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Abstract

Spatio-temporal sequences of neuronal activity are observed in many brain regions in a

variety of tasks and are thought to form the basis of meaningful behavior. However, mecha-

nisms by which a neuronal network can generate spatio-temporal activity sequences have

remained obscure. Existing models are biologically untenable because they either require

manual embedding of a feedforward network within a random network or supervised learn-

ing to train the connectivity of a network to generate sequences. Here, we propose a biologi-

cally plausible, generative rule to create spatio-temporal activity sequences in a network of

spiking neurons with distance-dependent connectivity. We show that the emergence of spa-

tio-temporal activity sequences requires: (1) individual neurons preferentially project a small

fraction of their axons in a specific direction, and (2) the preferential projection direction of

neighboring neurons is similar. Thus, an anisotropic but correlated connectivity of neuron

groups suffices to generate spatio-temporal activity sequences in an otherwise random neu-

ronal network model.

Author summary

Here we propose a biologically plausible mechanism to generate temporal sequences of

neuronal activity in network of spiking neurons. We show that neuronal networks exhibit

temporal sequences of activity when (1) neurons do not connect in all directions with

equal probability (asymmetry), and (2) neighboring neurons have similar connection

preference (spatial correlations). This mechanism precludes supervised learning or man-

ual wiring to generate network connectivity to produce temporal sequences. Connection

asymmetry is consistent with the experimental findings that axonal and dendritic arbors

are spatially asymmetric. We predict that networks exhibiting temporal sequences of neu-

ronal activity should have spatially asymmetric but correlated connectivity. Finally, we

argue how neuromodulators can play a role in rapid switching among different temporal

sequences.
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Introduction

Ordered sequences of actions are the key to any meaningful behavior. This implies that the

task-related neuronal spiking activity in the task-related brain regions must also be ordered in

temporal activity sequences [1, 2]. Indeed, temporal activity sequences have been recorded

from different brain regions in various tasks [3–11] (see [12] for a review). The necessity and

ubiquity of sequential activity patterns in the brain raises the question: What is the origin of

such activity sequences in locally random, sparsely connected networks of noisy neurons?

At the simplest, activity sequences of neurons may be attributed to their external inputs.

When neurons are tuned to specific properties of an external input, a sequential change in the

input can lead to an activity sequence, e.g. temporally ordered spiking of place cells in the hip-

pocampus [13]. However, activity sequences have been observed in tasks that do not involve

any specific sequential stimuli, e.g. in decision making [7, 8], in learning [10], in memory recall

[6], and in generating bird songs [3]. This suggests that neuronal networks in the brain are

able to generate neuronal activity sequences using intrinsic mechanisms.

A feedforward network [14] is the simplest model that can generate activity sequences [15–

17]. However, given the random and recurrent connectivity in the brain, this architecture is

biologically disputed. Recurrent network models with an asymmetric spatial connectivity

can exhibit traveling waves [18–21], which can be considered as a spatio-temporal activity

sequence. However, in this dynamical regime a network essentially generates a single activity

sequence. Recurrent networks tuned to exhibit attractor dynamics [22] can generate more

diverse temporal activity sequences in response to an external input which steers the spiking

activity across attractor states [23]. Alternatively, spike-frequency adaptation, spike threshold

adaptation and short-term synaptic depression could also underlie the emergence of activity

sequences [24–26], although switching from one attractor to another is stochastic and depends

on the noise level and initial conditions. Reliable sequential switching between attractors often

requires manual wiring of neurons representing different attractors in a feedforward manner

[26]. Beyond attractor networks, more generic echo-state-networks can be trained using a

supervised learning algorithm to generate an arbitrary temporal sequence of neuronal activity

[27]. Recently, biological synaptic timing-dependent plasticity rules have also been used to

modify the connectivity of recurrent networks to generate activity sequences [28]. Overall, pre-

vious research suggests that the emergence of activity sequences in a recurrent neuronal net-

work model requires one or more of the following features: external inputs, spike frequency

adaption, synaptic depression and (supervised or unsupervised) learning. These proposals for

sequence generation implicitly assume that innately the networks are ‘tabula-rasa’ and emer-

gent network dynamics or learning create sequential activity.

