edge detectors (Fig. 6b) 
and surface detectors (Fig. 6c). By inhibiting responses of 
orientation-selective cells in homogeneous image regions, 
we yield a qualitative segmentation of the image that 
emphasizes responses of edge detectors between objects 

Fig. 6  Simulation result: surface-selective neurons inhibited orienta-
tion-selective neurons. a stimulus; b response of orientation-selective 
neurons without inhibition (all orientations shown, bright pixels indi-
cate neurons that produced at least one action potential); c response 

of surface-selective neurons (ON and OFF); d response of orien-
tation-selective neurons with inhibition by surface-selective cells: 
Responses on potential objects are reduced (compare to response in 
b)

Fig. 7  Complementary 
responses of surface-selective 
ON- and OFF-neurons. a the 
retinal stimulus, b homogeneity 
ON response, c homogeneity 
OFF response, d superposition 
of ON and OFF
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and suppresses them within object boundaries. It should be 
noted that Fig. 6c is an overlay of ON- and OFF-responses 
(Fig. 7).

The input neurons representing koniocellular LGN neu-
rons were modeled to have large receptive fields compared 
to the edge detectors. Switching off the low-pass filtering 
resulted in detecting homogeneity on a much finer spatial 
scale that appears less efficient in suppressing fine-grained 
image details (Fig. 8). This highlights the requirement for 
large receptive fields for surface-processing, i.e., to direct 
visual processing to large and salient objects in the initial 
phase of scene analysis, such that a first hypothesis on 
scene content can be established.

In summary, we demonstrated that the combination 
of neurons encoding homogeneous illumination of their 
receptive field in spike latency and coincidence-based 
detection of homogeneous areas (surfaces) in the visual 
field can restrict responses of orientation-selective cells, 
with the potential to support rapid feed-forward image 
segmentation.

3.2  Generalized model and noise resistance

Representation of mutually exclusive features in two paral-
lel pathways for rapid processing is not restricted to vision 
or the substrate of V1 but could act generally to detect the 
homogeneous appearance of (potentially abstract) latency-
encoded features in any sensory modality and the cortical 
areas.

So far, we did not consider crosstalk from other neuronal 
processes that are unrelated to the “signal” in question. 
Among a neuron’s ten thousand synapses (Braitenberg and 
Schüz 1991) the ones transmitting the “signal” (spikes from 
a local set of feature detectors) may make up one percent or 
less. The majority of post-synaptic potentials will therefore 
be caused by spike trains that are unrelated to the “signal” in 
question. Such activity is often called “background activity,” 
“ongoing activity,” or simply “noise” in the neuroscience 
literature (e.g., Arieli et al. 1996). It does not imply that 
these inputs are useless noise that could be simply removed.

Therefore, in the following, we tested the noise resistance 
of our mechanism for homogeneity detection. Specifically, 
we investigated whether its operation degrades gradually 
(gracefully) with increasing noise level.

We recorded spike responses of all neurons over the 
complete time course of simulation. From these data, we 
retrieved topographical latency maps of Ns and Nr neurons, 
as well as topographical maps of response probability. For 
each stimulus presentation we reset the Ns membrane poten-
tials and applied a static image for stimulation, generating 
latency codes for the applied stimulus. The response latency 
of a neuron was defined as the time span between the reset 
and the neuron’s first spike thereafter.

Over the course of the entire simulation, the Nr neu-
rons received synaptic input from the two noise pools 
that imitated neuronal background activity. This mas-
sive bombardment with spikes from the excitatory and 
inhibitory noise pools drove the Nr neurons close to firing 
threshold and caused them to fire at a spontaneous rate 
of 2 Hz in the absence of a visual stimulus, due to fluc-
tuations in the membrane potential (the so-called fluc-
tuation-driven regime; e.g., (Kuhn et al. 2004). To test 

Fig. 8  Effect of spatial low-pass filtering by large LGN receptive 
fields. The focus of surface detection shifts toward mid- or large-sized 
structures in the visual field. The effect can be well observed in the 
“elephant” image, which contains many small structures that are not 
attributed to objects of a relevant physical scale

Fig. 9  A, visual stimulus patch; 
small circle, receptive field 
of an Ns neuron; big circle, 
receptive field of an Nr neuron 
(b), typical single-trial spike 
trains of 100 Ns neurons with 
receptive field positions along 
the marked line in (a); grayscale 
on latency axis, corresponding 
pixel luminance by (Eqs. 10–
12). Clocktower image courtesy 
of Antonello Ceravola
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the noise resistance of our network model, we conducted 
all experiments with varying strengths of input from the 
background noise pools, by scaling the synaptic weights 
from the noise pools to 0% (no noise), 50%, and 100%.

