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A fundamental question in neuroscience is how higher-order 
computations are implemented at the level of synapses, neu-
rons and neuronal networks. A key computation in the brain 

is pattern separation, a process that converts slightly different syn-
aptic input patterns into substantially different action potential out-
put patterns1–4. Although pattern separation is a universal network 
computation conserved across circuits and species4, it is thought to 
play a particularly important role in the dentate gyrus (DG), the 
input region of the hippocampus in mammals5,6. A prevalent model 
of hippocampal memory suggests that pattern separation in the DG 
is essential for reliable storage and recall of memories in the down-
stream CA3 region2,7,8. Thus, analyzing the mechanisms of pattern 
separation is crucial for the understanding of both short-term pro-
cessing and long-term storage of information.

Early models of pattern separation, inspired by the architec-
ture of the cerebellum4,9,10, suggested that divergent feedforward 
excitation and code expansion play a role in pattern separation9. 
According to the Marr–Albus theory, projection from a small to 
a large population of neurons expands the dimensionality of cod-
ing space, increasing the separability of patterns by downstream 
biological decoders10. The Marr–Albus model is consistent with 
structural and functional connectivity rules of the cerebellum, as a 
single mossy fiber axon divergently projects onto ~600 granule cells 
(GCs)4. Whether code expansion also explains pattern separation 
in the rodent hippocampus, where ~50,000 entorhinal cortex (EC) 
neurons diverge to ~500,000 GCs, which reconverge onto ~200,000 
CA3 pyramidal neurons11–13, is an open question.

More recent models of pattern separation implied an impor-
tant role of lateral inhibition14. These models were supported by 
the synaptic organization of the olfactory system in insects15–17.  

In the mushroom body of the fly, a single inhibitory cell, the 
anterior paired lateral (APL) interneuron, plays a role in pat-
tern separation. Activation of a single Kenyon cell activates the 
APL interneuron, which in turn provides powerful inhibition to 
all Kenyon cells16. Thus, global lateral inhibition mediated by the 
APL interneuron could implement a winner-takes-all mecha-
nism, thereby establishing a powerful decorrelation algorithm18–20. 
Whether inhibition contributes to pattern separation in the DG 
is less clear. Although lateral inhibition is uniquely abundant in 
the DG, multiple GCs need to fire action potentials to activate 
parvalbumin-positive inhibitory interneurons (PV+-INs) and to 
trigger lateral inhibition21,22. Furthermore, lateral inhibition is not 
global, but follows distance-dependent connectivity rules22. Thus, 
lateral inhibition cannot implement a winner-takes-all mecha-
nism, although softer versions with multiple winners remain 
possible18,19,23.

The DG is connected to the downstream CA3 region via power-
ful mossy fiber synapses2,7. Whereas the DG seems to be specialized 
on pattern separation, the CA3 region is traditionally associated 
with pattern completion8,24. How the pattern separation mechanism 
in the DG is integrated with the pattern completion function of the 
CA3 region remains enigmatic. Furthermore, how the unique prop-
erties of hippocampal mossy fiber synapses, such as conditional and 
plasticity-dependent detonation25, contribute to pattern separation 
is unclear. Detonation properties of mossy fiber synapses may facili-
tate the transfer of information from the DG to CA3 region, which 
might contribute to pattern separation23. Furthermore, sparse mossy 
fiber connectivity will reduce correlations, which may enhance pat-
tern separation26. Whether these rules hold in biologically realistic 
network models remains to be determined.
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The DG receives its main input from the EC via the perforant 
path (PP)27. Hebbian plasticity at PP synapses could implement a 
competitive learning mechanism2,28,29, which might contribute to 
pattern separation. Consistent with this idea, genetic deletion of 
N-methyl-d-aspartate (NMDA)-type glutamate receptors in GCs 
reduces behavioral pattern separation30. However, plasticity at PP 
EC–GC synapses has also been suggested to contribute to pattern 
completion8,31. As an additional complication, the PP not only proj-
ects to GCs in the DG, but also directly innervates the CA3 region32. 
In a simplified model, the relative strength of the mossy fiber and PP 
input onto CA3 pyramidal neurons determines the balance between 
decorrelated and original input23. However, whether this is also the 
case in a biologically realistic model remains unclear.

We developed a model based on experimentally determined 
cellular and synaptic properties to address the mechanisms of pat-
tern separation in the EC–DG–CA3 network. Implementation in 
real size allowed us to analyze sparse coding regimes33 and to insert 
measured connectivity rules22.

Results
Pattern separation in a biologically realistic PN–IN network. 
Pattern separation is a fundamental brain computation that con-
verts small differences in input patterns into large differences in 
output patterns. The basic principle is illustrated in Extended Data 
Fig. 1. When two highly overlapping patterns (A and B) are applied 
at the input level of a neuronal population, two less overlapping 
patterns (A′ and B′) are generated at the output level (Extended 
Data Fig. 1a). Quantitatively, for any given pair of patterns, the cor-
relation r at the output (Rout = r(A′, B′)) is smaller than that at the 
input (Rin = r(A, B)) (Extended Data Fig. 1b). Thus, pattern separa-
tion may be graphically depicted in a plot of Rout against Rin for all 
pairs of patterns23. For an efficient pattern separation mechanism, 
the data points would be expected to be located below the iden-
tity line (Extended Data Fig. 1c). By contrast, for a pattern com-
pletion mechanism8, the data points will be above the identity line 
(Extended Data Fig. 1d).

We used three different measures to quantify the properties of 
the pattern separation circuit (Methods). First, to describe the over-
all pattern-separation performance, we defined an integral-based 
measure, ψ, computed as the area between the Rout–Rin data and the 
identity line, normalized by the maximal area (Extended Data Fig. 
1e). Second, to selectively capture pattern separation performance 
within a region in which input patterns were highly similar, we 
defined a slope-based measure, γ, computed as the slope of the Rout–
Rin curve for Rin → 1 (Extended Data Fig. 1e, inset). Finally, to char-
acterize the ability of the network to preserve rank similarity34–36, 
we computed a rank-based correlation coefficient ρ (Extended Data 
Fig. 1f). These three parameters describe complementary aspects 
of pattern separation. For example, randomization is well known to 
decorrelate patterns (increasing the values of ψ and γ), but fails to 
maintain similarity relations (decreasing the value of ρ).