Here, we present a connectivity rule that can endow a recurrent neuronal network with the

ability to generate reliable sequential activity (spontaneous as well as evoked) without explicitly

relying on learning or emergence attractor dynamics. We studied the emergence of the activity

sequences in a neuronal network model with distance-dependent connectivity. We show that

when the extent of the spatial connectivity is asymmetric and varying across neurons, spatio-

temporal activity sequences (STAS) emerge. We have identified two conditions that ensure the

emergence of STAS in a network with spiking neurons: (1) individual neurons project a small

fraction (�2-5%) of their axons in a preferred direction ϕ. (2) ϕs for neighboring neurons are

similar, whereas ϕs for neurons further apart are unrelated. These conditions do not depend

on the composition of neurons in the network and both, purely inhibitory networks (e.g. net-

works in the striatum and central amygdala) and networks with both excitatory and inhibitory

neurons (e.g. those seen throughout the neocortex) can exhibit STAS, provided the two condi-

tions mentioned above are met. Thus, we present a generative connectivity rule resulting in a
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network model that can exhibit STAS in its spontaneous as well as evoked activity states. Being

a connectivity rule, it essentially hardwires STAS into the network. To alleviate this restriction

we propose a mechanism by which neuromodulators can modify the network connectivity

dynamically to generate and modulate STAS at behaviorally relevant time scales.

Results

Sequential activity requires that there are feedforward networks embedded in an otherwise

recurrent random network. Here we investigate if there exists a general connectivity rule that

can create locally connected random networks (LCRN) with feedforward networks embedded

in them, without explicitly embedding feedforward subnetworks [17] or learning them [27]. In

other words, can a recurrent network be ‘innately’ wired to generate STAS. It is well known

that LCRNs can exhibit stable hexagonal patterns of activity bumps [21, 29, 30]. We hypothe-

size that such stable spatial activity patterns can be transformed into STAS if the activity

bumps could be destabilized. To this end, we investigated the effect of introducing inhomoge-

neities in the spatial connectivity between neurons on the stability of the activity bumps.

Spatial distribution of inhomogeneities in neuronal connectivity

We considered an LCRN in which neurons projected a fraction of their axons preferentially in

a particular direction (ϕ; Fig 1a and S1b Fig). ϕ was chosen from a uniform distribution and

assigned to each neuron according to four different configurations (Fig 1b). Random configu-

ration: ϕ was randomly and independently assigned to each neuron. Perlin configuration: ϕ
was assigned to neurons using a gradient noise algorithm such that neighboring neurons

had similar values of ϕ. Homogeneous configuration: the same ϕ was assigned to all neurons.

Finally, as a control, we also considered the case in which all neurons projected in all directions

with equal probability (Symmetric configuration).

First, we focused on LCRNs with only inhibitory neurons (I-networks). In these I-networks,

we used a connectivity profile which varied non-monotonically with distance, according to a

Gamma distribution (Fig 1a:center; see Methods [30]). After wiring the networks according to

each of the four configurations described above, we measured the effective ϕ from the spatial

distribution of the post-synaptic targets of each neuron (Fig 2a1–2a5). For the random and

Perlin configurations, the angle ϕ measured from the location of the post-synaptic neurons

was uniformly distributed, as was initially specified. For the homogeneous configuration all

neurons had identical ϕ assigned, but the measured ϕ values for individual neurons were

slightly different from the assigned value, due to the finite numbers of connections per neuron.

For the whole network, ϕ was normally distributed around the assigned value, with a very

small variance. In the symmetric configuration, ϕ for the network was uniformly distributed

and was different for each neuron, due to the random nature of the connectivity and the finite

numbers of connections per neuron.