Figure 9b shows a raster plot of typical spike trains 
generated by Ns neurons along the horizontal line in 
Fig. 9a, relative to the last reset time at t = 0 . Regions of 
homogeneous luminance in the stimulus patch show up as 
“spike packets,” since groups of neighboring Ns neurons 
respond with similar latencies (Fig. 9b). Figure 10a, left 
column, shows corresponding typical spike trains from 
Nr in the absence of noise. They are driven by coinci-
dent spikes in Ns , enabling an ad hoc segmentation of the 
input into quasi-homogeneous regions of similar (high) 
luminance, separated by regions where no spikes occur 
(Fig. 10a, right column). Nr neurons thus act as homoge-
neity-selective neurons. Note that by relying only on the 
first action potentials of feature detector neurons, homo-
geneity processing was very fast, with first components 
signaled already after 10 ms. Increasing noise levels of 
50% and 100% (Fig. 10b, c, left column) progressively 
jitter tcross across Nr neurons, leading to degraded segmen-
tation (right column).

Figure 11 shows the responses of all 100 Nr neurons 
across 100 repeated reset and stimulation cycles. Spike 
generation in Nr is deterministic in the absence of noise 
(Fig. 11a). As noise is added, Nr neurons produce spuri-
ous spikes, even in dark image regions where Ns neurons 
are silent, and in inhomogeneous regions where incoming 
Ns spikes do not form a coincident packet (Fig. 11b, c). 
Figure 11a–c right column displays spike probability his-
tograms. The strictly bimodal distribution of spike prob-
ability in the absence of noise becomes spread out as the 
noise level increases to 50%, although spike probabilities 
were still low in nonhomogeneous regions. At 100% noise 
all stimulus regions had a spike probability above 0.4 and 
the histogram approached a unimodal distribution. Under 
such circumstances homogeneous and nonhomogeneous 
regions become effectively indistinguishable. This dem-
onstrates that the utility of a pure latency code to identify 
homogeneous input regions would be limited under bio-
logically realistic noise levels of 2 spikes/s per neuron, 
without further mechanisms to mitigate noise.

Another observation from comparing Figs. 9 and 10 
is that the latency of Nr neurons depended on the aver-
age latency of the original spike packet from Ns . In other 
words, Nr neurons were transparent to the latency code of 
the afferent neurons, encoding how strongly activated this 
feature was. They blocked spike responses from nonho-
mogeneous regions and preserved the latency code from 
homogeneous regions.

3.3  Shaping post‑synaptic potentials 
by feed‑forward inhibition

Adding noise to the input of Nr neurons naturally intro-
duces jitter in their response times to otherwise unchanged 
stimuli. This jitter adds to the variance observed in inputs 
from upstream Ns neurons. Assuming we cannot influence 
the background noise, to make the mechanism more robust 
against noise we must address the jitter in the input.

Since Nr neurons are coincidence detectors, incoming Ns 
spikes must overlap within the synaptic integration time win-
dow. This time window depends on two factors, the mem-
brane time constant and the synaptic time constant. We used 
the α-function to model synaptic currents (Fig. 12, black 
curve) in a leaky integrate-and-fire neuron model (Lapicque 
1907; Tuckwell 1988); see also Kuhn et al. (2004). In our 
model, the synaptic current I(t) had a relatively short rise 
time of 2 ms, followed by a longer “excitatory tail” that kept 
having a positive (depolarizing) contribution to the mem-
brane potential for at least 10 ms. Roughly, in order for syn-
aptic currents to add up and drive the post-synaptic neuron 
above threshold, they must coincide in this 12 ms window.

