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Abstract

Transient oscillations in network activity upon sensory stimulation have been reported in

different sensory areas of the brain. These evoked oscillations are the generic response

of networks of excitatory and inhibitory neurons (EI-networks) to a transient external input.

Recently, it has been shown that this resonance property of EI-networks can be exploited

for communication in modular neuronal networks by enabling the transmission of sequences

of synchronous spike volleys (’pulse packets’), despite the sparse and weak connectivity

between the modules. The condition for successful transmission is that the pulse packet

(PP) intervals match the period of the modules’ resonance frequency. Hence, the mecha-

nism was termed communication through resonance (CTR). This mechanism has three

severe constraints, though. First, it needs periodic trains of PPs, whereas single PPs fail

to propagate. Second, the inter-PP interval needs to match the network resonance. Third,

transmission is very slow, because in each module, the network resonance needs to build

up over multiple oscillation cycles. Here, we show that, by adding appropriate feedback

connections to the network, the CTR mechanism can be improved and the aforementioned

constraints relaxed. Specifically, we show that adding feedback connections between two

upstream modules, called the resonance pair, in an otherwise feedforward modular network

can support successful propagation of a single PP throughout the entire network. The key

condition for successful transmission is that the sum of the forward and backward delays in

the resonance pair matches the resonance frequency of the network modules. The trans-

mission is much faster, by more than a factor of two, than in the original CTR mechanism.

Moreover, it distinctly lowers the threshold for successful communication by synchronous

spiking in modular networks of weakly coupled networks. Thus, our results suggest a new

functional role of bidirectional connectivity for the communication in cortical area networks.
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Author summary

The cortex is organized as a modular system, with the modules (cortical areas) communi-

cating via weak long-range connections. It has been suggested that the intrinsic resonance

properties of population activities in these areas might contribute to enabling successful

communication. A module’s intrinsic resonance appears in the damped oscillatory

response to an incoming spike volley, enabling successful communication during the

peaks of the oscillation. Such communication can be exploited in feedforward networks,

provided the participating networks have similar resonance frequencies. This, however, is

not necessarily true for cortical networks. Moreover, the communication is slow, as it

takes several oscillation cycles to build up the response in the downstream network. Also,

only periodic trains of spikes volleys (and not single volleys) with matching intervals can

propagate. Here, we present a novel mechanism that alleviates these shortcomings and

enables propagation of synchronous spiking across weakly connected networks with not

necessarily identical resonance frequencies. In this framework, an individual spike volley

can propagate by local amplification through reverberation in a loop between two succes-

sive networks, connected by feedforward and feedback connections: the resonance pair.

This overcomes the need for activity build-up in downstream networks, causing the volley

to propagate distinctly faster and more reliably.

Introduction

Anatomical differences and functional specialization of different brain regions suggest that the

brain is organized as a highly modular system. This modularity can be observed in the neocor-

tex at multiple spatial scales, ranging from inter-areal connectivity [1, 2] to inter- and intra-

layer connectivity within a single cortical column [3–6]. A modular design indeed provides

numerous benefits, not only making the system scalable, but also rendering it with robustness

to structural perturbations [7].

To exploit the modularity of the brain, it is however, necessary that neuronal spiking activ-

ity from one specialized network can be reliably transmitted to another network and that the

downstream network is able to read the incoming activity [8, 9]. Therefore, understanding

how spiking activity is reliably propagated from one brain region to another is crucial for

understanding the functional organization and information processing in the brain.

Different brain modules, irrespective of their spatial scale (inter-areal or inter-layer), are

interconnected by convergent-divergent connections. Typically, the connectivity between any

two modular networks is sparse, and synapses are weak [10]. Over the last decade, the problem

of reliably transmitting spiking activity via weak and sparse connections has attracted much

attention from experimentalists and theoreticians alike [8, 11–18]. If the inter-module net-

works under study exclusively include feedforward connections, the only way to overcome the

problem of transmission with weak synapses is to provide more efficient signals by synchro-

nizing the spike signals to be transmitted [19–21]. Neuronal signals in this case are considered

as volleys of spikes (pulse packets) which can be quantified by the number of spikes in the vol-

ley (α = 50–100 spikes) and their temporal dispersion (σ� 1–10 ms), measuring the degree of

synchronization of the spiking activity in the volley [20, 22]. Several studies have demonstrated

that the downstream effect of a pulse packet depends both on α and σ (see [8] for a review).

Note that a pulse packet by itself does not carry any information; rather, the information

resides in the combination of neurons participating in the spike volley, both in the sender and

receiver networks [23].
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Convergent-divergent connectivity motif can generate and amplify spiking synchrony by

virtue of shared inputs [19, 20, 23, 24]. When inputs are sufficiently synchronous, the trans-

mission speed is very high and governed only by synaptic delays. However, it has been shown

that this mechanism requires relatively dense connectivity and/or highly synchronous inputs

[8]. These two requirements are inconsistent with available experimental data on both the neu-

ronal connectivity and activity across cortical areas.

But cortical networks are not strictly feedforward, and recurrent and feedback connections

are prevalent in the central nervous system [4, 5]. Network activity dynamics determined by

recurrent connectivity have a strong effect on neuronal response properties. For instance, net-

work oscillations modulate the neurons’ spiking threshold in a periodic fashion. If two net-

works oscillate at the same frequency and phase (coherent oscillations), the transient decrease

in the effective spiking threshold of neurons in the downstream network coincides with the

transient increase of the spiking activity of the sending network, facilitating the transmission

of spiking activity [9, 11, 12, 14, 17, 18]. Thus, communication through coherence (CTC) not

only provides the means to communicate from one network to another, but it also provides

the means to control the communication, because only networks with an appropriate phase

synchrony with the sender network can tune in to the spiking activity they receive. Thus, CTC

requires that spontaneous coherent oscillations exist between the sender and receiver networks

before the onset of stimulus-evoked activity to be transmitted and that the coherence remains

stable, despite continuous shifts in frequency and phase of the oscillations [25]. However,

mechanisms underlying such coherent oscillations have so far remained obscure (however, see

[26, 27]).

Recently, Hahn and colleagues proposed another mechanism that does not require coher-

ent spontaneous oscillations in the sender and receiver networks before the arrival of activity

that needs to be propagated. Instead, it is based on the evoked oscillations following the impact

of a stimulus [17]. For a wide range of biologically plausible neuron and network parameters,

excitatory-inhibitory networks (EI-networks) show features of network resonance. In this

regime, the baseline activity of the network itself is not oscillatory, but when perturbed with a

transient input, the network responds with a damped oscillation. When stimulated with a peri-

odic external input with the appropriate frequency, within a few oscillation cycles the network

starts to oscillate at its intrinsic oscillation frequency.

Thus, even a weak periodic input, provided it has the right frequency, exposes the network

resonance and creates oscillations in the receiver network which would not exhibit oscillations

otherwise. Network oscillations created through this resonance phenomenon periodically

lower the spiking threshold of neurons in the receiver network, allowing for a gradual build-

up, over several oscillation cycles, for enabling the transmission of the incoming activity.

Therefore, this mechanism was termed communication through resonance (CTR) [17]. Because

oscillations only arise upon appropriate stimulation of the downstream network, the oscilla-

tions in the sender and receiver networks are automatically locked in an appropriate phase for

transmission and, hence, facilitate the transmission of the spiking activity involved in the stim-

ulation. Thus, the CTR mechanism resolves a fundamental problem of the CTC hypothesis:

how to obtain and, even more so, maintain phase synchrony between the network oscillations.