To explore whether a biologically realistic network is capable of 
pattern separation, we developed a model of the EC–DG–CA3 net-
work based on empirical experimental data (Fig. 1; Supplementary 
Fig. 1; Supplementary Table 1; Supplementary Software). The net-
work was created in full scale12,13. Both principal neuron–interneu-
ron (PN–IN) connectivity in the DG and GC–CA3 connectivity was 
constrained by experimental data21,22,37. Similarly, GC–CA3 con-
nectivity via mossy fibers was experimentally constrained11,25,38–40. 
As gamma oscillations show maximal power in the DG41,42, a cor-
responding phasic inhibitory conductance was simulated in GCs 
at the onset of each simulation epoch19. The model allowed us to 
simulate the activity in GCs, PV+-INs and CA3 pyramidal neurons 
in a biologically realistic network, and to examine how biophysical 
properties of synapses and functional connectivity rules affect pat-
tern separation (Fig. 1b).

Pattern separation by gamma rhythm and lateral inhibition. The 
finding that pattern separation accumulated in a multilayer deep 
network-like architecture was surprising, given that the diver-
gence–convergence properties of the circuit seemed inconsistent 
with a code-expansion model9,10. We examined the contribution of 
inhibition to explore alternative mechanisms of pattern separation 
(Fig. 2)4,9. It has been suggested that both external gamma-modu-
lated inhibition and internal lateral inhibition contribute to pattern 
separation14,18,19,43,44. We therefore explored gamma-modulated and 
lateral inhibition (in isolation as well as in combination) for a supra-
threshold excitatory drive to GCs (Iµ = 1.8 relative to threshold). 
Deletion of gamma-modulated external inhibition from the net-
work model (Jgamma = 0) reduced ψ and γ over a wide excitatory syn-
aptic drive range (Fig. 2b, top right). By contrast, deletion of lateral 
inhibition reduced the excitatory drive range in which both high ψ 
and ρ could be achieved (Fig. 2b, bottom left); thus, gamma inhibi-
tion and lateral inhibition differentially affected pattern separation. 
Elimination of both forms of inhibition substantially impaired pat-
tern separation (Fig. 2b, bottom right) and therefore the combina-
tion of gamma-modulated inhibition and lateral inhibition provides 
a major contribution to separation mechanism in the model. To 
further analyze the complex interaction of tonic excitatory drive, 
gamma-modulated inhibition and lateral inhibition, we computed 
ψ–Iµ–Jgamma contour plots (Fig. 2c,d). With intact lateral inhibition, 
efficient pattern separation (ψ > 0.5) was robustly observed in a wide 
region of the parameter space (Fig. 2c). By contrast, after deletion 
of lateral inhibition, efficient pattern separation was only detected 
within a narrow band in the Iµ–Jgamma parameter space, in which the 
amplitude of gamma-modulated inhibition precisely matched that 
of the excitatory drive (Fig. 2d); thus, a simple thresholding mecha-
nism combined with gamma-modulated inhibition was not suffi-
cient to generate robust pattern separation.

Finally, we explored how interfering with lateral inhibition at 
multiple levels affects pattern separation (Fig. 2e–g). Reducing the 
peak connectivity of either excitatory E–I or inhibitory I–E connec-
tions (cE–I and cI–E, respectively) markedly affected the efficacy of 
pattern separation (Fig. 2e, light blue bars). Similarly, reducing the 
connectivity width of either excitatory E–I or inhibitory I–E con-
nections (σE–I and σI–E, respectively) reduced the efficacy of pattern 
separation (Fig. 2f). Finally, reducing the strength of either excit-
atory E–I or inhibitory I–E connections (JE–I or JI–E, respectively) 
substantially decreased the efficacy of pattern separation (Fig. 2g); 
thus, interfering with disynaptic inhibition at multiple levels uni-
formly inhibited pattern separation. Taken together, the combina-
tion of gamma oscillations and lateral inhibition plays a critical role 
in the pattern separation process in the DG.

Moderate effects of divergent connectivity. To systematically 
explore how divergence and convergence affect pattern separa-
tion, we first examined pattern separation in simple models, in 
which convergent or divergent connectivity was concatenated with 
a thresholding mechanism (Fig. 3a–d). In this simple model, the 
number of neurons and the degree of convergence and divergence 
could be freely varied. In our simulations, we changed the connec-
tivity ratio from 1:10 (divergence) to 10:1 (convergence). In contrast 
to our expectations, the degree of pattern separation, as quantified 
by ψ, was only slightly dependent on the connectivity ratio (Fig. 
3c,d). Weak dependence on the connectivity ratio was observed 
over a wide range of activity values (Fig. 3d); thus, divergent con-
nectivity was not strictly required for pattern separation.

We next determined how convergence and divergence affected 
pattern separation in the full-scale, biologically realistic network 
model (Fig. 3e–g). To address this aspect, we varied the number 
or activity level of entorhinal cells (nEC or αEC, respectively), and 
the peak value or width of EC-GC connectivity27,32,45. Increasing 
the number of ECs decreased ψ, whereas decreasing the number 
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increased it (Fig. 3f, top). Similarly, increasing EC activity con-
sistently decreased ψ (Fig. 3f, bottom). Changing the EC–GC 
connection probability had more complex effects, with the low-
est values of ψ for intermediate connectivity, and highest values at 
both the low- and high-connectivity limit (Fig. 3g, top). Finally, 
increasing EC–GC connection width consistently decreased ψ 
(Fig. 3g, bottom); thus, the excitatory EC–GC connectivity only 
moderately influenced pattern separation. These results indicate 

that divergent connectivity was not strictly required for pattern 
separation, neither in a simplified model, nor in a biologically 
realistic full-scale network.