Generally, spikes arriving at random times (such as from 
background noise) are less likely to add up when the time 
window for integration is short. The impact of background 
noise can therefore be mitigated by shortening the synaptic 
time constant. This can be achieved either through varying 
the model parameters for membrane resistance and capacity, 
or synaptic time constant directly. In biological terms this 
equates to having a specialized neuron type for coincidence 
detection. While there are numerous examples for special-
ized neuron and synapse types in the brain (e.g., the “calyx 
of Held” synapses of neurons in the medial nucleus of the 
trapezoid body that maximize transmission probability and 
minimize latency (Borst and Soria Van Hoeve 2012), such 
extreme specialization would not support generic neuronal 
computation in large cortical neural ensembles where each 
neuron may participate in different types of computation at 
different points in time. Computational studies have shown 
that membrane time constants are affected by ongoing back-
ground activity (Kuhn et al. 2004), but purposefully control-
ling synaptic integration via this mechanism may, however, 
be difficult.

Bi-phasic post-synaptic potentials generated by feed-for-
ward inhibition provide an alternative way of altering the 
effective synaptic integration window, without the need to 
tweak neuronal parameters. Figure 12 shows the effect of 
an inhibitory post-synaptic current (PSC) delivered shortly 
after an excitatory PSC of the same magnitude and time 
constants. The currents superimpose and result in a much 
narrower effective PSC. Moreover, the net charge delivered 
by the paired pulse is zero, preventing the post-synaptic 
potential from accumulating over a longer time. Both effects 
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Fig. 10  Typical single-trial homogeneity responses of 100 Nr neurons 
with receptive field positions along the marked line in Fig. 9a. Left, 
spike train raster plots; right, latency map of all Nr neurons. a–c With 
increasing spike noise from the background population activity, spike 

response times scatter more. Moreover, the noise background trig-
gered spikes in neurons which did not respond with zero noise input 
(blue marked regions). d Additional feed-forward inhibition counter-
acted the effect of background noise
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Fig. 11  Mean Nr spike latency, spike probability, and distribution 
of spike probabilities in ensembles of 100 neurons at each position 
in the view field. a–c With increasing spike noise from the back-
ground population activity, the separation between homogeneous and 

nonhomogeneous image regions breaks down; a level of 100% cor-
responded to the amount of crosstalk expected in the brain. d Addi-
tional feed-forward inhibition reestablishes reasonably good separa-
tion

Fig. 12  Shaping an excitatory PSC by delayed feed-forward inhi-
bition. The excitatory PSC is followed by an inhibitory PSC of the 
same shape and magnitude. The plots show superpositions for dif-
ferent delays of the inhibitory PSC (∆t = 1, 2, or 4 ms). Black curve, 
excitatory PSC with time constant τ = 2  ms; gray curve, inhibitory 
PSC with τ = 2 ms and delay ∆t; thin curve, effective PSC resulting 

from superposition. If spikes converge on a homogeneity-selective 
neuron, the positive parts of their resulting PSCs need to overlap in 
order to effectively depolarize the neuron to the spiking threshold. 
Note how the positive part of the effective PSC changes width with 
∆t: Shorter delays require spikes to arrive closer in time, i.e., they 
require increased homogeneity for the neuron to respond
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raise the temporal constraints for constructive superposition 
of subsequent synaptic events. For more detailed accounts of 
the working of feed-forward inhibition and its effect on spike 
timing accuracy, including its application in a V1 network 
model, we refer to (Kremkow et al. 2010a, b, 2016) and the 
references mentioned therein.

To include PSC shaping by feed-forward inhibition into 
our model, we duplicated the connections from the sending 
Ns layer to the receiving Nr layer by adding feed-forward 
inhibitory projections with a fixed delay. Figure 13 shows 
the spike probabilities of the homogeneity-detecting Nr neu-
rons for a range of inhibitory delays. The total area classified 
as homogeneous, as indicated by high Nr spike probabil-
ity, increased with increasing inhibition delay. Short delays 
lead to shorter effective PSCs, and incoming spike packets 
would need to be more focused in time in order to elicit 
post-synaptic spikes. Thereby, the delay of the paired feed-
forward inhibition effectively determined the threshold, at 
which a local region was classified as homogeneous by the 
Nr neurons.

Shorter effective PSCs not only affected the homogene-
ity threshold, and they also enabled homogeneity detec-
tion under conditions of strong background noise, where 
this would otherwise not have been possible. Returning to 
Fig. 11c, a realistic level of neuronal crosstalk rendered 
homogeneity detection infeasible. Figure 11d shows the 
same setting with applying shaped PSCs by feed-forward 
inhibition. The inhibition delay was 8 ms, the same as in 
the upper right panel of Fig. 13. Biphasic synaptic events 
helped to improve separating positive from negative detector 
responses, as the spike probability histogram in Fig. 11d was 
clearly bimodal, implying that homogeneity detectors tended 

to either respond with a high or a low probability to the 
stimulus. The separation of homogeneous from inhomogene-
ous image parts in full-strength noise was then comparable 
to the case in Fig. 11b, with 50% noise strength, effectively 
mitigating the impact of crosstalk.