Yet, at the same time it creates new problems: First, it precludes the transmission of individual

pulse packets and, second, because the periodic stimulation activity needs to be amplified by

build-up over multiple oscillation cycles, communication through resonance is prohibitively

slow. Finally, it is not known how the inter-pulse interval of the external signal can be matched

to the period of the evoked oscillations of the modules.

Here, we report the results of an investigation how the transmission of spiking activity in a

feedforward network (FFN), based on the CTR mechanism, can be improved by adding
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appropriate feedback connections. To this end, we studied the possibility of transmitting a sin-

gle pulse packet in an FFN of EI-networks in which the first two layers of EI-networks were

bidirectionally connected via weak and sparse excitatory synapses. We refer to these two bidi-

rectionally coupled EI-networks as the resonance pair. We found that adding such a resonance

pair to an otherwise feedforward modular network enabled fast transmission (in only two

oscillation cycles) of a single pulse packet through a built-in CTR mechanism, provided the

sum of the feedforward and feedback delays between the resonance pair matches the period of

the resonance of the EI-networks. In the FFN with a resonance pair, the incoming single pulse

packet initiated a periodic pulse packet train with appropriate timing (determined by the reso-

nance frequency of the EI-networks), which was reliably transmitted through the remainder of

the layered network of EI-networks. We found that the build-up of the network resonance was

much faster in networks with a resonance pair: embedding a single resonance pair in a feedfor-

ward network increased the speed of CTR-based transmission by a factor of 2. Using numeri-

cal simulations, we identified conditions (strength, number and delay of the bidirectional

connections) that ensured a stable transmission of the activity, without destabilizing the activ-

ity dynamics within the individual EI-networks in the layered network. We hypothesize that,

since bidirectional connections between cortical areas are quite ubiquitous (e.g. [28–33]), such

bidirectionally connected areas may provide good broadcasters of information in the brain at

intermediate and large scales.

Methods

Neuron and synapse model

Neurons were modeled as leaky integrate-and-fire (LIF) neurons. The sub-threshold dynamics

of the neuron’s membrane potential were described by:

Cm
_Vm ¼ � Gleak½VmðtÞ � Vreset� þ IsynðtÞ ð1Þ

where Vm denotes the membrane potential, Cm the membrane capacitance, Gleak the mem-

brane leak conductance, and Isyn the total synaptic input current. When the membrane voltage

reached the threshold of Vth = −54 mV, a spike was emitted and the potential was reset and

clamped to Vreset = −70 mV for a refractory period (τref = 2 ms). To avoid a transient network

synchrony at the beginning of the simulation, the initial membrane voltage of neurons was

drawn from a normal distribution (mean: −70; standard deviation: 3 mV). The neuron model

parameters are listed in Table 1.

Synaptic inputs were introduced by a transient change in the synaptic conductance Gsyn:

IsynðtÞ ¼ GsynðtÞ½VmðtÞ � Esyn� ð2Þ

in which Esyn denotes the synaptic reversal potential. Conductance changes were modeled as

Table 1. Neuron parameters.

Name Value Description

Cm 250 pF Membrane capacitance

Gleak 16.67 nS Membrane leak conductance

Vth -54 mV Spiking threshold

Vreset -70 mV Reset potential

τref 2 ms Refractory time period

https://doi.org/10.1371/journal.pcbi.1008033.t001
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alpha functions:

GsynðtÞ ¼
t
tsyn

expð�
t
tsyn
Þ ð3Þ

where τsyn is the synaptic time constant. The synapse model parameters are listed in Table 2.

Here we considered weak synapses [10], such that in the default case, the co-activation of�50

excitatory presynaptic neurons was required to elicit a spike in the postsynaptic neuron. When

we systematically varied the excitatory feedforward or feedback strength (cf. Figs 4 and 7), the

numbers of co-activated presynaptic neurons required to elicit a spike were different. Synaptic

transmission delays were set to 1.5 ms for within-layer connections; whereas inter-layer trans-

mission delays were systematically varied as one of the key parameters in our study (as men-

tioned in the corresponding Figure captions).

Network connectivity

The network consisted of 10 layers, each one comprising 200 excitatory and 50 inhibitory neu-

rons in the form of an EI-network (Fig 1). The connectivity within the layers (EI-networks)

was chosen to be random with a fixed connection probability of 0.2 for all types of connec-

tions. For the inter-layer connectivity, we assumed that only the excitatory neurons from one

layer EI-network projected to the excitatory neurons in the following layer EI-network. From

each layer, 70 randomly selected neurons projected to the next layer with connection probabil-

ity of = 0.2. Thus, each neuron in a layer received on average 40 excitatory inputs from neurons

within the layer network and 14 excitatory inputs from neurons in the preceding layer net-

work. Synapses from a neuron onto itself were excluded, but multiple synapses between neu-

rons were allowed. Inter-layer excitatory connections were set to be as strong as within-layer

excitatory to excitatory connections. In the case of feedforward networks (FFN), all connec-

tions between adjacent layers were unidirectional. In the case of the resonance pair network

(RPN), we introduced feedback excitatory connections between the first two layers of the FFN.

We took care that individual neurons were not bidirectionally connected. Strength, probability

and delay of the feedback and feedforward connections were systematically varied to identify

conditions for resonance between the two layers (Figs 7 and 8). Further details of the model

network parameters are listed in Table 3.

Table 2. Synapse parameters.

Name Value Description

τexc 1 ms Rise time of excitatory synaptic conductance

τinh 1 ms Rise time of inhibitory synaptic conductance

Eexc
syn 0 mV Reversal potential of excitatory synapses

Einh
syn -80 mV Reversal potential of inhibitory synapses

Jee 0.33 mV Exc. to exc. synaptic strength measured at -70 mV

Jei 1.5 mV Exc. to inh. synaptic strength measured at -70 mV

Jie -6.2 mV Inh. to exc. synaptic strength measured at -54 mV

Jii -12.0 mV Inh. to inh. synaptic strength measured at -54 mV

Jpe 0.25 mV Connection strength: Input Poisson spike train to exc. pop.

Jpi 0.4 mV Connection strength: Input Poisson spike train to inh. pop.

Jpp 0.33 mV Connection strength: Pulse packet to P neurons in first layer

dwithin-layer 1.5 ms Transmission delay within layer

dinter-layer 25–28 ms Range of total resonance delay between layers

https://doi.org/10.1371/journal.pcbi.1008033.t002
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External background input

Each excitatory neuron in each layer EI-network was driven by 8, 000 independent Poisson

excitatory spike trains, each with a mean rate of 1 spike/s. Each inhibitory neuron in each layer

EI-network was driven by 6, 400 independent Poisson excitatory spike trains, at the same

mean rate. In Fig 7a and 7b, the rate of the Poisson input to the E-neuron population was sys-

tematically varied, and for the I-neuron population the rate was adjusted accordingly, to keep

the difference between the mean input rates to E- and I-neurons, 1, 600 spikes/s, constant. Net-

work connectivity, synaptic strength and external input were tuned such that each individual

layer EI-network operated in an asynchronous-irregular regime [34, 35] in the absence of

pulse-packet like inputs. This also meant that the network was operating in an inhibition-dom-

inated regime [34, 35]. However, the network operating point was close enough to the oscil-

latory regime, such that a single pulse packet stimulus could elicit weak damped oscillations,

which we exploited to create resonance by external stimulation.