Requirement for local connectivity and fast PV+-IN signaling. 
Classical models suggest that global PN–IN connectivity supported 
pattern separation more effectively than local connectivity9; how-
ever, our results indicate that a model based on local connectivity 
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Fig. 1 | Pattern separation in a biologically realistic full-scale network model. a, Structure of the biologically inspired full-scale model based on 
experimental data on synaptic connectivity, and biophysical properties of cells and synapses. GCs and CA3 neurons were implemented as leaky integrate-
and-fire (LIF) neurons. PV+-INs were represented as single-compartment conductance-based models endowed with modified Hodgkin–Huxley-type 
conductances67 to convey maximal realism to the pattern separation mechanism. GCs were activated by a tonic excitatory drive (Iµ), and external 
inhibitory conductance was simulated to mimic gamma oscillations (Jgamma). Cell numbers (right) were chosen to represent the hippocampus of one 
hemisphere in rodents13. b, Activity in the pattern separation network model. Top: membrane potential in GCs (left), PV+-INs (center) and CA3 pyramidal 
neurons (right). Traces from every 10th IN (250 traces total) and every 1,000th GC or CA3 pyramidal cell (500 and 250 traces total, respectively) were 
superimposed. The membrane potential is unitless for GCs and CA3 pyramidal cells, as cells were simulated as LIF neurons. Bottom: raster plots of action 
potential generation in GCs (left), PV+-INs (center) and CA3 pyramidal neurons (right). Each point indicates an action potential; t = 0 corresponds to 
onset of inhibitory conductance representing a gamma oscillation cycle in the network19. c–e, Input–output correlation (Rout–Rin) graphs at different levels 
of the network (standard parameter settings). Data points represent pairwise correlation coefficients between Rin and Rout. Input–output correlation at the 
first layer, measured between EC neurons and GCs (c), at the second layer, measured between GCs and CA3 neurons (d) and across the entire network, 
measured between EC and CA3 neurons (e), are shown. The red dashed lines are identity lines, whereas the gray shaded areas represent the area between 
the data points and identity lines (used for computation of the integral-based pattern separation index, ψ). Blue lines and light blue shaded areas are 
tangent lines at Rin = 1 and corresponding slope triangles of a polynomial function fit to the data points, respectively (used for computation of slope-based 
pattern separation index, γ). Insets show a horizontally expanded view of the tangents and slope triangles used to compute γ. f–h, Preservation of rank 
order similarity between patterns at input and output; ρ was computed as the correlation coefficient of ranked Rout versus ranked Rin data. Rank analyses at 
the first layer, measured between EC and DG (f), at second layer, measured between DG and CA3 (g) and across the entire network, measured between 
EC and CA3 (h), are shown.

Nature Computational Science | www.nature.com/natcomputsci

http://www.nature.com/natcomputsci


Articles NAturE COmPutAtIOnAl ScIEncE

JI–E (normalized)

e

JE–I (nS)

J g
am

m
a 

(r
el

at
iv

e 
to

 th
re

sh
ol

d)

Iµ (relative to threshold)

0.6

0.65

0.55

1.0 1.2 1.4 1.6 1.8 2.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

ψ

0.7

0.6

0.5

0.4

0.3

0.2

0.1

c

J g
am

m
a 

(r
el

at
iv

e 
to

 th
re

sh
ol

d)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.3

0.7

d

a b
Jgamma = 0

EC

GC

ψ,
 ρ

 ,α γ γ

γ γ

Iµ (relative to threshold)Iµ (relative to threshold)

Iµ (relative to threshold)Iµ (relative to threshold)

Jgamma

f g

Jgamma = 1

No 
LI

cE–I

cI–E

ψ
ψ

ψ
ψ

ψ
ψ

JE–I

JI–E

σE–I (µm)

σE–I (µm)

σI–E (µm)

σI–E (µm)

cI–E

cE–I

LI

ψ,
 ρ

 ,α

ψ,
 ρ

 ,α
ψ,

 ρ
 ,α

37
.5 75 15
0

30
0

R
an

do
m

75 15
0

30
0

60
0

R
an

do
m

0.
02

0.6
0.5
0.4
0.3
0.2
0.1

0

0.6
0.5
0.4
0.3
0.2
0.1

0

0.6
0.5
0.4
0.3
0.2
0.1

0

0.5
0.4
0.3
0.2
0.1

0

0.5
0.4
0.3
0.2
0.1

0

0.5
0.4
0.3
0.2
0.1

0

0.
05 0.
1

0.
2

0.
5

0.
07

5

0.
15 0.
3

0.
6

0.
9

0.
00

5

0.
01

0.
02

5

0.
05 0.
1

2 4 8 16 32

1.0 
0.8
0.6
0.4
0.2

0
0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0
0.8
0.6
0.4
0.2

0
0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0
0.8
0.6
0.4
0.2

0
0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.0
0.8
0.6
0.4
0.2

0
0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

Iµ (relative to threshold)
1.0 1.2 1.4 1.6 1.8 2.0
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included as synchronized external inhibitory conductance. b, Plots of ψ, γ, ρ and the average activity α against excitatory drive in GCs (Iµ). Top left: 
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and JI–E thus appear to be near the optimum that provides maximal pattern separation, whereas cE–I and JE–I are below the optimum.
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rules22 is a highly efficient pattern separator. We explored the effects 
of local E–I and I–E connectivity in the network model to resolve this 
apparent contradiction (Fig. 4a–c). To address the effects of locality 
in isolation, we maintained the total connectivity (that is the area 
under the connection probability–distance curve) through com-
pensatory changes in maximal connection probability. Increasing 
the width of connectivity for either excitatory E–I or inhibitory I–E 
synaptic connections reduced ψ; particularly large changes were 
observed when local connectivity was replaced by global random 
connectivity (Fig. 4b). Local PN–IN connectivity thus supported 
pattern separation more effectively than global connectivity. 

We next examined the effects of changes in the width of excit-
atory E–I and inhibitory I–E connectivity (Fig. 4c). As before, the 
total connectivity was maintained through compensatory changes 
in maximal connection probability. Contour plot analysis corrobo-
rated that local connectivity supported pattern separation more 
effectively than broad connectivity; however, the effects of changes 
in the width of excitatory E–I and inhibitory I–E connectivity were 
asymmetric. If focal E–I and I–E connectivity were equally impor-
tant, ψ contour lines should have a slope of −1, yet the contour lines 
were much steeper (Fig. 4c). Hence, local excitatory E–I connectiv-
ity (plotted on the abscissa) was more important for pattern separa-
tion than local inhibitory I–E connectivity (plotted on the ordinate). 

The biological connectivity scheme, in which excitatory E–I is nar-
rower than inhibitory I–E connectivity22, is therefore highly suitable 
for pattern separation.

Why does local connectivity better support pattern separation 
than global connectivity? Effects of local connectivity might be a 
consequence of changes in average latency, which are shorter in a 
locally connected network than in an equivalent random network 
(Fig. 4d). To test this hypothesis, we first examined the effects 
of changes in axonal propagation velocity (vAP). As predicted, 
decreases in both vAP,E–I and vAP,I–E negatively affected pattern sepa-
ration (Supplementary Fig. 9a). Next, we changed the connectivity 
width while maintaining the average kinetic properties of disyn-
aptic inhibition through compensatory changes of vAP,E–I and vAP,I–E 
(Supplementary Fig. 9b). Changes in propagation velocity almost 
completely compensated the effects of changes in connectivity. 
Local connectivity therefore improved pattern separation through 
facilitation of rapid signaling.