The in-degree distribution was similar across all four configurations (Fig 2b1–2b5). How-

ever, in the Perlin configuration, as a consequence of the spatial distribution of ϕ, neurons

with high and low in-degree distribution were spatially clustered. Because the connectivity of

the recurrent inhibition was spatially symmetric in EI-network models, the spatial distribution

of the excitatory in-degree reflects the spatial distribution of the excitation and inhibition bal-

ance (EI-balance). This landscape of the EI-balance, of course, will be modulated by the net-

work activity state. Overall, the networks were highly similar across all four configurations at

the level of neuron properties and their connectivities (same in-degree distribution and fixed

out-degree for all neurons).
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Spatial inhomogeneities lead to the emergence of activity sequences

The differences among the four connectivity configurations became evident as we inspected

the corresponding network activity dynamics. To generate network activity we injected inde-

pendent Gaussian white noise into each neuron (see Methods). In an LCRN with Perlin

configuration, time-resolved snapshots of the activity showed transient co-activation of neigh-

boring neurons, referred to as spatial activity bumps (see S1 Video). Importantly, the spatial

bumps were not fixed at a given location, instead as one spatial bump faded, another, similar

bump appeared in its immediate vicinity, and so on, thereby creating STAS. Because we did

not implement short-term synaptic depression or spike frequency adaptation, the silencing of

a spatial bump was a consequence of the network’s dynamical activity state and of the spatial

ϕ-distribution. Time-averaged firing rates (estimated over 10 sec) showed that neurons partici-

pating in the activity sequences were arranged in stripe-like patterns in the network space (Fig

2c), along which the activity sequences flowed.

We used the DBSCAN algorithm (see Methods) to track spatial bumps of spiking activity

over time to identify the activity sequences (Fig 3a). The identified STAS followed specific

paths in the network, visible as stripes in the spatial distribution of average firing rates of indi-

vidual neurons. Each sequence moved in its own direction, the collection of them forming a

uniform distribution of activity sequence movement directions (Fig 2d5).

Fig 1. Schematics of the asymmetric network models. (a:left) Neurons were arranged on a regular 2-D grid, folded

to form a torus. The colored circles indicate the symmetric (blue) and asymmetric (green) spatial connectivity

schemes. The pre-synaptic neuron is marked by the orange dot. (a:center) Locations of post-synaptic neurons chosen

according to the asymmetric (green) or symmetric (blue) connectivity. In this case the distance-dependent

connectivity profile varied non-monotonically, according to a Γ distribution. This connectivity profile was used for

purely inhibitory network models. (a:right) Same as in the center panel, but here the distance-dependent connectivity

profile varied monotonically according to a Gaussian distribution. This connectivity profile was used in the present

study for network models with both excitatory and inhibitory neurons. (b) Schematic of spatial distribution of

connection asymmetries. Each arrow shows the direction in which the neuron makes preferentially most connections

(ϕ). Here we show examples for random, Perlin and homogeneous configurations.

https://doi.org/10.1371/journal.pcbi.1007432.g001
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In the homogeneous configuration, an extreme case of the connectivity asymmetry, the

network activity exhibited multiple moving bumps. Neurons participating in moving activ-

ity bumps were arranged in a periodic pattern (Fig 2c4) and the activity sequences flowed

along the associated stripes (Fig 2d4). Such patterns of average activity flow closely resem-

bled the ‘static’ patterns observed in bio-chemical systems [31]. Unlike in the Perlin config-

uration, in the homogeneous configuration all spatial bumps moved in the same direction

(Fig 2d5, red trace). Because knowing the movement direction of a single activity sequence

was sufficient for knowing the movement directions of all other sequences, the homoge-

neous configuration effectively exhibited only a single spatio-temporal activity sequence.

This type of activity pattern was similar to the traveling waves observed in neural field mod-

els [21, 29].

Fig 2. Network structure and spiking activity in I-networks. (a) Spatial distribution of connection asymmetries. The square represents

the 2-D space of the network. The four panels (a1-a4) show the four different configurations of asymmetric connectivity: symmetric,

random, Perlin and homogeneous. The panel a5 shows the distribution of ϕ, measured for each neuron from the locations of its post-

synaptic neurons. (b) Spatial distribution of in-degrees of individual neurons in the four configurations (b1-b4). The in-degree

distribution was similar for all four configurations (b5). Note that in the Perlin configuration, neurons with high and low in-degree were

spatially clustered (b3). (c) Spatial distribution of average firing rates of individual neurons in the four network configurations (c1-c4).