Synchronous input

The synchronous input stimulus was a single pulse packet, injected into the projecting neurons

in the first layer network. It consisted of a fixed number of spikes (α), distributed randomly

around the packet’s arrival time (tn). The time of individual spikes were drawn independently

from a Gaussian distribution centered around tn, with a standard deviation of σ = 2 ms. In Figs

2d, 2e and 6, the external input for the FFN was a periodic train of pulse packets with inter-

Fig 1. Schematic representation of a feedforward network with a resonance pair. 200 excitatory neurons in each

layer (E), including 70 projecting neurons (P), and 50 inhibitory neurons (I) have random homogeneous sparse

recurrent connections. Ten layers are connected sparsely through EE connections, indicated by blue arrows, in a

feedforward manner. The red arrow from layer 2 to 1 indicates sparse random feedback connections from the second

to the first layer EI-network, for which we used the term resonance pair.

https://doi.org/10.1371/journal.pcbi.1008033.g001

Table 3. Network parameters.

Name Value Description

Nexc 200 Size of excitatory population per layer network

Ninh 50 Size of inhibitory population per layer network

Nproj 70 Number of projecting neurons per layer network

�within-layer 0.2 Connection probability within-layer network

�inter-layer 0.2 Connection probability between layer networks

https://doi.org/10.1371/journal.pcbi.1008033.t003
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Fig 2. Comparison of the propagation of synchronous spiking in a feedforward network (FFN) and in a resonance pair

network (RPN). The FFN failed to propagate a single pulse packet (a-c), whereas it did propagate a periodic train of pulse

packets with the appropriate time interval between successive pulse packets (d, e). By contrast, the RPN, when stimulated with a

single pulse packet, was able to propagate it successfully, provided that the inter-layer delay of the resonance pair matched the

resonance period of the EI-networks involved (f-j). Panels (i) and (j) are similar to what was shown in panels (d) and (e), the
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packet intervals of 25 ms. In Fig 6c, α was a control parameter and was varied systematically.

In all remaining cases we used α = 20. In most cases, we stimulated the RPN with a single pulse

packet, but in some cases we tested how a train of periodic pulse packets propagated through

the RPN (S3a Fig). In that case, we systematically varied the interval between subsequent pulse

packets. Finally, to study whether the RPN can also transmit irregular trains of pulse packets,

we jittered the pulses by a small amount (dt), while keeping the mean inter-pulse packet inter-

val constant. The amount of jitter (dt) was quantified in terms of the network’s resonance

period (T) and was randomly varied between 0 and up to T/2 (S3b Fig).

Data analysis

Pairwise correlations. To estimate pairwise correlations, we divided the time into bins of

size Δt = 5 ms, and transformed population spike trains to spike count vectors yi(t), using a

rectangular kernel. The pairwise Pearson correlation coefficients were calculated as:

rij ¼
E½ðyiðtÞ � �yiðtÞÞðyjðtÞ � �yjðtÞÞ�

sisj
ð4Þ

where E denotes the expectation value, σ the standard deviation, and barred values denote the

means of variables. We averaged the rij over all pairs within a layer network to obtain the aver-

age synchrony within the layer. Correlation coefficients were computed from simulations with

a duration of 20 sec and were averaged over 20 trials.

Population fano factor. To classify the population activity based on synchrony in the

background activity, we measured the population Fano factor (pFF) [36]. To this end, we used

spike count vectors (y(t)) of all excitatory neurons in a layer network and defined the pFF as:

pFF ¼
VAR½yðtÞ�
MEAN½yðtÞ�

ð5Þ

This normalized variance of the population activity is related to synchrony of the popula-

tion activity because the population variance is the sum of individual variances of the neurons

and their co-variances. Unlike pairwise correlations, FF is a measure which takes into account

not only pairwise correlations, but higher order correlations as well [35].

Network frequency and spectral entropy. The network frequency is defined as the peak

frequency of the Fourier transform of the spike count vectors Y(f). To differentiate between

asynchronous, aperiodic and oscillatory states of the two resonance pair networks, we mea-

sured the spectral entropy [37] of one of the two EI-networks involved. We first calculated the

power spectrum S(f) = jY(f)j2 and defined:

Pðf Þ ¼
Sðf Þ

P
mSðmÞ

ð6Þ

only difference being the increased Poisson input rate to the inhibitory neurons in panels (i) and (j) in order to decrease the

number of stimulus-evoked oscillation cycles in the RPN. In the simulation experiment shown in panels (g-j), the loop

transmission delay, defined as the sum of the forward and feedback transmission delays, was equal to the period of the pulse

packet train in (d) and (e). The network structure for each column is plotted schematically in panels (a, f), the corresponding

raster plots are shown in panels (b, d, g, i) for each stimulus condition. The average membrane potentials of the first two and last

two layers in each of three simulation experiments are shown in panels (c, e, h, j), marked with layer numbers in each window,

with the injected pulse packet shown in the bottom trace. Red color is used for the RPN, and blue for the FFN. Inter-pulse

interval in panels (d) and (e) was 25 ms and the forward and backward delays in panels (g-j) were equal to 12.5 ms.

https://doi.org/10.1371/journal.pcbi.1008033.g002
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Because P(f) has unit area, we treated it as if it were a probability density and estimated its

entropy. Our reasoning was that if a signal is periodic, all its power will be concentrated in a

single frequency, resulting in a zero entropy. By contrast, when the signal power is uniformly

distributed over all frequencies, the entropy will assume a maximal value. Given that we esti-

mated the spectrum for a fixed number of frequency data points, we needed to normalize the

entropy according to the number of frequency bins. Because here we took the normalized

power spectrum as a proxy for the probability density, we refer to this measure as spectral

entropy. The normalized spectral entropy is then defined as [37]:

H ¼ �

XN

f¼1

Pðf Þ log 2Pðf Þ

log 2N
;

ð7Þ

where N is the number of frequency data points. The denominator, log2 N is the maximal spec-

tral entropy, that is, the spectral entropy of white noise. Low entropy indicates temporal order

of the population activity, i.e., an oscillatory state, whereas large values of H indicate an asyn-

chronous state.

Signal-to-Noise Ratio. To distinguish successful propagations of single pulse packets

from failed propagations, we estimated the Signal-to-Noise Ratio (SNR), measuring the vari-

ance of the spike count vector in the tenth (final) layer network upon pulse packet injection

into the first layer network, normalized by its variance during ongoing network activity:

SNR ¼
VAR½ystimðtÞ�
VAR½yongoingðtÞ�

ð8Þ

Simulation tools

Network simulations were performed using the simulation tool NEST (http://www.nest-

initiative.org) [38, 39], interfaced with PyNest. The differential equations were integrated

using fourth-order Runga-Kutta with a time step of 0.1 ms. The simulation code is available

for download from https://github.com/arvkumar/Communication-Through-Resonance.

Results

We studied the effect of adding feedback connections between the first two layers in an other-

wise feedforward modular network of EI-networks on the propagation of synchronous spiking

activity along the network. Specifically, we compared the response of a purely feedforward net-

work (FFN) with the response of a resonance pair network (RPN) to a variety of input stimulus

conditions. To construct the RPN, we added feedback connections between the first two layers

of the original FFN. The FFN consisted of 10 layers, each one consisting of a recurrent EI-net-

work comprising 200 excitatory and 50 inhibitory neurons (Fig 1, see Methods). The input

and EI-balance were adjusted such that in the baseline state, each layer of the FFN and RPN

operated in an asynchronous-irregular regime in the absence of any pulse packet input and the

network exhibited an asynchronous-irregular state [34, 35]. Thus, the background activity in

each layer was characterized by highly irregular inter-spike intervals, low pairwise correlations,

and weak network synchrony (see S1 and S2 Figs; and Methods). However, when the EI-bal-

ance was altered, either by increasing the external drive or the EI-ratio or by a transient input

(pulse packet), each layer of the FFN or RPN exhibited damped oscillations. The natural fre-

quency of these oscillations was determined by neuron, network and synapse parameters [40].
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By the choice of parameter values in our model, the natural frequency of the damped evoked

oscillations was 40 Hz.