If local connectivity enhanced pattern separation by increasing 
the average speed of lateral inhibition, other fast signaling pro-
cesses in INs may also contribute21,46–48. We systematically varied 
the corresponding model parameters to test this hypothesis (Fig. 
4e,f). Increasing the synaptic delay at both excitatory GC–PV+-IN 
synapses and inhibitory PV+-IN–GC synapses impaired pattern  
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separation (Fig. 4e). Notably, the effect was stronger than that of 
action potential propagation velocity (Supplementary Fig. 9a). 
Similarly, prolonging the time constants of the synaptic currents at 
excitatory GC–PV+-IN synapses reduced pattern separation effi-
cacy (Fig. 4f, top). Finally, slowing the membrane time constant of 
the PV+-INs inhibited pattern separation (Fig. 4f, bottom). Thus, 
the fast signaling properties of PV+-INs contributed to the efficacy 
of pattern separation process.

Contribution of mossy fiber synapses to pattern separation. In 
our standard model, the mossy fiber synapse between GCs and CA3 
pyramidal neurons provides a substantial contribution to pattern 
separation (Fig. 1c–e). In the model, we realistically implemented 
both connectivity and synaptic strength of mossy fiber synapses. 
The number of mossy fiber synapses per GC was taken at 15, con-
sistent with past morphological data11,22,38. The strength of hippo-
campal mossy fiber synapses was assumed to be subthreshold (with 
a synaptic strength/threshold ratio of 0.34), in agreement with  

previous experimental data showing that mossy fiber synapses have 
subthreshold properties under control conditions25,39,40,49.

How does sparse connectivity of hippocampal mossy fiber syn-
apses contribute to pattern separation? Whereas dense connec-
tivity may introduce correlations, sparse connectivity may avoid 
such correlations26. We varied the number of mossy fiber termi-
nals per axon to test this hypothesis (Fig. 5a–d). To maintain the 
activity level of the network, the individual synaptic conductance 
values were appropriately scaled. Increasing the number of mossy 
fiber boutons per axon unexpectedly increased the amount of pat-
tern separation in the second layer of the network; ψ, measured 
between DG and CA3, increased from 0.37 to 0.61 (Fig. 5c,d). 
Similarly, ψ measured across the entire network increased from 
0.80 to 0.92. The sparse connectivity of the mossy fiber synapse 
therefore decreases, rather than increases, the magnitude of pat-
tern separation (Fig. 5d).

A hallmark property of mossy fiber synapses is the unique 
extent of presynaptic plasticity, including facilitation, post-tetanic  
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potentiation (PTP) and long-term potentiation25,40,50. To examine 
how these specific plasticity properties influence pattern separa-
tion, we systematically shifted synaptic strength in the range from 
the subdetonation into the detonation range (Fig. 5e,f). When syn-
aptic strength relative to threshold was increased from 0.34 to 0.51 
and 1.01, ψ measured between DG and CA3 progressively reduced 

(ψ = 0.38, 0.23 and 0.07, respectively; Fig. 5e, top; Fig. 5f). Similarly, 
ψ measured across the entire network became smaller (ψ = 0.80, 0.70 
and 0.58, respectively; Fig. 5e, bottom; Fig. 5f). Presynaptic plastic-
ity at hippocampal mossy fiber synapses thus shifted the network 
from strong to weak pattern separation, that is, in the direction of 
pattern completion (Fig. 5f).
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Contribution of PP synapses to pattern completion. The role of 
Hebbian plasticity at PP EC–GC synapses in pattern separation 
has been unclear30,31. To test the effects of Hebbian synaptic plas-
ticity at PP synapses on pattern computations in the network, we 
initially simulated the responses of the network to 100 EC patterns 
with the default parameter set in a control run, potentiated the PP 
EC–GC synapses according to a simple Hebbian synaptic plasticity 
rule and subsequently simulated the responses of the network to 
100 EC patterns with the potentiated synapses in a test run (Fig. 
6a–c). Whereas the network demonstrated robust pattern separa-
tion under control conditions, potentiation according to a Hebbian 
plasticity rule reduced both ψ and γ, switching the network from a 
pattern separation into a pattern completion mode (Fig. 6a–c). 

PP inputs not only innervate GCs27, but also CA3 pyramidal 
neurons via PP EC–CA3 synapses32. Do these synapses also regulate 
pattern separation in the EC–DG–CA3 network? To address this 
question, a tonic excitatory drive computed from the EC activity 
and the EC–GC connectivity was applied in parallel to GCs and 
CA3 pyramidal neurons after appropriate scaling to represent feed-
forward excitation. Increasing the strength of the PP EC–CA3 syn-
apses markedly reduced the degree of pattern separation (Fig. 6d–f). 
Taken together, our results indicate that mossy fiber GC–CA3 and 
PP EC–CA3 synapses synergistically regulate pattern computations, 
shifting the EC–DG–CA3 network from pattern separation in the 
direction of pattern completion.

Discussion
A fundamental question in neuroscience is how higher-order com-
putations are implemented at the level of synapses, neurons and 
neuronal networks. Our full-size, realistic network model provides 
an answer to this question, at least for a specific network function 
(pattern separation) and a specific circuit (the EC–DG–CA3 cir-
cuit). This information may be useful to expand the deep learning 
capabilities of technical networks51.

According to the Marr–Albus theory, divergence of excitatory 
connections plays a major role in pattern separation4,9,10,52. However, 
in the trisynaptic pathway, divergence at EC–GC synapses is fol-
lowed by convergence at GC–CA3 pyramidal neuron synapses. 
How is pattern separation possible under these conditions? As the 
mossy fiber synapse is below the threshold of action potential initia-
tion in postsynaptic CA3 cells25, convergence followed by threshold-
ing will establish a decorrelation mechanism15,53. Pattern separation 
in the mossy fiber system will accumulate with pattern separation 
generated in the DG, leading to increase of ψ across layers. Pattern 
separation is thus not strictly localized to the DG, but represents a 
distributed network computation that involves multiple regions of 
the trisynaptic circuit.

Thresholding is a well-established decorrelation mechanism15,53,54. 
Consistent with the idea that thresholding contributes to pattern 
separation in the DG, GCs show a uniquely negative resting mem-
brane potential and a high relative voltage threshold55. Although our 
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results confirm that thresholding in the complete absence of inhibi-
tion can result in pattern separation, efficient pattern separation is 
only possible in a narrow region of the parameter space. Addition of 
lateral inhibition markedly expands the regime of efficient pattern 
separation (Fig. 2c,d). This is consistent with behavioral experi-
ments showing that both genetic deletion of GABAA receptors in 
GCs and pharmacogenetic inhibition of GABAergic INs in the DG 
affect pattern separation56,57.