(c5)The distribution of firing rate of all the neurons. (d1-d4) Spatially distributed direction of neuronal activity flow in the four

configurations. (d5) Distribution of the direction of neuronal activity flow independent of space. In symmetric, random and Perlin

configurations, activity could move in all possible directions (blue, orange, green), whereas in the homogeneous configuration, activity

flowed in a single direction (red). Note that in symmetric and random configurations, despite the presence of all possible directions of

projection, the network activity remained locked at certain specific locations (d1,d2), unlike in the Perlin configuration, in which a clear

and spatially diverse flow of activity emerged (d3).

https://doi.org/10.1371/journal.pcbi.1007432.g002
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When ϕ was distributed randomly (random configuration) or when neurons made connec-

tions without any directional bias (symmetric configuration), we did not observe any STAS. In

both configurations, the network activity was confined to specific neurons, while others were

inhibited, giving rise to a long-tailed distribution of average firing rates (Fig 2c5). In both sym-

metric and random configurations, active neurons were organized in a near hexagonal pattern

of spatial activity bumps (Fig 2c1 and 2c2). Such an activity pattern is a consequence of the

non-monotonic shape of the effective connectivity [30]. In the random configuration, the spa-

tial organization of the activity bumps was a bit more noisy than in the symmetric configura-

tion. In both configurations, the spatial bumps jittered randomly around a fixed location,

resulting in a uniform distribution of bump movement directions (Fig 2d1, 2d2 an 2d5). Thus,

both random and symmetric configurations resulted in similar types of network activity states.

Similarly to the I-network models, an LCRN with both excitatory and inhibitory neurons

(EI-network) also exhibited STAS when excitatory neurons made connections to excitatory

neurons preferentially in one direction and ϕ-values were distributed according to the Perlin

configuration (Fig 3d). In both EI- and I-network models, the activity sequence could be

extracted from only a few neurons chosen from a small neighborhood (Fig 3b and 3e) or

Fig 3. Spatio-temporal sequences of neuronal activity in networks with Perlin configuration. (a) Raster plot of spiking

activity in an I-network model as a function of time. Each color indicates a cluster of spiking activity in space and time,

identified using DBSCAN (see Methods). Note that spikes that were not assigned to any cluster are not shown. (b) Activity of

approx. 250 neurons confined in a 20 × 20 region. (c) Activity of approx. 250 neurons randomly selected from the entire

network. (b, c) Selected neurons are sorted according to the time of peaked spike counts. (d, e, f) Same as in panels a, b, c,

respectively, but here for an EI-network model. Note the shorter time axes in panels d, e, f, compared to panels a, b, c,

indicating that sequence movement in EI-networks was clearly faster than in I-networks.

https://doi.org/10.1371/journal.pcbi.1007432.g003
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randomly from the whole network (Fig 3c and 3f). When the spiking activity was sampled

from the entire network and neurons were ordered according to their peak firing rates (as is

often done with experimental data [8, 11]), the velocity of the activity sequence appeared to

be quite constant (see Fig 3c and 3f). Experimental data suggest that the velocity of temporal

sequences can vary over time [11]. In our network model, we also found that when about 250

active neurons were sampled randomly from a small network neighborhood, the velocity of

the activity sequences varied as a function of time (Fig 3b). However, this varying velocity

could be an artefact of the finite size effect and of the non-uniform sampling of the sequences

(see Fig 3b and 3c). In general, the activity sequences in EI-network models were faster than

those in I-networks, because the activity sequences in EI-networks relied on recurrent excita-

tion, whereas in I-networks they relied on the lack of recurrent inhibition (in our I-networks,

the neuronal connectivity varied non-monotonically with distance, according to a Gamma dis-

tribution and, hence, had only a small connection probability among neighboring neurons).