Pulse packet propagation in an FFN

We first tested the propagation of synchronous spiking activity by stimulating the FFN with a

single pulse packet (α = 20 spikes, σ = 2 ms). This mimicked earlier simulation experiments

[17, 20, 36], but with different FFN parameters. Given the weak projecting synapses and sparse

inter-layer connectivity, this weak pulse packet failed to propagate along the feedforward net-

work (Fig 2a–2c). The injection of a pulse packet into the first layer network resulted in a clear

but weak spike response in that layer, a much weaker response in the second layer (Fig 2b),

and no tangible response in any of the subsequent layer networks. This failure to propagate

was confirmed by the low signal-to-noise ratio in the 10th layer network (SNR< 4). Consistent

with the weak spiking responses, there was no visible trace of the pulse packet in the subthresh-

old membrane potentials beyond the second layer (Fig 2c).

Next, we tested the propagation of a periodic train of pulse packets, each with the same

characteristics as the single pulse packet described above. Consistent with previous results

[17], such a periodic input successfully propagated along the feedforward network using the

network resonance mechanism (Fig 2d and 2e, 10th layer SNR = 4.5). However, while the peri-

odic pulse packet train did indeed successfully propagate to the last layer, this propagation was

very slow. Thus, a distinct pulse packet response was observed there only after some 15 input

cycles (Fig 2e), highlighting once more the key problem associated with the CTR mechanism.

The reason for this is that each layer takes 2–3 cycles to build up strong enough oscillations of

the membrane potentials in the next layer neurons to generate a reliable spike response.

Pulse packet propagation in an RPN

One way to speed up activity propagation using CTR is to remove the need to build up of reso-

nance in each layer. This can be achieved if the pulse packet can already be amplified in the

second layer. To this end, we can take advantage of the network oscillations with an appropri-

ate phase relation between the first two layers—like CTC. A simple way to induce coherent

oscillations in the first two layers is to connect them in a bidirectional manner, such that they

can entrain each other [26]. Therefore, we tested whether bidirectional connectivity can speed

up the propagation of pulse packets.

To implement such a connectivity, we randomly selected 70 excitatory neurons from the

second layer and projected them back to 70 randomly selected excitatory neurons in the first

layer (Fig 2f). We made sure that the 70 neurons that projected back to the first layer were dif-

ferent from those that projected forward to the third layer. The synaptic strength, transmission

delay, and connection probability of the feedback projections were all identical to those of the

forward projections unless otherwise is mentioned in each Figure caption. We refer to the two

bidirectionally connected layer networks as the resonance pair. Interestingly, the injection of a

single pulse packet into the resonance pair network (RPN) was sufficient to initiate transient

oscillations in the first and second layer networks. The bidirectional excitatory connectivity

between the two layers rapidly amplified these oscillations which, once sufficiently amplified,

successfully propagated to all subsequent layer networks (Fig 2g–2j, in both cases the SNR of

10th layer was�6.5).

Next, we tested whether RPN can also propagate a periodic train of pulse packets. To this

end, we stimulated the first layer with a train of pulse packets (PT) and studied the interaction

between the endogenous (because of the resonance pair) and the exogenous (because of the

injected PT) oscillations. We found that the RPN was able to propagate the PT when the PT-
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frequency was within a small range of the natural frequency of oscillations (S3a Fig). Because

the transmission of the PT exploits the oscillations, propagation of a regular PT with a fixed

frequency resulted in a maximum SNR. Quasi-periodic PTs (with the arrival times of pulse

packets was jittering by a small amount) could also be propagated but, as expected, the SNR of

such signals was weaker. Nevertheless, pulse packets jittered by 1/4 of the natural period of the

network oscillations (�6.25 ms) could still be propagated faithfully (S3b Fig).

Given the bidirectional connectivity between the first two layers, it is possible that both a

single pulse packet and a regular train of pulse packets can induce sustained oscillations in the

network. In our model, because we operated in the inhibition-dominated regime, recurrent

inhibition prevented the emergence of sustained oscillations. Still, a single pulse packet stimu-

lus generated oscillations that outlasted the stimulus by 8–10 oscillations cycles (Fig 3).

The number of oscillation cycles can be reduced by increasing the mean inhibition in the

network. We found that by increasing the rate of Poisson input to the inhibitory neurons, the

number of oscillation cycles decreased (see Figs 3, 2i and 2j). We checked that such a decrease

in the number of oscillation cycles did not distort signal propagation efficiency (S4 Fig). Since

increasing the Poisson input rate to inhibitory neurons caused only the number of oscillation

cycles to decrease, without distorting signal propagation efficiency, we will not present the

results for the case of increased Poisson input rate.

Overall, the results shown in Fig 2 demonstrate that only a small change in the network

architecture, adding feedback connections between only the first two layers, can enable propa-

gation of a single pulse packet using CTR, without driving the system into sustained oscilla-

tions. In the following, we quantify the effect of various network connectivity parameters on

the network resonance and the propagation of pulse packets.

Effect of resonance pair connectivity on pulse packet transmission

The loop transmission delay and the inter-layer connection strength are two important param-

eters of the resonance pair. Together, they determine whether a single pulse packet can create

transient oscillations and propagate the activity along the RPN. To characterize the effect of

these two parameters, we systematically varied each of them and measured the resulting SNR
in the tenth layer of the RPN (Fig 4). First, we varied both the delay and the synaptic strength

of the connections between the layers (Fig 4a). Here, we set both the delay and strength of the

feedback projections to be identical to those of the feedforward projections. We found that the

input pulse packets propagated most successfully when the inter-layer delay was about 12.5

ms. As the inter-layer connection strength was increased, the range of inter-layer delays for

which the input pulse could propagate also increased (Fig 4a). With 12.5 ms inter-layer delay,

the total loop delay for the resonance pair was 25 ms. Not surprisingly, this loop delay matched

the period of the intrinsic network oscillations (corresponding to the resonance frequency of

40 Hz) of each individual layer EI-network.

Next, we fixed the feedforward delays at 5 ms and varied the delays of the feedback projec-

tions from layer 2 to layer 1. We found that in this case the feedback delay should be�20 ms

to enable most successful propagation (Fig 4b). That is, most successful propagation again

occurred when the loop delay (forward plus feedback delay) was 25 ms, again matching the

resonance frequency (40 Hz) of the individual layer EI-networks.

To find the range of feedback and feedforward delays for which inputs could propagate,

we varied each of these two delays independently, while keeping the inter-layer connection

strength as (Jee = 0.33 mV, Fig 5). We found that propagation was successful for a wide range

of individual feedforward and feedback delays. Once again, it was most successful if the sum of
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the two delays (the loop delay) matched the period of the intrinsic network oscillations (here:

25 ms) of the individual layer EI-networks.