Both experimental and theoretical evidence suggests that net-
work oscillations, particularly in the gamma frequency range, may 
play a role in pattern separation19,58. We have incorporated gamma 
activity as a transient inhibitory conductance at the simulation 
onset and found that this conductance enhanced pattern separation. 
It is possible that gamma oscillations and pattern separation are 
different reflections of the same phenomenon, for example disyn-
aptic inhibition. Alternatively, gamma oscillations in the DG may 
be generated by mutual inhibition37,59. In this scenario, rhythmic 
gamma activity may assist pattern separation by structuring activ-
ity in time58. Mutual inhibition and recurrent inhibition thus may 
cooperate to provide an optimal framework for pattern separation.

Several theories assume that global lateral inhibition plays 
a key role in pattern separation4,9. Intuitively, global inhibi-
tion could implement a winner-takes-all or a k-winners-take-all 
mechanism14,18,19,43,44. In the DG, lateral inhibition is abundant, but 
follows local distance-dependent connectivity rules22. How can 
a local lateral inhibition mechanism contribute to pattern sepa-
ration? Our model unexpectedly reveals that local connectivity 
supports pattern separation even more effectively than global con-
nectivity. The beneficial effects of local connectivity are almost 
completely compensated by reducing the signaling speed; thus, 
local connectivity enhances pattern separation through a gain in 
the speed of lateral inhibition.

Fast signaling is a hallmark of function of GABAergic INs, par-
ticularly fast spiking, PV+ subtypes46. Fast signaling properties are 
expressed at multiple levels, including excitatory synaptic input21,22, 
input–output transformation47, axonal action potential propaga-
tion60 and inhibitory synaptic output48; however, the impact of these 
specific signaling properties on higher-order computations in neu-
ronal networks is unclear. Here we show that several fast signaling 
properties of GABAergic INs facilitate pattern separation. Short 
synaptic delays are particularly critical for pattern separation, sug-
gesting that tight coupling between presynaptic Ca2+ channels and 
release sensors might be important61. Furthermore, the decay time 
constant of the excitatory synaptic conductance at PN–IN synapses 
affects pattern separation, implying that the subunit composition of 
postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid-type glutamate receptors in INs is relevant; thus, both pre- and 
postsynaptic molecular and subcellular specializations of PN–IN 
synapses contribute to the pattern separation at the network level.

Our model provides clues how the mossy fiber synapse con-
tributes to pattern separation23,62. Pattern separation is not only 
relayed to the CA3 region, but rather conditionally amplified by 
the mossy fiber–CA3 synaptic connections (Fig. 1d,e; Fig. 5). The 
degree of amplification is determined by the properties of the syn-
apse. Subdetonation properties will increase pattern separation, 
whereas detonation will reduce it. Previous work showed that the 
efficacy of mossy fiber synapses can be regulated by presynaptic 
plasticity mechanisms, which increase synaptic strength by almost 
one order of magnitude25,40. This suggests that mossy fiber plastic-
ity might tune the balance between pattern separation and pattern 
completion. As a corollary, bursts or superbursts in GCs may shift 
the network from strong to weaker pattern separation, that is in the 
direction of pattern completion33,40.

Hebbian synaptic plasticity is a hallmark property of PP EC–
CA3 synapses28,29. Our results suggest that PP plasticity switches 
the network from pattern separation to completion. This may seem 

counter-intuitive, as a Hebbian rule based on presynaptic (original) 
patterns and postsynaptic (decorrelated) patterns might represent a 
feedback signal amplifying decorrelation15; however, in our simu-
lations we applied 100 patterns with varying degree of overlap. As 
plasticity induction requires multiple pre-post pairings, this prefer-
entially strengthens the overlapping synapses, leading to an increase 
of correlation; thus, whereas lateral inhibition consistently mediates 
pattern separation, PP plasticity may, at least with the chosen induc-
tion rules, promote pattern completion31. As a corollary, inhibition-
based pattern separation could dominate at early time points (that 
is, with novel patterns), whereas plasticity-based pattern comple-
tion may prevail later (that is, with familiar patterns).

Perforant path inputs not only innervate GCs, but also CA3 pyra-
midal neurons via PP EC–CA3 synapses32. In a simplified model, 
the mossy fiber pathway conveys decorrelated patterns, whereas the 
PP input relays the original patterns to postsynaptic CA3 cells23. The 
effects of the excitatory drive from the EC–CA3 synapses are con-
sistent with this idea. However, our analysis further suggests that 
increasing the EC–CA3 drive reduces the contribution of the mossy 
fiber synapses to the total pattern separation process (Fig. 6f). 
Intuitively, the EC–CA3 drive regulates the detonator properties 
of the mossy fiber–CA3 synapses by changing the effective firing 
threshold. Complex interactions between excitatory and inhibitory 
synapses therefore regulate the balance between pattern separation 
and completion.

Our biologically inspired network model is an efficient pattern 
separator; however, the network also may be able to perform other 
related higher-order computations. The pattern separation reliabil-
ity ρ is close to 1, implying that rank similarity in the patterns is 
accurately preserved during information processing. Furthermore, 
the pattern separation gain γ is highest (>10) for very similar pat-
terns, demonstrating that small differences at the input level are 
amplified into large differences at the output level. These func-
tional properties will be suitable to run similarity searches (termed 
locality-sensitive hashing in computer science35) or to perform 
similarity-based clustering of contextual input information63. The 
EC–DG–CA3 network may therefore be computationally more 
powerful than previously thought.

Finally, our network model may help to develop new algorithms 
and computational architectures of technical deep learning net-
works51. Deep learning algorithms successfully incorporated the 
multilayer structure of biological networks, the hippocampal net-
work being the prototype. Although such technical networks are 
remarkably powerful, they lack the robustness, energy efficiency 
and memory capability of biological networks. Incorporation of fast 
lateral inhibition and presynaptic short-term memory may increase 
the efficacy of such systems.

Full-size implementation is a strength of the present study; 
however, limitations were unavoidable. These include use of sim-
plified cellular units (that is, integrate-and-fire neurons for GCs, 
single-compartment neurons for INs), lack of less abundant cell 
types (such as somatostatin+ or vasointestinal peptide+ GABAergic 
interneurons, mossy cells, and newborn GCs)64,65, and simplified 
connectivity rules (for example, for PP EC–GC connections where 
experimental connectivity data are currently unavailable). Increase 
in computational power of modeling hardware may allow us to 
address these limitations in the future.

Methods
Topology of a full-size DG network model. The pattern separation network 
model consists of three layers: the first representing the EC, with 50,000 ECs; the 
second representing the DG, with 500,000 GCs and 2,500 PV+-INs; and the third 
representing the CA3 region, with 200,000 pyramidal cells. The first and second 
layers were connected by EC–GC synapses, representing the PP input to the DG. 
A winner-takes-all mechanism mediated by lateral inhibition was implemented 
by connecting GCs and INs by excitatory E–I synapses in one direction, and by 
inhibitory I–E synapses in the other direction. The second and third layers were 
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connected by GC–CA3 pyramidal neuron synapses, representing hippocampal 
mossy fiber synapses.