Conditions for the emergence of spatio-temporal activity sequences

These results suggested that the emergence of STAS in LCRNs required two conditions to be

met: (1) each neuron projects a small fraction of its axons preferentially in a specific direction

(ϕ), and (2) neighboring neurons preferentially project in similar directions, whereas the pro-

jection directions of neurons further apart are unrelated. These two conditions imply a spa-

tially correlated anisotropy in the projection patterns of neurons in the network. Indeed, upon

systematic variation of a wide range of input parameters and excitation-inhibition balance, we

found that, as long as these two conditions were met, irrespective of the composition of neu-

rons in the LCRN, STAS invariably emerged (S2 Fig).

Co-existence of activity sequences and network oscillations

The rasters of spiking activity in both I-networks and EI-networks indicated the presence of

slow oscillations in Perlin (Fig 3) and homogeneous configurations. Therefore, we measured

the spectrum of the summed network activity. This summed network activity was obtained by

different procedures: by summing the activity of all neurons (Fig 4, blue trace), by summing

the activity of the neurons from a 10×10 region in the network (Fig 4, green trace), and by

summing the activity of 100 randomly chosen neurons from the entire network (Fig 4, orange

trace). For I-networks (Fig 4a), neuronal population activity in all four configurations exhib-

ited clear oscillations in the gamma frequency band (� 60 Hz). These oscillations were a global

property of the network, and partial sampling of the neurons also showed oscillatory activity,

albeit with lower power. (Fig 4a, orange and green traces). Moreover, in homogeneous and

Perlin configurations, signs of low-frequency oscillations at around 3-4 Hz in I-networks were

observable. These were presumably a consequence of the periodic boundary conditions, i.e.

the period of slow oscillations was determined by the sequence propagation velocity (see

below) and the spatial network size. Oscillations in the EI-networks were observed at� 30 Hz,

however, the oscillation power was smaller than in the I-networks. A closer inspection of oscil-

lations in the EI-networks revealed that oscillations occurred in short bursts, resulting in

smaller oscillation power (S3 Fig). These results suggest that both STAS and global oscillations

can co-exist both in I-networks and in EI-networks.

Asymmetry in connectivity determines the velocity of STAS

Next we investigated how the amount of shift in the connectivity affects the STAS. To this end

we shifted the connectivity extent by 1 and 2 grid points. Shift by one grid point increases con-

nectivity in the direction ϕ by 2-5%, depending on the distance and a corresponding decrease

Emergence of spatiotemporal sequences in spiking neuronal networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007432 October 25, 2019 7 / 27

https://doi.org/10.1371/journal.pcbi.1007432


in the direction opposite to ϕ (S1b Fig). When there was no shift in the connectivity, networks

did not exhibit any sequential activity and the activity bumps jittered around a fixed value with

a small velocity (Fig 5a and 5b blue). However, shifting the connectivity by 1 grid point was

sufficient to induce sequential activity in both homogeneous and Perlin configurations. The

velocity of STAS was higher in the homogeneous configuration than in the Perlin configura-

tion (Fig 5a and 5b orange). When we increased the shift in connectivity to 2 grid points (i.e.

5-10% increase in the connectivity, depending on the distance), the mean and variance of the

velocity increased in both Perlin and homogeneous configurations (Fig 5a and 5b green).

These results suggest that the degree of asymmetry in the connectivity controls the velocity of

STAS.

Effect of spatial correlation in connection asymmetry on spatio-temporal

activity sequences

Next, we determined how the spatial correlations in ϕ affect the number and velocity of STAS.