The above results were obtained for RPNs in which each layer was composed of 200 excit-

atory and 50 inhibitory neurons. To confirm that these results hold for larger networks as well,

we simulated an RPN in which each layer was composed of 2, 000 excitatory and 500 inhibi-

tory neurons. Obtaining asynchronous-irregular activity in such large RPN required fine-tun-

ing of excitatory recurrent connection weights (Jee = 0.25 mV) and inter-layer connectivity

(see Table 4 for the changed parameter values). With these slightly different parameters, the

resonance frequency of the network was�33 Hz. In this large RPN, we again found stable

Fig 3. Distribution of the durations of oscillatory activity in the RPN upon injection of a single pulse packet. The RPN, when operating in a

successful propagation mode, was able to quench the stimulus-induced oscillations after several oscillation cycles. The blue curve shows the distribution

for an RPN with increased Poisson input rate to the inhibitory populations. Oscillation durations (shown in units of oscillation cycles) followed a

distribution with median = 14 (for the red trace, and median = 5 for the turquoise trace) oscillation cycles. These data were collected from 400 trials for

each simulation experiment.

https://doi.org/10.1371/journal.pcbi.1008033.g003
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propagation of pulse packet, assisted by the resonance pair (S5a Fig). Next, we checked how

the transmission was affected by the recurrent excitatory connection strengths (Jee) and inter-

layer connection delays (S5b Fig). Consistent with the results obtained for the smaller network

(Fig 4a), in the large network the resonance and strongest transmission was obtained for an

inter-layer delay of�15 ms, once again matching the network resonance frequency (S5b Fig).

These results confirm that successful signal propagation primarily depends on the resonance

pair’s loop delay, which should be consistent with the network resonance frequency.

Based on these results (Figs 4 and 5), we conclude that inter-layer connection delays should

match the resonance frequency of the resonance pair networks, but how precisely these delays

should be tuned is another issue. To study this, we simulated the RPN in which both within-

and inter-layer delays were chosen from a Gaussian distribution whose mean was set to 1.5 ms

(for within-layer connections) and 12.5 ms (for inter-layer connections). The standard devia-

tion of the delay distribution was set to either 10% or 20% of their respective mean values. We

found that pulse packets propagated successfully when the standard deviation of the delays

was 10% of the mean value, but failed to propagate for larger standard deviations (S6 Fig).

Resonance pair improved both the threshold and speed of propagation of

pulse packets

Next, we addressed the question to what extent the inclusion of feedback EE connections

between the first two layer networks of the FFN affects the threshold and speed of propagation

of pulse packets in the network. To this end, we compared both the speed and SNR of the pulse

packet response in the FFN and the RPN. For this comparison, we stimulated the RPN with

a single pulse packet, whereas the FFN was stimulated with a periodic train of pulse packets

Fig 4. Signal-to-noise ratio (SNR) for 10th layer in the RPN depends on inter-layer delays and connection

strengths of the resonance pair. (a) Delays for feedforward and feedback connections were set equal to each other and

were systematically varied along the X-axis. Note that the most successful propagation was observed for a total loop

delay (forward plus feedback delay) of 25 ms, matching the period of the intrinsic resonance oscillation of each

individual layer EI-network (resonance frequency of 40 Hz). The range of inter-layer delays for which propagation was

successful expanded as the inter-layer connections were strengthened. However, the SNR was still considerable for

weaker ones. (b) Delays for feedforward connections were fixed to 5 ms, and for feedback connections were

systematically varied along the X-axis. Again, the most successful propagation was observed for a total loop delay of 25

ms, matching each individual layer EI-network’s resonance frequency of 40 Hz. In the schematic representations of the

network structure (top panels), the length of the arrows indicate the duration of inter-layer delays. The dashed and

dotted horizontal lines in (a) and (b) indicate the value of Jee used to represent successful propagations in other figures.

A similar plot has been provided for the case of increased Poisson input rate to the inhibitory subpopulations in S4 Fig.

https://doi.org/10.1371/journal.pcbi.1008033.g004
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(Fig 6a and 6b). The loop delay of the resonance pair in the RPN and the inter-pulse intervals

in the periodic stimulation of the FFN were matched the resonance period of the EI-networks

in the resonance pair, layers 1 and 2. We found that introducing feedback projections substan-

tially increased the SNR of the pulse packet response in the RPN as compared to that in the

Fig 5. Signal-to-noise ratio (SNR) for 10th layer in the RPN for independently varied feedforward and feedback delays. The sum of the feedforward

and feedback delays is the key parameter to enable signal propagation. When the inter-layer connection strength, Jee, was fixed at 0.33 nS, most

successful propagation was obtained for the condition that the sum of forward and feedback delays, rather than any of their individual values, matched

the resonance period of the individual layer EI-network’s resonance frequency of 40 Hz. In the schematic representations of the networks, only the first

four layers are depicted, with the length of the arrows representing the delays between the resonance pair layer networks.

https://doi.org/10.1371/journal.pcbi.1008033.g005
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Table 4. Synapse and connectivity parameters for the large network.

Name Value Description

τexc 1 ms Rise time of excitatory synaptic conductance

τinh 1 ms Rise time of inhibitory synaptic conductance

Eexc
syn 0 mV Reversal potential of excitatory synapses

Einh
syn -80 mV Reversal potential of inhibitory synapses

Jee 0.25 mV Exc. to exc. synaptic strength measured at -70 mV

Jei 1.5 mV Exc. to inh. synaptic strength measured at -70 mV

Jie -6.2 mV Inh. to exc. synaptic strength measured at -54 mV

Jii -12.0 mV Inh. to inh. synaptic strength measured at -54 mV

Jpe 0.25 mV Connection strength: Input Poisson spike train to exc. pop.

Jpi 0.4 mV Connection strength: input Poisson spike train to inh. pop.

Jpp 0.25 mV Connection strength: Pulse packet to P neurons in first layer

dwithin-layer 1.5 ms Transmission delay within layer

dinter-layer 30—33 ms Range of total resonance delay between layers

Nexc 2000 Size of excitatory population per layer network

Ninh 500 Size of inhibitory population per layer network

Nproj 680 Number of projecting neurons per layer network

�within-layer 0.2 Connection probability within-layer network

�inter-layer 0.1 Connection probability between layer networks

https://doi.org/10.1371/journal.pcbi.1008033.t004

Fig 6. Introducing a resonance pair improves both the threshold and speed of propagation of synchronous spiking. (a) Averaged

membrane potential of E neurons in the 10th layer in response to a single pulse packet (depicted in bottom trace) in the RPN, in the

presence of feedback projections from layer 2 to layer 1. (b) Averaged membrane potential of E neurons in the 10th layer in response

to a periodic pulse packet (depicted in bottom trace) in the FFN, in the absence of feedback projections. (c) SNR in the 10th layer of

the RPN (red curve) and FFN (blue curve) as a function of strength, α, of the input pulse packet. Increasing α increased the SNR for

both RPN and FFN. However, the red curve crosses the green dashed line (as an arbitrary threshold for successful propagation) at a

clearly smaller value of α than the blue curve, implying clearly lower threshold of synchrony propagation in the RPN. (d) On average,

synchronous activity propagates much faster in the RPN, by at least a factor of two, than in the FFN.

https://doi.org/10.1371/journal.pcbi.1008033.g006
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FFN (Fig 6c). This meant that much weaker pulse packets could propagate in the RPN than in

the FFN. Thus, adding sparse EE feedback connections between only the first two layers of the

FFN significantly reduced the threshold (minimum value of pulse packet strength α) for suc-

cessful propagation throughout the entire FFN.