Unlike many network models, our model was implemented in full size 
(Supplementary Table 1). The number of GCs was chosen to represent the 
DG of one hemisphere of adult laboratory mice13. Full-scale implementation 
was necessary: (1) to increase the realism of the simulations; (2) to be able to 
implement measured macroscopic connectivity rules without scaling66; and (3) 
to simulate sparse coding regimes, which were unstable in smaller networks. The 
model was designed to incorporate the connectivity rules of PV+-INs and GCs 
in the DG (Supplementary Table 1)22. Other types of INs were not implemented 
in the default model, due to their lower connectivity22 and their slower signaling 
speed46. In total, the conclusions of the present paper were based on 784 full-scale 
simulations.

Implementation of inhibitory INs. INs were implemented as single-compartment, 
conductance-based neurons endowed with modified Hodgkin–Huxley-type 
conductances67 to capture the electrical properties of PV+-INs. Membrane potential 
was simulated by solving the equation:

dV
dt =

1
Cm

(Idrive − INa − IK − IL) , (1)

where V is membrane potential; t is time; Cm is the capacitance of the membrane; 
Idrive is driving current; and INa, IK and IL represent sodium, potassium and leakage 
current, respectively. INa was modeled as

INa = gNa m3h(V − VNa), (2)

where gNa  is the maximal sodium conductance, m is the activation parameter, 
h is the inactivation parameter and VNa represents the sodium ion equilibrium 
potential.

Similarly, IK was modeled according to the equation

IK = gK n4(V − VK), (3)

where gK  is the maximal potassium conductance, n is the activation parameter and 
VK represents the potassium ion equilibrium potential.

Finally, IL was given as

IL = gL(V − VL), (4)

where gL is leakage conductance and VL is corresponding reversal potential.
State parameters m, h and n were computed according to the differential 

equation

dm
dt = αm (1 − m) + βm m (5)

and equivalent equations for h and n.
αm, αh, αn values and βm, βh, βn values were calculated according to the equations 

αm = 0.1 ms−1 × −(V + 35 mV)/{Exp[−(V + 35 mV)/10 mV] – 1}, βm = 4 ms−1 × Exp[−
(V + 60 mV)/18 mV], αh = 0.35 ms−1 × Exp[−(V + 58 mV)/20 mV], βh = 5 ms−1/
{Exp[−(V + 28 mV)/10 mV] + 1}, αn = 0.05 ms−1 × −(V + 34 mV)/{Exp[−
(V + 34 mV)/10 mV] − 1} and βn = 0.625 ms−1 × Exp[−(V + 44 mV)/80 mV]67. 
Single neurons were assumed to be cylinders with diameter and length of 70 µm, 
giving a surface area of 15,394 µm2 and an input resistance of 65 MΩ (ref. 47). 
Neurons showed a rheobase of 39 pA and a fast-spiking, type-I action potential 
phenotype68, as characteristic for PV+-INs46. Maximal conductance values were set 
as as gNa  = 35 mS cm−2, gK= 9 mS cm−2 and gL = 0.1 mS cm−2; VNa VK and VL were 
assumed as 55 mV, −90 mV and −65 mV, respectively67.

Implementation of GCs. GCs were implemented as spiking neurons with LIF 
firing properties, accelerating all computations by approximately one order of 
magnitude. To enable the integration of excitatory and inhibitory synaptic events 
with different kinetics, the standard LIF model was extended as follows69:

The time course of synaptic excitation was described by the differential 
equation

de
dt = −ke e, (6)

where ke is the synaptic excitation rate constant, that is, the inverse of the time 
constant.

Likewise, the time course of synaptic inhibition was described by the 
differential equation

di
dt = −ki i, (7)

where ki is the synaptic inhibition rate constant.

Finally, the firing of the neuron was controlled by a membrane state variable v; 
when v reaches 1, the cell fires, which resets the membrane by returning v to 0. The 
time course of v was determined by the differential equation

dv
dt = −kmv + aee + aii + idrive, (8)

where km is inverse of the membrane time constant, ae and ai are amplitudes of 
synaptic events, and idrive represents the excitatory drive any given neuron receives69. 
The excitation, inhibition and membrane time constants were set to 3, 10 and 
15 ms, respectively (Supplementary Table 1)22,48,70. The refractory period was 
assumed to be 5 ms.

Implementation of synaptic interconnectivity. Synapses between neurons were 
placed with distance-dependent probability. Normalized distance was cyclically 
measured as

x = 0.5 − abs {abs [(i/imax − j/jmax)] − 0.5} , (9)

where i and j are indices of pre- and postsynaptic neurons, respectively; imax and 
jmax are the corresponding maximum index values; and abs(r) is the absolute value 
of a real number, r. Connection probability was then computed with a Gaussian 
function as

p(x) = ce−
x2
2σ2 , (10)

where c is the maximal connection probability (cE–I, cI–E, cI–I and cgap) and σ is the 
standard deviation representing the width of the distribution (σE–I, σI–E, σI–I and σgap; 
Supplementary Table 1).

The connection probability between ECs and GCs was computed from 
a Gaussian function with peak connection probability of 0.2 and a standard 
deviation of 500 µm, to represent the divergent connectivity from the EC to the 
DG27,32,45. Binary activity patterns in upstream ECs were converted into patterns of 
excitatory drive of GCs. Although this drive was primarily intended to represent 
input from EC neurons, it may include contributions from other types of 
excitatory neurons64.

Excitatory GC–IN synapses, inhibitory IN–GC synapses, and inhibitory 
IN–IN synapses were incorporated by random placement of NetCon objects 
in NEURON69; gap junctions between PV+-INs were implemented by random 
placement of pairs of point processes. For excitatory GC–IN synapses and 
inhibitory IN–IN synapses, synaptic events were simulated using the Exp2Syn 
class of NEURON. For excitatory GC–IN synapses, we assumed τrise,E = 0.1 ms, 
τdecay,E = 1 ms and a peak conductance of 8 nS (Supplementary Table 1)21,22. For 
inhibitory IN–IN synapses, we chose τrise,I = 0.1 ms, τdecay,I = 2.5 ms and a peak 
conductance of 16 nS (Supplementary Table 1)22,37,59. For inhibitory IN–GC 
synapses, the synaptic weight of 0.025 was chosen (which is unitless as GCs were 
modelled as LIF neurons). For all chemical synapses, the synaptic latency was 
between 0 and 25 ms, according to distance between pre- and postsynaptic neuron. 
The gap junction resistance was assumed to be 300 MΩ, approximately five times 
the input resistance of a single cell (Supplementary Table 1)22,37,59. Synaptic reversal 
potentials were 0 mV for excitation and −65 mV for inhibition. The maximal 
length of the hippocampal network was assumed to be 5 mm, consistent with 
anatomical descriptions in mice71.