4  Discussion

We presented a spiking neuronal network motif for detecting 
homogeneous stimulus features. In a set of neuronal feature 
detectors (visual or other modality), it naturally extracts 
local populations of neurons that are equally stimulated rela-
tive to a common reference point in time. Since spike latency 
is a monotonic function of stimulation strength, equally 
stimulated presynaptic neurons fire coincident spike waves, 
which are easily detected in a receiving neuron. The mecha-
nism exploits that post-synaptic currents caused by action 
potentials are temporally restricted events. A coincidence 
detector neuron is brought above firing threshold by many 
of those events temporally superimposing.

The model is restricted to one spike per neuron per 
response to a stimulus, in line with Thorpe’s postulate that 
psychophysically confirmed timing constraints for human 
visual object detection in humans can only be achieved 
with a maximum of one or two spikes per processing stage 
(Thorpe and Imbert, 1989). As a useful side effect, this 
approach avoids spurious coincidences that might otherwise 
occur in high-spike-rate processes. The one-spike-per-neu-
ron rule could potentially be relaxed to entail short bursts of 
a few spikes, which might be a more realistic representation 
of the true neurobiological process.

Fig. 13  Nr spike probability in 100 simulation runs for different feed-forward inhibitory delays. Larger delays shifted the homogeneity threshold 
toward lower values (more regions were marked as homogeneous)
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We motivated the homogeneity detector concept from 
properties of a subset of cells in the koniocellular pathway 
in the primate visual system. It should be noted that the 
koniocellular pathway is composed of a very heterogene-
ous group of cells and that only a subset of them has large 
receptive fields that respond to a homogeneous illumination 
without antagonistic surround (Irvin et al. 1986; White et al. 
2001; Xu et al. 2001; Szmajda et al. 2006; Tailby et al. 2007; 
Solomon et al. 2010). There is strong physiological and ana-
tomical evidence for the specific wiring of these cells, tar-
geting layers 2/3. Much recent work in visual neuroscience 
involved rodents, rather than primates. It has been hypoth-
esized that certain groups of cells in the rodent visual system 
may be homologous to cells in the K-pathway, but to our 
knowledge the evidence supporting such homology is scarce 
and inconclusive (Denman and Contreras 2016). Rodents 
and primates occupy very different ecological niches, and 
the evolutionary pressure on their visual systems is likely to 
prioritize different modes of function. Therefore, we base 
our model exclusively on biological evidence collected in 
primates.

The homogeneity detector circuit we propose responds 
to areas of homogeneous illumination that can assist rapid 
segmentation of the visual scene by interacting with edge-
detector responses. Homogeneously stimulated regions in 
sensory space will often constitute relevant stimuli, like 
uniformly colored objects, uniform texture, uniform move-
ment. The simple circuitry needed to implement it (local 
convergence) makes it a biologically plausible candidate for 
all sensory cortices.

To be applicable in a dense and complex neuronal system 
like the brain, a neuronal mechanism must be robust to noise 
and crosstalk from millions of neighboring and, possibly 
interfering, neurons. We observed that our mechanism was 
not robust enough to base a reliable decision upon. At a level 
auf crosstalk that is to be expected in the brain, homogene-
ity responses were basically indistinguishable from noise 
baseline (Fig. 11c).

To improve performance, we introduced forward inhibi-
tion, which created biphasic synaptic currents with short 
excitatory parts, and zero net current into the receiving 
neuron. Both effects decreased the sensitivity to neuronal 
crosstalk and allowed for better separation of homogene-
ous stimuli. At a realistic level of neuronal crosstalk, cor-
rect homogeneity responses were substantially more prob-
able than false events (bimodal probability distribution in 
Fig. 11d). This means that reliable decisions could be based 
on the pooling of homogeneity responses, even in a noisy 
brain.