Next, we compared the propagation velocities in the RPN and the FFN. For a fair compari-

son of propagation speed in these two networks, we set the forward transmission delays to 5

ms in both networks. Therefore, to meet the condition that the loop delay in the resonance

pair should match the intrinsic resonance in the participating EI-networks, the feedback delay

was set to 20 ms in the RPN. In the FFN, as noted before, the pulse packet needed to be recre-

ated by gradual build-up in each layer successively. Hence, it took on average between 2–4

oscillation cycles in each layer, before the pulse packet successfully reached the next layer. As

shown in Fig 6d, the bidirectional projections between the first two layers in the RPN sufficed

to rapidly amplify the network response, and, hence, there was no need to gradually build-up

and recreate the pulse packet in each individual layer. As a result, the transmission in the RPN

was much faster, by at least a factor of two, than in the FFN. These results demonstrate that

introducing sparse feedback projections from layer 2 to layer 1 in an FFN with weak and sparse

connections substantially accelerates the propagation of synchronous spiking in such network,

thereby alleviating a significant problem associated with the mechanism of communication
through resonance.

Network background activity

For stable propagation of synchronous spiking activity, it is important that the ongoing activity

of the network remains stable and exhibits an asynchronous-irregular state without population

activity oscillations [36]. In principle, the feedback projections in the resonance pair could

destabilize the asynchronous-irregular activity state, induce spontaneous oscillations, and lead

to the propagation of random fluctuations in the network activity. Therefore, we measured the

effect of the feedback and feedforward projections on the network background activity. The

strengths of feedforward and feedback connections in the RPN were set to be identical. First,

we systematically varied the inter-layer connection strength and the rate of external (excit-

atory) input, and measured the population activity synchrony (population Fano factor, pFF)

for the 10th layer of both the RPN and the FFN (Fig 7a and 7b). We also compared the firing

rates, the irregularity of spike timing (CV) and the pairwise correlations for three different

choices of these two parameters (S2 Fig).

We found that for weak external inputs, the background network activity remained in an

asynchronous-irregular regime in both the RPN and FFN for a wide range of inter-layer con-

nection strengths (Fig 7a and 7b). Likewise, for weaker inter-layer connections, the back-

ground network activity of both the RPN and FFN remained in an asynchronous-irregular

regime. However, when both external input and inter-layer connections were strong, large

fluctuations induced by the external input could propagate to downstream layers. Propagation

of such spurious fluctuations resulted in synchronous-irregular activity in the downstream

networks (Fig 7a and 7b, and S2 Fig; see also S1 Fig for raster plots). Such undesirable emer-

gence of synchrony in the background network activity because of stronger inter-layer connec-

tions and stronger external input was observed in both the RPN and FFN. However, in the

RPN this transition to synchronous-irregular background activity occurred at clearly lower

values of external inputs and inter-layer connection strengths than in the FFN (compare Fig 7a

and 7b). That is, while the resonance pair reduced the threshold for propagation and acceler-

ated the pulse packet propagation, it also constrained the range of network and input parame-

ters for which stable propagation could be observed.
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Fig 7. Different background activity regimes in the RPN (a, c) and FFN (b, d) networks. The population Fano factor in the 10th layer of the RPN (a) and FFN (b), is

shown as a measure of synchrony in the background network activity for different strengths of inter-layer connections (X-axis) and input rate (Y-axis). The cyan area,

indicated by an asterisk, denotes a synchronous irregular regime, whereas the vast, blue area denotes the asynchronous irregular regime, with a long-tailed distribution of

CVISI and low average correlation coefficients (S2 Fig). Both network types transit to the synchronous irregular regime, indicated by a black square, with increasing input

rate and inter-layer connection strength. However, the RPN reaches the synchronous irregular state much earlier than the FFN. The population Fano factor in the 10th
layer of the RPN (c) and FFN (d), is shown for different inter-layer connection delay (X-axis) and strength (Y-axis). The input rate was set to 8 kHz for both network types.

For strong enough inter-layer connections, provided their loop delay matched the resonance period of the network, sustained background activity oscillations might

develop in the network and propagate to the downstream layers. Black circles in all four panels indicate the parameter settings used to investigate the pulse packet

propagation in Figs 2 and 6 and the red trace in Fig 3. In panels (a) and (b), the feedforward and feedback delays were set to 5 ms, respectively.

https://doi.org/10.1371/journal.pcbi.1008033.g007
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To determine the degree of synchrony in the background network activity for different

inter-layer connection strengths and delays, we measured the population Fano factor (cf.

Methods) for both the RPN and FFN networks, with the input rate set to 8 kHz (Fig 7c and

7d). These results demonstrate that the inter-layer delay plays no role in inducing synchrony

in the FFN background network activity (Fig 7d). However, it does render a regime for elicit-

ing synchronous background activity in an RPN (Fig 7c). This regime existed for the range of

delays that matched the resonance period of the EI-networks involved, and for stronger inter-

layer connections it increased significantly. Therefore, the parameter values causing this syn-

chronous regime in the RPN background activity should be carefully avoided, because this

regime prohibits reliable signal propagation.

Conditions for resonance in the resonance pair

The connectivity between the layers of the resonance pair could affect the propagation of syn-

chronous spiking in the RPN in different ways. It could prohibit the propagation of pulse

packets by enabling spurious network fluctuations to propagate, or by altering the resonance

properties of the two layer networks involved. Whereas weak connectivity may not allow the

resonance to occur, strong connectivity could induce spontaneous network oscillations, pre-

cluding the resonance-based mechanism from supporting the propagation of pulse packets.

Therefore, we systematically varied both the forward and feedback connectivity between the

two layers and determined the regime most suitable for communication through resonance

(Fig 8). We found that an increase in either the connection probabilities (Fig 8a and 8b) or

connection strengths (Fig 8c and 8d) increased the network’s propensity to oscillate. Strong

feedback connections and high connection probabilities induced spontaneous oscillations in

both layer networks. The diagonal symmetry of Fig 8a and 8b (and to a lesser extent in Fig 8c

and 8d) shows that the feedback connections can compensate for a lack of feedforward con-

nections (as in Fig 8a and 8b), or their weakness (as in Fig 8c and 8d). For moderate values of

the feedback connection probability and connection strength, there is a region in the parame-

ter space for which single pulse packets can be propagated by exploiting the network resonance

property, without destabilizing the network activity dynamics into sustained network oscilla-

tions. This region is distinguished by a pFF of about 1, the blue area in Fig 8a and 8b, and an

example of it is marked with a black circle in all four panels of Fig 8.

Discussion

Oscillations are an ubiquitous feature of the activity of neuronal populations and are

assumed to serve many functions. An important function attributed to α (8–12 Hz), β (12–

30 Hz) and γ (30–80 Hz) oscillations is that they help in communicating spiking activity

between weakly connected networks [9, 12]. Oscillations in different bands can be combined

to form various strategies for flexible gating of activity [41]. Communication through coher-
ence: CTC [12] and communication through resonance: CTR [17] are two related mechanisms

by which oscillations can influence communication between neuronal networks. Oscillations

in both mechanisms, modulate the excitability of neurons in the population receiving the sig-

nal—the spiking activity of the sender population. Signals which impact a population at the

right time within its high excitability period can affect the spiking activity of the receiver

neurons and, thereby, increase their chance to be propagated. Unlike CTC, the CTR mecha-

nism is based on evoked oscillations and does not require spontaneous coherent oscillations

between sender and receiver networks. However, CTR based communication is slow because

it is based on the gradual build-up of the evoked activity over several oscillation cycles in

the receiver population. Moreover, only trains of pulse packets (either periodic of the right
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Fig 8. Conditions for resonance in a bidirectionally connected two-layer network. Network resonance frequency and spectral entropy were calculated as a

function of the feedback and feedforward connection probability (a, b), and as a function of the feedback connection probability and strength (c, d). Both an

increase in the feedback connection probability and strength increased the propensity of the network to exhibit resonance. However, when the feedback

connections were too numerous or too strong, the network exhibited sustained oscillations as the network dynamics bifurcated to the synchronous irregular state.