To this end we systematically varied the spatial scale of the Perlin noise (see Methods). This

enabled us to systematically move from a random configuration to a homogeneous configura-

tion (Fig 6a top). To count the number of STAS, we rendered the activity in a 3-dimensional

space (two space dimensions and one time dimension) and used the DBSCAN algorithm to

identify clusters (which are the STAS) in this 3-D space. We found that the number of STAS

and their velocity decreased monotonically as we reduced the Perlin scale (Fig 6b and 6c). This

decrease in number and velocity of STAS occurred because a reduction in Perlin scale reduced

the number of neighboring neurons with similar ϕ. This, in turn, reduced the velocity of the

Fig 4. Power spectra of network activity in I-networks and EI-networks in different spatial inhomogeneity configurations. (a) Power

spectra of summed spiking activities (bin width = 5 ms), with different traces referring to the source of the data: the z-score of the spiking

activity of the entire network population (blue trace), of 100 randomly selected neurons from the entire network (orange trace), and of the

neurons located in a 10×10 region in the network (green trace). The power spectrum in all I-network models peaked at approx. 60 Hz

(gamma-band oscillations). Additionally, in network models with homogeneous and Perlin configurations, an additional, weak low-

frequency peak, at around 3-4 Hz, appeared. (b) Same as in a for EI-networks. Low-frequency peak around 12-14 Hz were observed in

networks with homogeneous and Perlin configurations.

https://doi.org/10.1371/journal.pcbi.1007432.g004
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STAS (Fig 6b), because the input in the direction specified by ϕ decreased and the postsynaptic

neurons had to integrate over longer time to elicit response spikes. Moreover, because of the

fewer inputs in the direction ϕ, many putative sequences showed weak spiking activity which

could not be classified as a distinct spatio-temporal sequence. Furthermore, a reduction in Per-

lin scale also increased the variance of movement directions (Fig 6c). These results show, first,

that even a small scale spatial correlation in ϕ suffices to induce STAS but, second, if the spatial

correlation scale is too small, such sequences may not move quickly enough to be detected as

sequences. For functionally relevant STAS, the spatial correlation (i.e. Perlin scale) in ϕ should

be about 20, which is about 1

6
th of the network size.

Origin of STAS in networks with spatially correlated connection

asymmetry

To get more insight into the mechanisms underlying the emergence of STAS in Perlin and

homogeneous networks we estimated the eigenvalue spectrum of the network’s connectivity

matrix. For an Erdós-Renyi type random network, eigenvalues of the connectivity matrix are

distributed in a circle [32]. In an inhibition dominated network, extra inhibition introduces

very large negative eigenvalues that contribute to the stability of the network activity dynamics

[33]. Here, we found that for an LCRN without any directional connectivity (symmetric con-

figuration), most eigenvalues were confined within a circle, but the local nature of the

Fig 5. Velocity of neuronal activity sequences. Distribution of the velocity of neuronal activity sequences in I-

networks with homogeneous (a) and Perlin (b) configurations. The velocity of the activity sequences increased with

the increase in connectivity asymmetry. Note that the velocity of activity bump movements in networks with

symmetric connections (blue traces) were identical in networks with homogeneous and Perlin configurations.

However, for any non-zero degree of asymmetry (orange and green traces) the velocity of activity bump movements

was higher in networks with the homogeneous configuration.

https://doi.org/10.1371/journal.pcbi.1007432.g005
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connectivity introduced several eigenvalues outside the circle, with large real parts and small

imaginary parts. As we introduced spatial asymmetry into the connectivity, the imaginary

component of large eigenvalues (those outside the circle) increased (Fig 7a). The emergence of

large complex eigenvalues outside the main circle is indicative of meta-stable dynamics [32].

Moreover, the number of large eigenvalues outside the main lobe (circle in this case) of the

eigenvalue spectrum is equal to the number of ‘communities’ of neurons in a network [34].

This suggests that in both Perlin and homogeneous configurations correlations in the spatial

distribution of ϕs created many communities (neuronal assemblies), the dynamics of which

are meta-stable.

Given the large size of our network models, it is computationally highly demanding to test

this hypothesis by measuring all eigenvalues of an LCRN, identifying and counting the neuro-

nal assemblies and determining the effective feedforward networks associated with their STAS.