Detailed implementation and simulations. Simulations of network activity 
were performed using NEURON v.7.6.2, v.7.7.2 or v.7.8.2 (ref. 69) in combination 
with Mathematica v.11.3.0.0 or v.12.2.0.0 (Wolfram Research). Simulations 
were tested on a Lenovo T470p PC running under Windows 10. Final full-size 
simulations were run on the IST computer cluster under Debian GNU/Linux v.9 
or v.10 (https://www.debian.org/), the scheduling system Slurm 16.05, and the 
environment module system Lmod 7.7.

Simulations were performed in four steps (Supplementary Fig. 1). First, we 
computed random binary activity patterns in ECs. To generate input patterns 
with defined correlations over a wide range, 100 uncorrelated random vectors 
ai of size nEC were computed, where individual elements are pseudorandom real 
numbers in range of 0 to 1 and nEC is the number of ECs. Uncorrelated vectors 
were transformed into correlated vectors as r × a1 + (1 − r) × ai, where a1 is the first 
random vector and r is a correlation factor; r was varied between 0.1 and 1. Finally, 
a threshold function f(x) = H(x − θ) was applied to the vectors, where H is the 
Heaviside function and θ is the threshold that determines the activity level in the 
pattern. Empirically, 100 input patterns were sufficient to continuously cover the 
chosen range of input correlations. Unless stated differently, the average activity in 
EC neurons (αEC), that is the proportion of spiking cells, was assumed to be 0.1.

Second, the patterns in the upstream neurons were converted into patterns 
of excitatory drive in GCs, by multiplying the activity vectors with the previously 
computed connectivity matrix between EC neurons and GCs. Unless otherwise 
indicated, the mean tonic current value was set to 1.8 times the threshold value 
of the GCs (that is Iµ = 1.8; unitless, as GCs were implemented as LIF units; 
Supplementary Table 1).
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Third, we computed the activity of the network for all 100 patterns. Simulations 
were run with 5 µs fixed time step over a total duration of 50 or 60 ms. At the 
beginning of each simulation, random number generators were initialized with 
defined seeds to ensure reproducibility. At t = 0, an inhibitory synaptic event of 
weight 1 (relative to threshold) was simulated in all GCs to mimic recovery from 
gamma-modulated inhibition19. Spikes were detected when membrane potential 
reached a value of 1 in the GCs and 0 mV in the INs. Subsequently, spike times 
were displayed in raster plot representations. Furthermore, 100 binary output 
vectors were computed, by setting the value to 1 if a cell generated ≥1 spikes in the 
simulation time interval, and to 0 otherwise.

Finally, Pearson’s correlation coefficients were calculated for all pairs of patterns 

(
(

100
2

)

 = 4,950 points), at both input and output level in parallel as

R =
Cov(n1, n2)

√

Var (n1)Var(n2)
, (11)

where Cov is covariance, Var is variance, and n1 and n2 are two given pattern 
vectors. Due to mean value subtraction and normalization, this correlation 
measure is per se independent of activity53. Next, output correlation coefficients 
(Rout) were plotted against input correlation coefficients (Rin). For models activated 
by Poisson trains of PP input (Supplementary Fig. 3) or implementing variation of 
synaptic amplitude (Supplementary Fig. 7), Rout–Rin curves were normalized to the 
average Rout values obtained for identical patterns (Rin = 1), which were <1 due to 
the stochastic nature of the models. For models with heterogeneity of excitability 
(Supplementary Fig. 8), Rout–Rin curves were normalized to the average Rout values 
obtained for uncorrelated patterns (Rin → 0), which were greater than zero as the 
cells with the highest excitability were consistently firing, whereas the cells with the 
lowest excitability were consistently silent. Pattern separation was quantitatively 
characterized by three parameters: (1) the efficacy of pattern separation (ψ) was 
quantified by an integral-based index, defined as the area between the identity line 
and the Rout versus Rin curve, normalized by the area under the identity line ( 12). 
Thus,

ψ = 2
1
∫

x=0

(x − f(x))dx, (12)

where f(x) represents the input-output correlation function. In practice, data 
points were sorted by Rin values, and points with same Rin were averaged. f(x) was 
determined as a 5th or 10th-order polynomial function f(x) fit to the Rout versus Rin 
data points; f(x) was constrained to pass through points (0 | 0) and (1 | 1). Based on 
the definition of equation (12), a ψ value close to 1 would correspond to an ideal 
pattern separator. By contrast, ψ = 0 would represent pattern identity, whereas 
ψ < 0 would indicate pattern completion. (2) The gain of pattern separation (γ) 
was quantified from the maximal slope of the Rout versus Rin curve. In practice, this 
value was determined from the first derivative of the polynomial function f(x) fit to 
the Rout versus Rin data points as lim

x→1

(

df(x)
dx

)

. A γ value ≫ 1 would correspond to an 
ideal pattern separator. By contrast, γ = 1 would represent pattern identity, whereas 
γ < 1 may indicate pattern completion. (3) The reliability of pattern separation (ρ) 
was quantified by the Pearson’s correlation coefficient of the ranks of all Rout versus 
the ranks of the corresponding Rin data points. An ideal pattern separator will 
maintain the order of pairwise correlations: if a pair of patterns is more similar than 
another pair at the input level, it will be also more similar at the output level; thus, ρ 
will be close to 1 for an ideal pattern separator (refs. 34–36).

To analyze the effects of convergence and divergence on pattern separation 
(Fig. 3a–d), activity was simulated in ECs, converted into drive patterns in GCs 
by multiplication with the EC–GC connectivity matrix, and finally converted into 
binary activity values in GCs by applying a threshold corresponding to the desired 
α. This simplified approach permitted systematic variation of model parameters 
(for example, cell numbers and connection probabilities) over a wide range. In the 
simulations, both nEC and nGC was varied between 10,000 and 100,000, yielding 
ratios ranging from 1:10 to 10:1. Unless specified differently, in these simplified 
simulations, αEC was set to 0.1 and EC–GC connectivity was assumed to be random 
with an average connection probability (cEC–GC) of 0.05

To address the effects of plasticity at PP synapses on pattern computations (Fig. 
6a–c), we introduced an associative synaptic plasticity rule at EC–GC synapses. We 
first simulated the responses of the network to 100 EC patterns with the default 
parameter set in a control run. Coincident pre- and postsynaptic activity was 
cumulatively recorded for all synapses across all patterns. We next computed the 
extent of potentiation for each EC–GC synapse according to a sigmoidal function 
of the form

f (x) = fpot/ (1 + exp [− (x − xhalf) /k]) , (13)

where fpot is the potentiation, x is the number of coincident action potentials, xhalf 
is the number of action potentials leading to half-maximal potentiation, and k is a 
slope factor. As default values, xhalf = 5 and k = 5 were used. Finally, we simulated the 
responses of the network to 100 EC patterns with the potentiated synapses in a test 
run (Fig. 6a–c).