This state, represented by lower values of spectral entropy in (b) and (d), started with a population oscillation frequency of around 40 Hz, which gradually

increased to 43 Hz (a, c). Note that at higher values of spectral entropy, the frequency of the oscillations was not well-defined and did not have a consistent value:

The oscillation frequency appeared noisily in the regime where oscillations were weak (high spectral entropy; see panels b and d) and, therefore, it is difficult to

determine the peak frequency. Once the network entered an oscillatory regime (low spectral entropy), the peak frequency estimate became more reliable. Black

circles in all four panels indicate the parameter set used in Figs 2 and 6 and the red trace in Fig 3 for investigating the pulse packet propagation in the absence of

sustained oscillations.

https://doi.org/10.1371/journal.pcbi.1008033.g008
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frequency or aperiodic of high enough rate) can be transmitted by this mechanism, but the

propagation of a single pulse packet is not feasible [17]. Here, we addressed these problems

of CTR and showed that introducing bidirectional connections between two upstream mod-

ules in an otherwise feedforward network can enable the propagation of single pulse packets

and can also significantly speed up the propagation. This increase in propagation speed was

achieved because the two bidirectionally connected layers amplified the pulse packet to a

level at which they could be propagated through the successive layers without the need for

further amplification.

Reverberation of the transient stimulus between the first two layers of the network, the reso-

nance pair, fed the downstream remainder of the network with a temporally coordinated and

strong train of pulse packets, with inter-packet intervals determined by the sum of the forward

and backward transmission delays of the resonance pair. Hence, matching the two internal

time constants of the system, the resonance period of the individual modules and the loop

transmission delay of the resonance pair, sufficed to enable the reliable propagation of a single

pulse packet across the entire network through the built-in CTR mechanism. Indeed, in a

series of simulation experiments we could demonstrate that in our network model, the consis-

tency of the two time scales, determined by the intra-module lateral (recurrent) connections,

and inter-module feedforward and feedback connections, facilitates the transmission of tran-

sient synchronous spiking signals.

Bidirectional connectivity between networks in the brain

Based on the available data on anatomical and functional connectivity in the brain, it is not

easy to determine whether connections between networks (at mesoscopic scale) in the brain

are unidirectional or bidirectional. Mesoscopic anatomical connectivity measured by DTI [31]

or by tracer injections [2] suggests that connectivity among most pairs of networks is bidirec-

tional. But this does not necessarily mean that these networks are effectively bidirectionally

connected. This is because of a number of reasons: 1. It is not clear whether connections are

equally strong in both directions—DTI and tracer injection techniques are not well suited

to determine this. In fact, data from trace studies when thresholded suggest that connections

are clearly weaker in one direction than in the other ([2, 42–44]). 2. Selective stimulation of a

given brain region does not seem to evoke reverberating activity, as would be expected from

bidirectional connections [42–44]. 3. Historically also, starting from the description of the

visual information processing areas [28] to the latest mesoscopic connectivity studies of the

mouse brain [2, 31, 45, 46], there is a widespread consensus of a hierarchical arrangement of

brain network connectivity. Thus, it seems reasonable to assume that most connections are

effectively unidirectional and only few pairs of networks are effectively connected in a truly

bidirectional manner.

For the aforementioned reasons, in this study we restricted our investigation to a case in

which only a single pair of networks were connected in a bidirectional manner. However, it is

worth asking what would happen if more, or even all, networks in an FFN were connected in a

bidirectional manner. Based on the results shown in Figs 7 and 8 we expect that, unless feed-

back and feedforward connections (both delays and strengths) are carefully adjusted, all layers

will show sustained oscillations. Indeed, our network simulations confirmed this. Such a sus-

tained oscillatory state is neither biologically plausible nor is it suitable for activity propagation.

While it may be possible to find connectivity parameters that provide a near asynchronous-

irregular activity state in a fully bidirectionally coupled network, such an investigation clearly

demands a separate, more dedicated model study.
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A functional role of feedback projections

Feedback projections play a role in regulating neuronal network activity [47, 48], brain activity

oscillations [49–51], and high level brain functions such as working memory [52], vision [53,

54], attention [55, 56], and consciousness [57–59]. Here, we studied how feedback connections

can help improve the propagation of synchronous spiking activity in feedforward neuronal

networks. We showed that including a pair of bidirectionally connected modules into an oth-

erwise feedforward network promotes the propagation of synchronous spike volleys in the

network.

The possible role of feedback connections in the propagation of synchronous pulse packets

through modular networks has been suggested earlier by Moldakarimov et al. [60]. There, it

was shown that feedback connections increased the number of spikes in the synchronous

spike volley and, thereby, helped the pulse packet propagate in the feedforward network [60].

That mechanism, however, operates on a much shorter time scale than the one we propose

here. In their model [60], propagation was facilitated by feedback delays within the temporal

spread of the injected pulse packet, i.e., up to only few milliseconds. The mechanism we pro-

pose here is both qualitatively and quantitatively different and is based on the resonance prop-

erty of the EI-networks involved in the feedforward network. Here, the impact of a pulse

packet on the target EI-network provides, thanks to the damped resonance oscillation it

evokes, a short range of specific time windows with enhanced excitability and, hence, larger

response to the next incoming pulse packet. As a result, the reverberation of the pulse packet

between the bidirectionally connected layer networks in the resonance pair builds up even

stronger pulse packets for the downstream layers of the network. We found that a prerequisite

for successful propagation of such synchronous spiking activity was that the loop transmission

delay in the resonance pair (forward plus feedback delay) matched the resonance period of the

individual layer EI-networks.

Possible applications in bottom-up and top-down information transfer

Recent studies have suggested different functional roles of high and low frequency oscillations

in bottom-up and top-down signaling in cortical networks [11, 61]. It has been shown that the

transmission of information along the feedforward pathway from peripheral sensory areas to

higher areas in the cortical hierarchy is mainly carried by gamma range oscillations, whereas

feedback signals are mostly conveyed by alpha and/or beta oscillations [11, 62–64]. These

results gained support from experimental observations of strongest synchronization in the

gamma band in superficial cortical layers, whereas synchronization in the alpha-beta band was

found to be strongest in infragranular layers [65]. In our network model, the baseline activity

of the layer networks lacked spontaneous oscillations, but they exhibited a resonance property

in the low-gamma range. The presence of a single feedback loop with matching loop delay

resulted in short-lived gamma oscillations upon transient stimulation of the first layer net-

work, resulting in reliable signal propagation throughout the entire feedforward pathway,

consistent with the above-mentioned experimental observations for bottom-up transmission.

Incorporating further feedback loops between the downstream layer networks with different

resonance frequency, possibly in beta range, can provide a more complete model for explain-

ing forward and backward signaling in cortical networks of networks.