To simplify the problem, we estimated the probability of finding such a feedforward network

pFF in our I- and EI-network models. To this end, we used an iterative procedure to find feed-

forward networks in our network models, the details of which are described in the Methods

section. Briefly, we started with a set of 64 neurons (Fi) located in a small, 8×8 region in the

network. Then we identified the set of all post-synaptic neurons (Pi) receiving input (excitatory

input in an EI-network and inhibitory input in an I-network) from any of the neurons in

the first set Fi. From the set Pi we selected the 64 neurons (Fi+1) that were most frequently

Fig 6. Effect of spatial scale of correlations in ϕ on the emergence and velocity of STAS in I-networks. (a) The top row shows the

spatial distribution of ϕ for different scales of Perlin noise. The Perlin scales decreased from left to right as reflected in the size of

single color blobs. The Perlin scale is indicated in terms of grid points in the network. The bottom row shows the spatial distribution

of average firing rates in each of the seven configurations. (b) The number of STAS observed in 1 sec. for different Perlin scales. The

box plot shows that statistics of STAS estimated over 90 epochs of 1 sec. each. Different colors indicate the scale of the corresponding

Perlin noise. (c) The distribution of the velocity of STAS. Different colors indicate the scale of the corresponding Perlin noise. (d)

The distribution of STAS directions in polar plots. In a homogeneous configuration, most sequences moved in a single direction

(blue curve). As the Perlin scale decreased, the distribution of movement direction became more widely distributed, indicating an

increase in the number of sequences that moved in different directions.

https://doi.org/10.1371/journal.pcbi.1007432.g006
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connected to the neurons in the input Fi (see Methods for details). We repeated this procedure

50 times, starting at 100 randomly selected different locations of the initial 8×8 regions (see

Methods, Fig 7b and 7c). Thus, we identified feedforward networks with excitatory connec-

tions from Fn to Fn+1 in EI-networks and feedforward networks with inhibitory connections

from Fn to Fn+1 in I-networks.

In the homogeneous configuration we always found a feedforward path capable of creating

a STAS (Effective length > 16; see Methods and Fig 7c and 7d). Indeed, in the homogeneous

configuration, the probability of finding a feedforward path: pFF was 1.0 (for both EI- and I-

networks). Moreover, these feedforward paths were very long (Fig 7b, red dots and crosses). In

the Perlin configuration, there were fewer (pFF� 0.8 for EI-networks; pFF� 0.66 for I-net-

works) and shorter (Fig 7b, green dots and crosses) feedforward paths, but they pointed in dif-

ferent directions (Fig 7b–7d). By contrast, in both symmetric and random configurations, no

Fig 7. Spatial clustering of ϕ results in feedforward pathways in otherwise locally connected random networks. (a) The eigenvalue

spectrum of the connectivity matrix of 1,000 inhibitory neurons randomly selected from symmetric (blue dots), random (orange dots),

Perlin (green dots) and homogeneous (red dots) I-networks. (b) Number of unique target neurons participating in a feedforward path (y-

axis) as a function of the effective length of the feedforward path (Euclidean distance between the centroids of F1 and F50 (see Methods).

Feedforward path in I-network (dots), feedforward path in EI-network (crosses). The four colors indicate the network configurations.

Note that distinctly more unique neurons with longer path length of the sequential activity movement were observed in Perlin and

homogeneous configurations. (c) Effective feedforward pathways in an I-network model with the four configurations (see Methods).

Feedforward paths starting from four different locations are shown. The starting neuron set F1 is shown in yellow, the final set F50 is

shown in orange. Effective feedforward pathways were visible as trails changing color from yellow to orange. The starting neuron set F1

consisted of 64 neurons located in an 8×8 region of the network. (d) Same as in c, but for an EI-network model with nine different

starting set locations.

https://doi.org/10.1371/journal.pcbi.1007432.g007
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feedforward pathways were observed (pFF = 0 for both EI- and I-networks). In these latter two

configurations, neurons participating in F1 to F50 were confined to a small space (indicated by

the overlap of the color blobs in Fig 7c and 7d). Ultimately, it was the existence (or non-exis-

tence) of these feedforward pathways that determined the properties of STAS in the four differ-

ent configurations.