Robustness of the pattern separation mechanism. Unless specified differently, 
standard parameter values (Supplementary Table 1) were used for all simulations. 
However, several additional simulations were performed to test the robustness 
of pattern separation against parameter variation. (1) To test the effects of 
conductance-based synapses against current-based synapses (Supplementary Fig. 
2), GCs were simulated as single-compartment conductance-based neurons with 
passive properties. (2) To test the effects of temporal structure of the excitatory 
drive (Supplementary Fig. 3), the tonic current was replaced by Poisson trains of 
synaptic events. In these simulations, events were simulated by NetStim processes. 
(3) To generate spatially correlated patterns (Supplementary Fig. 4), random 
numbers were drawn from a multinormal distribution with exponential spatial 
correlation (length constant 15,000 cells) and thresholded to give a spatially 
correlated binary pattern with appropriate activity level. (4) To implement 
feedforward inhibition (Supplementary Fig. 5), the tonic excitatory drive computed 
from EC activity and EC–GC connectivity was applied in parallel to INs after 
appropriate scaling. (5) To replace PV+-INs with cholecystokinin (CCK)+-like 
IN subtypes (for example hilar INs with axons associated with the commissural 
/ associational pathway; Supplementary Fig. 6a)72–75, model parameters were 
changed to account for reduced connectivity, altered synaptic strength, and slower 
signaling according to the replacement rules cE–I = 0.1 → 0.02, cI–E = 0.3 → 0.1, 
JE–I = 0.008 → 0.004 nS, JI–E = 0.025 → 0.05, τI–E = 10 → 20 ms, and τm = 10 → 20 ms. 
Furthermore, to incorporate CCK+-like IN subtypes in the network 
(Supplementary Fig. 6b), an increasing number of neurons with the following 
connectivity parameters were added to the model: cCCK–CCK = 0.2, cPV–CCK = 0.6, 
cCCK–PV = 0.2, cE–CCK = 0.02, cCCK–E = 0.1, JE–CCK = 4 nS, JCCK–E = 0.05, JCCK–CCK = 16 nS, 
JPV–CCK = 16 nS and JCCK–PV = 16 nS. (6) To incorporate PP inputs to CA3 pyramidal 
neurons (Fig. 6d–f)32, the tonic excitatory drive computed from EC activity and 
EC–GC connectivity was applied in parallel to CA3 pyramidal neurons. (7) To test 
the effects of synaptic heterogeneity (Supplementary Fig. 7), synaptic amplitudes 
at all synapses were drawn from normal distributions with specified coefficient 
of variation, CV. Both trial-to-trial (type 1) and synapse-to-synapse (type 2) 
variability were examined. (8) Finally, to test the effects of heterogeneity in GC 
excitability (Supplementary Fig. 8), the constant firing threshold (by default 1 in 
LIF neurons) was replaced by random threshold values for individual cells drawn 
from a normal distribution with mean 1 and standard deviation σthres.

Conventions. Throughout the paper, model parameters given in Supplementary 
Table 1 are referred to as standard parameters. In summary bar graphs, black bars 
indicate these standard values, light blue bars reduced values, and light red bars 
increased values in comparison to the default parameter set. In functional analysis 
of ψ, γ and ρ, standard parameters are indicated as dashed lines. Throughout the 
paper, the term pattern is defined as a vector of real values (for excitatory drive) or 
a vector of binary values (for activity, 1 if the cell fires, 0 otherwise). In both cases, 
the vector length corresponds to the number of cells.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Output datasets can be regenerated from the code76. As the full output dataset 
generated in this work is huge (>10 Tb), deposit in a publicly available repository 
is not practical at the current time point. Specific data will be provided by the 
corresponding author on request . Source data are provided with this paper.

Code availability
A minimal version of the Neuron simulation code is provided as Supplementary 
Software 1. A full version of the simulation and analysis code has been deposited in 
a publicly available doi-minting repository under the GNU General Public License 
v.3, as published by the Free Software Foundation76.
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Extended Data Fig. 1 | Quantitative analysis of pattern separation in neuronal networks. a, b, Schematic illustration of pattern separation. (a) Neuronal 
activity at the input (top) and the output level (bottom) during two similar contexts (top). Red, cells active in pattern A; green, cells active in pattern B; 
yellow, cells active in both patterns. (b) Overlay of neuronal activity at the input (top) and the output level (bottom). Highly overlapping input patterns 
(A, B; top) are converted into weakly overlapping output patterns (A′, B′; bottom). Modified from Johnston et al., 2016 (ref. 65). c, d, Analysis of pattern 
separation and pattern completion in input-output correlation plots (Rout–Rin graphs). Rin and Rout represent pairwise correlations in input and output 
patterns. Red dashed line indicates pattern identity. Area below identity line (red and green stripes, c) represents a regime in which Rout < Rin, that is, 
pattern separation. Area above identity line (yellow area, d) corresponds to a regime where Rout > Rin, that is, pattern completion. Insets, Venn diagrams of 
two patterns before and after pattern separation (c) and pattern completion (d). e, f, Quantitative analysis of Rout–Rin graphs. Data points (black points) 
represent output and input correlations for all pairs of patterns; 4950 data points total. An integral-based metric, ψ, provides a robust assessment of the 
average pattern separation behavior (e, main panel). ψ was computed as the area between identity line (IL, red dashed line) and the interpolated Rout–Rin 
curve (light gray area), normalized to the maximum area (0.5). A slope-based measure, γ, provides a selective analysis of pattern separation in a region of 
interest in which differences between input patterns are small (e, inset). γ was computed as the slope of the Rout–Rin curve for Rin → 1. A rank correlation-
based measure, ρ, provides an analysis of the ability of the network to preserve rank order similarity (f). ρ was computed as the Pearson’s correlation 
coefficient of the ranks of all Rout versus the ranks of all Rin data points. Rout–Rin plot and rank correlation plots are shown for standard model parameters 
(same data as in Fig. 1c, f; see Supplementary Table 1).
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