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Insights into hippocampal network function
A new study proposes a full-scale model of the entorhinal cortex–dentate gyrus–CA3 network, providing  
a conceptual overview of the computational properties of this brain network, to show that it is an efficient  
pattern separator.

Ad Aertsen

There is hardly an area in the 
mammalian brain on which so many 
experimental facts are known as 

the hippocampus. Both the anatomy of its 
network circuitry and the physiology of 
its constituent neurons and synapses have 
been characterized in remarkable detail. 
For many years, the hippocampus has also 
been the prime target area when studying 
synaptic plasticity and its role in learning 
and memory. Yet, despite this wealth of 
experimental data, there is still no clear 
understanding about how the specific 
properties of network circuitry, neurons 
and synapses contribute to the purported 
function of the hippocampal network. 
Writing in Nature Computational Science, 
S. Jose Guzman and colleagues1 propose 
a biologically realistic, full-scale network 

model to show that these various specific 
properties and their intricate interactions 
optimize higher-order computations 
performed in this biological network.

One of the primary components in 
current theories of hippocampal network 
function is pattern separation, which 
denotes the effect that similar input 
patterns presented to the network result 
in more dissimilar output patterns from 
the network (Fig. 1b). Thus, pattern 
separation helps to distinguish inputs and 
provides the means to categorize them by 
downstream networks. This component is 
conventionally associated with early stages 
of the three-layer feedforward neuronal 
network of the entorhinal cortex–dentate 
gyrus–hippocampal CA3 (Fig. 1a).  
Another, complementary, component 

is pattern completion, which describes 
the effect of having a partial input being 
completed into a full output: ‘half a word 
suffices’ (Fig. 1c). This component is 
typically associated with later stages of the 
hippocampal feedforward network.

In their study, the authors focus on 
pattern separation, but pattern completion 
is also considered. Specifically, they address 
the following question: whether and to what 
extent the three-layer feedforward network 
provides the anatomical, physiological 
and biophysical properties to support the 
computational process of pattern separation. 
To this end, they developed, implemented 
and simulated a network model of this brain 
network, including most of the known cell 
types in the circuitry, using realistic values 
of network connectivity, cell properties, 
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Fig. 1 | Pattern separation and pattern completion in the hippocampal network. a, Basic circuitry of the rodent hippocampus. Schematic drawing of the 
hippocampal formation, demonstrating the main cell types, laminae and subfields. The figure is a modification from Cajal’s famous original drawing10. 
The excitation enters the dentate gyrus (DG) by the perforant path (pp), runs along the mossy fibers (mf) and the Schaffer collaterals (sc) and leaves the 
hippocampus via the alveus (a) or the fimbria (f). so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; sg, stratum granulosum; sm, stratum 
moleculare; H, hilus; EC, entorhinal cortex; S, subiculum. b, Schematic illustration of pattern separation. Neuronal activity at the input (top) and the output 
level (bottom) in response to two similar input stimuli (top). Cells active in patterns A and B are colored red. Highly overlapping input patterns (A, B; top) are 
converted into weakly overlapping output patterns (A’, B’; bottom). c, Schematic illustration of pattern completion. Neuronal activity at the input (top) and 
the output level (bottom) in response to a partial input stimulus (top). Cells active in pattern C are colored red. A partial input pattern (C; top) is converted 
into a completed output pattern (C’; bottom; compare to pattern A’ in b). Credit: adapted with permission from ref. 11, Wiley (a); Anand Varma/Getty (b, left); 
Benjamin Fabian (b, right).
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synaptic dynamics and other biophysical 
properties — many of them stemming 
from their own experimental work2–5. 
Importantly, the authors chose to make a 
full-scale model of the network, thereby 
avoiding the complex issues involved with 
scaling connectivity, neuronal and synaptic 
properties with network size.

Over the years, a number of different 
ingredients for pattern separation have 
been proposed in the context of different 
brain networks. These include divergent 
feedforward excitation in the cerebellum6,7, 
lateral inhibition in the insect olfactory 
system8, plasticity-dependent detonation 
properties of mossy fiber synapses in the 
hippocampus3, and Hebbian synaptic 
plasticity in the input pathway to the 
hippocampus9. Thus, the authors access 
the role of each of these ingredients in 
the separation performance of their 
network model. They compare and unravel 
the contributions of external, gamma-
modulated inhibition and internal, lateral 
inhibition to the separation performance 
of the network. Likewise, they compare 
and quantify the contributions of global 
versus local connectivity to the separation 
performance. They also compare the 
contributions of divergent and convergent 
projections in the network and the 
importance of sparse connectivity and 
fast signaling and plasticity in mossy fiber 
synapses. To each of these questions and 
sub-questions, the authors present an array 
of simulation studies, upon systematic 
variation of the relevant network, cellular 
and synaptic parameters, together with 
careful quantitative analyses of the effects of 
these parameter variations on the network’s 
pattern separation performance, using 
three well-established, complementary 
quantitative measures for this performance.

The authors found that pattern separation 
was primarily generated between the first 
two layers of the network, but, surprisingly, 

was further enhanced in the transition to 
the third layer. In contrast to Marr’s work 
on the cerebellum6, the authors found that 
divergent connectivity was not strictly 
required for pattern separation in the 
hippocampal network. Instead, pattern 
separation represents a distributed network 
computation, involving multiple layers of 
the feedforward network. They found that a 
critical role in the pattern separation process 
was played by the combination of gamma-
modulated inhibition and lateral inhibition 
in the early network layers. In addition, local 
inhibition was found to support pattern 
separation more effectively than global 
connectivity, by avoiding longer delays 
and, thereby, facilitating more rapid lateral 
inhibition. Interestingly, sparse connectivity 
of mossy fiber synapses decreased, 
rather than increased, pattern separation 
performance. Finally, Hebbian plasticity 
of the mossy fiber synaptic inputs to the 
hippocampal network was found to be able to 
shift the hippocampal network from pattern 
separation to pattern completion. Likewise, 
Hebbian synaptic plasticity at the perforant 
path synapses from entorhinal cortex to 
granule cells shifted the network from pattern 
separation to pattern completion.

Taken together, the paper provides a 
comprehensive and innovative conceptual 
overview of the computational properties 
of an important brain network, on which 
the literature up till now has been riddled 
with many isolated experimental facts and 
numbers, without a clear view regarding 
the functional role of these various facts 
and numbers. Interesting questions 
remain, though. For instance, the finding 
that plasticity in the mossy fiber input 
synapses may shift the overall network 
function from pattern separation to pattern 
completion begs the question: how may 
learning affect the functional role of the 
hippocampal network in guiding behavior? 
In this context, the authors hypothesize that 

inhibition-based pattern separation could 
dominate at early times, with novel input 
patterns, whereas plasticity-based pattern 
completion might prevail at later times, with 
more familiar input patterns. Appropriately 
designed behavioral experiments, combined 
with recordings of the involved synaptic 
physiology could help resolve this issue. 
Also, it would seem helpful to study 
whether this hippocampal network is able 
to perform other computations, besides 
pattern separation and pattern completion. 
Finally, the authors suggest that these 
new insights may help improve machine 
learning approaches in technical multi-layer 
networks. Currently, the intricate details 
of neural network dynamics have been 
overlooked and remain to be fully explored 
in machine learning, which may open new 
avenues in the field. ❐
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