The principle of PSC shaping opens up an attractive 
opportunity for dynamically controlling the mode of opera-
tion in a spike-coding network. Information on sensory 

stimuli is encoded in both firing rate and temporal struc-
ture of spike trains (Tsodyks and Markram 1997; Reinagel 
and Reid 2000; Van Rullen and Thorpe 2001; Nelken et al. 
2005). Dynamic transition from latency to rate processing 
in the very same neurons can unify the processing of spike 
time and rate codes in a single network and hence forms 
an attractive scheme of computation in neural networks. As 
demonstrated, PSC shaping can be used to control the over-
lap of synaptic events in the post-synaptic neuron. It can 
potentially be used to select which of the two components of 
information a post-synaptic neuron extracts, controllable by 
changing feed-forward inhibition with no change in network 
structure, and no change in processing of the presynaptic 
neurons.

It also gives rise to potential homeostatic mechanisms 
that could adjust the effective PSC on the basis of the frac-
tion of active cells in the population. Separation of homoge-
neous from inhomogeneous image regions could be achieved 
by setting a threshold, e.g., at 50% of spiking cells. In the 
active brain, the delay at which inhibitory action potentials 
are produced can be influenced by network effects. Diffuse 
background stimulation may change the effective firing 
threshold of neurons (Chance et al. 2002). The neurophysi-
ological effects of selective attention can promote neuronal 
processing (Hochstein and Ahissar 2002; Müller and Klein-
schmidt 2004). The latency code can be read out in a flexible 
way: The same mechanism that improves robustness to noise 
(feed-forward inhibition) can also dynamically change the 
threshold at which homogeneity is detected. Hence, it is con-
ceivable that the homogeneity threshold may dynamically 
change, according to the momentary cognitive requirements 
or interests.

Besides features like color, orientation, etc. (Itti and 
Koch 2000), homogeneity might constitute an important 
component of a visual saliency map. Since contrast edges 
and homogeneous surfaces of physical objects are mutu-
ally exclusive, the output of surface-selective neurons can 
be used to suppress responses in orientation-selective cells 
in regions with homogeneous luminance, supporting the 
initial phase of scene analysis (Gewaltig et al. 2003). We 
demonstrated in our model of V1 that this function can be 
implemented in a simple feed-forward network of parallel 
feature-extraction through parvo-/magno- and koniocellular 
pathways.

Parallel extraction of anticorrelated and therefore possi-
bly redundant features incurs additional metabolic cost that 
needs to be outweighed by the gain in reliability and speed 
of processing. A detailed analysis of this cost is outside the 
scope of this study. One factor mitigating the additional cost 
is that homogeneity-selective neurons have much larger 
receptive fields than contrast-edge detectors and require 
less dense packing. Another is that feed-forward processing 



175Biological Cybernetics (2021) 115:161–176 

1 3

in parallel pathways is the only way to determine different 
aspects of an instantaneous stimulus in cases where lateral 
interaction is impossible, as suggested by response time 
analyses in the visual system (Thorpe et al. 1996).

Our model focused on detecting homogeneous luminance 
in a retinal image. But the mechanism could be applied to 
any other feature that can be expressed in a latency code, at 
any phase in processing, be it visual or in other modalities, 
like auditory or somatosensory. For example, it is conceiv-
able to use the coincidence detection mechanism to detect 
repetitive patterns in the input, i.e., homogeneous texture. 
If f is a feature that is spatio-temporally defined, spatially 
homogeneous changes or spatially homogeneous motion can 
potentially be detected.

Generalizations of the proposed mechanism may also 
find applications outside biology for neuromorphic signal 
processing and pattern recognition when combined with 
recent results in spiking networks and image processing. 
For example, a generalized approach to the information-
filtering properties of populations of coincidence detector 
neurons has been suggested (see, e.g., Bostner et al. (2020) 
and references therein). Further, the concept of time sur-
faces has been introduced for recognition of moving objects 
and correlated stimuli in event-based vision (Lagorce et al. 
2017). Time surfaces represent a spatio-temporally coherent 
change of feature detector unit outputs that may be detect-
able by coincidence detector neurons. Finally, a recently 
proposed method for image quantization demonstrates a 
practical application of the concept (Christie et al. 2020): 
Homogeneous image areas are detected by their low gradient 
energy, and subsequently encoded in lower bit depth than 
regions with high gradient intensity, reducing average image 
bit depth and enabling lower-power image processing. These 
examples provide an interesting outlook for future research 
not just in theoretical brain research, but also toward practi-
cal utility of this mechanism for signal processing.
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