Relationship between CTR and CTC

To facilitate transmission of spiking activity between two weakly connected networks, CTC

suggests that coherent oscillations between two networks can periodically modulate the effec-

tive coupling between networks and a suitable phase relation between the spontaneous
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oscillations of the two networks can facilitate the exchange of signals between them [12]. In

CTR we assume that oscillations are not spontaneously generated but that they are evoked by

the incoming pulse packets themselves. Evoked oscillations are then amplified by successive

incoming pulse packets, exploiting the resonance property of the receiving network. If their

timing matches the network resonance frequency, and once the oscillations are strong enough,

the activity propagates to the receiver network. Thus, in essence, CTR and CTC are quite simi-

lar: Both are based on changes in the excitability of the receiver network and both require a

suitable phase relation between the oscillations of sender and receiver networks. The crucial

difference between the two is that CTC requires spontaneous coherent oscillations between

sender and receiver networks, whereas in CTR, oscillations are stimulus-evoked and, hence,

emerge only upon arrival of the incoming stimulus. Moreover, unlike in CTC, in CTR the suit-

able phase relation for transmission is naturally established by the emergence of oscillations

because the sender activity evokes the oscillations in the receiver network. By contrast, in

CTC, the mechanism underlying the coherence between sender and receiver networks, espe-

cially when oscillation frequency and phase can fluctuate, are still not well understood.

Recently, Palmigiano et al. [26] showed that two weakly connected networks of spiking

neurons can show coherent spontaneous transient oscillations. Such oscillations can form the

basis for CTC, provided the sender and receiver networks are tuned to show spontaneous

oscillations and the networks operate around the border between non-oscillatory and oscil-

latory activity regimes. In such networks, when transient oscillations spontaneously appear,

the weak connections ensure that the two networks synchronize. By contrast, in RPN the net-

work parameters are set such that every layer operates in an asynchronous regime and does

not show any spontaneous oscillations (S2 Fig). Instead, oscillations in RPN are initiated by

the incoming pulse packets and maintained for only a few cycles by the reverberation of activ-

ity between the sender and receiver networks. Such reverberations occur because of bidirec-

tional connections, the loop-delay of which is near to the period of the intrinsic network

oscillations. Thus, there are clear differences in the way oscillations are synchronised in the

model proposed by Palmigiano and colleagues [26] and our resonance pair model.

Finally, CTC requires coherent oscillations between all successive layer networks. By con-

trast, in the RPN, activity is already amplified in the first two layer networks and no synchro-

nous oscillations are needed to transmit the activity from the second layer network onwards.

Thus, despite the apparent similarity between both mechanisms (the need for network oscilla-

tions), there are several crucial differences between CTC and CTR.

It is not straight-forward to determine whether the brain uses CTC or CTR. The ability of

cortical networks to show coherent oscillations makes a compelling case for CTC. In a similar

vein, though, cortical networks do show resonance properties [66]. That is, cortical networks

have the necessary neuronal hardware to generate resonance properties, necessary for CTR.

Possibly, the existence of coherent oscillations before the onset of a stimulus (to be transmit-

ted) and a tight relationship between spike timing and oscillation phase would be a clear

evidence for CTC [67, 68]. However, there is also experimental evidence suggesting that oscil-

lations are not immediately visible at stimulus onset [69–71], consistent with the CTR hypoth-

esis. We conclude that possibly both modes of network communication are being used,

depending on brain areas involved and on task and behavioral context.

Supporting information

S1 Fig. Raster plots for three different background firing regimes of the RPN and FFN.

Increasing input rate and inter-layer connection strength both increased the propensity of the

RPN and the FFN to synchronize their background activities. For the regime marked with the
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black square (rightmost column), both networks showed network activity oscillations.

(EPS)

S2 Fig. Distributions of CVISI, pair-wise correlations, and firing rates of excitatory neurons

in three different background firing regimes of the RPN and FFN. Distributions of CV of

inter-spike intervals (left), pairwise correlations (middle), and firing rates (right) for three dif-

ferent sets of external input and inter-layer connection strengths. Red and blue traces denote

RPN and FFN network structures, respectively. Three states are introduced in Fig 7 with corre-

sponding markers. For weak external inputs and inter-layer connection strengths, the network

in both structures exhibited asynchronous irregular activity. In this state, adding excitatory

feedback connections did not affect the network activity states. However, when the network

was operating in a synchronous irregular activity state (corresponding to the higher external

excitatory input and stronger inter-layer synapses, bottom row, indicated with a black square)

adding feedback connections resulted in increased firing rates and synchrony indices, even

more so in the RPN than in the FFN (compare red and blue traces in the two right-most panels

in the bottom row), while spiking became distinctly more regular in both network types (left

panel).

(EPS)

S3 Fig. Filtering property of the RPN when injected with a periodic PT with matching

intervals (a), and its robustness against deviations from periodicity (b). (a) In the presence

of both the endogenous (due to the RP) and the exogenous (due to the PT) resonance proper-

ties, the network could propagate the signals with matching inter-pulse intervals. Inter-layer

delays were chosen to match the resonance period of the network. The green dashed line rep-

resents the lowest amount of SNR (= 4) above which propagation can be considered as success-

ful. (b) The RPN was excited by PTs with some degree of deviation from periodicity (jitter,

represented in the X-axis). For large values of jitter, the RPN failed to propagate the input PT,

because the injected PT and its reverberations laid in the less responsive window of the net-

work, while the PTs with small jitters propagated.

(EPS)

S4 Fig. Dependence of signal-to-noise ratio (SNR) of 10th layer in the RPN with increased

Poisson input rate to inhibitory populations on inter-layer delays and connection

strengths of the resonance pair. (a) Delays for feedforward and feedback connections were

set equal to each other and were systematically varied along the X-axis. Like Fig 4, the most

successful propagation occurred when the total loop delay (forward plus feedback delay) was

25 ms, matching the period of the intrinsic resonance oscillation of each individual layer EI-
network (resonance frequency of 40 Hz). (b) Delays for feedforward connections were fixed to

5 ms, and for feedback connections were systematically varied along the X-axis. Again, the

most successful propagation was observed for a total loop delay of 25 ms, matching each indi-

vidual layer EI-network’s resonance frequency of 40 Hz. This plot is the counterpart of Fig 4 in

the main text, but for an increased Poisson input rate to the inhibitory neurons in the RPN.

These plots emphasize that increasing the input rate to the inhibitory population does not

impair signal propagation, and hence the SNR of the RPN.

(EPS)

S5 Fig. Propagation of a PP across in a large RPN (a), and SNR of a large RPN when inter-

layer connection strengh and delay are changed (a). Here, we simulated an RPN with 2, 000

excitatory and 500 inhibitory neurons in each layer. For details of parameters see Table 4. (a)

The first layer of a large RPN was stimulated with a PP and it propagated to the 10th layer of

the network within 2–3 oscillation cycles. (b) SNR of the 10th layer of the large-scale RPN as a
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function of the inter-layer delay and inter-layer excitatory connection strength. For an inter-

layer delay of�15 ms, the SNR reached its maximum. The delay range for which successful

signal transmission was observed increased by strengthening the inter-layer connections.

(EPS)

S6 Fig. Distributed delays may distort PP propagation in the RPN. Depending on the

degree of dispersion of delays (inter-layer and within-layer), PP propagation may be impaired.

For these simulation examples, within-layer and inter-layer delays for each connection was

chosen from a Gaussian distribution. The mean of the Gaussian distribution was set to 1.5 ms

for within-layer delays and 12.5 ms for inter-layer delays. (a) Propagation of a pulse packet

was successful when the standard deviation of the delays distribution was set to 10% of the

mean, i.e., for inter-layer delays std. = 1.25 ms and for within-layer delays std. = 0.15 ms. (b)

Propagation of a pulse packet failed when the standard deviation of the delays distribution was

set to 20% of the mean, i.e., inter-layer delays std. = 2.5 ms and within-delay std. = 0.30 ms.

(EPS)
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