Within a feedforward path in an EI-network, excitatory neurons in Fn projected to excit-

atory neurons in Fn+1 with higher probability than outside Fn+1, thereby creating a path of

high excitation between successive groups in the path. When an external input was strong

enough, a STAS was observed along such path of high excitation. By contrast, within a feedfor-

ward path in an I-network, inhibitory neurons in Fn projected to inhibitory neurons in Fn+1

with higher probability than outside Fn+1, thereby creating a path of high inhibition from F1 to

F50. Because the out-degree of neurons was fixed, the concentration of inhibitory connections

within the path from F1 to F50 created a region of low recurrent inhibition in the vicinity of the

path, along which inhibitory STAS emerged. Thus, the abundance of feedforward paths in net-

works with Perlin and homogeneous configurations provided a structural substrate for the

emergence of the rich repertoire of STAS in such networks. Moreover, through this analysis

we also demonstrated that correlation in the in-degree (i.e. shared inputs) and in the out-

degree (i.e. shared outputs) underlie the emergence of sequential spiking in neurons and that

spatially correlated anisotropic connectivity is a simple generative mechanism to achieve such

in- and out-degree correlations.

Stimulus-evoked spatio-temporal activity sequences

In the above we described how STAS emerged in networks with spatially correlated asymmet-

ric connectivity of neurons. Next, we investigated whether these networks could also generate

STAS in response to an external stimulus. To this end, we excited a small set of 50 neighboring

neurons for 50 ms and measured the network response. As expected, the network response

depended on the background activity of the network (Fig 8a and 8b). Therefore, we measured

the properties of the evoked STAS in different states of ongoing activity—from a silent net-

work to a network with high background activity and spontaneous STASs (Fig 8c, S3 Fig).

To obtain different states of ongoing activity we varied the input mean and variance (Fig 8c,

S3 Fig).

We found that when the background activity was low (weak input regime), the network a

STAS was evoked with high probability (Fig 8d). Close to the threshold at which STATS

emerged in the background activity, the network response time was smallest, whereas in a

completely silent network, the network response to an incoming stimulus was rather slow (Fig

8e). Finally, in the weak input regime, the evoked STAS persisted for only few milliseconds

after the input stopped (Fig 8f). When there were STAS in the background activity (strong

input-regime), the probability to evoke a STAS decreased, because the neurons were already

engaged in the existing STASs (Fig 8d). In the strong input regime, neurons that were not a

part of an ongoing STAS were strongly inhibited, therefore, the stimulus response was also

slow in this regime. The long persistence of evoked STAS in the strong input regime (Fig 8e)

was because the evoked STAS coincided with an ongoing STAS, giving the (false) impression

of long persistence.

Neuromodulators can generate spatially correlated inhomogenenties

Our proposed sequence generation mechanism demands another mechanism which enables

a group of neurons to make more or stronger synapses in a common direction ϕ in the first

place. Axonal and dendritic arbors of neurons are almost never symmetrical in space [35] and
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dendritic arbors of some prominent neuron types are highly similar. However, it is not possi-

ble to infer from the available data whether neighboring neurons have a similar orientation of

their axons. Experimental data suggest that neurons born together tend to share their inputs

[36]. In addition, activity dependent plasticity may also lead to the formation of a few stronger

synapses, possibly (but not necessarily) associated with a preferred projection direction. How-

ever, such mechanisms, even if viable, will only hardwire one specific set of STAS. In the fol-

lowing, we propose a more general and, more importantly, dynamic mechanism that may lead

to asymmetric and spatially correlated connectivity of neurons that not only generates STAS,

but may rapidly switch from one set of sequences to another.

Consider a network in which neurons have symmetric dendritic and axonal arbors (Fig 9a).

Such a network would not support activity sequences (Fig 2) and stimulus evoked activity will

be confined to the stimulated region of the network. In this network, the release of a neuromo-

dulator (e.g. dopamine or acetylcholine) will create a phasic increase in the neuromodulator

levels in small patches (Fig 9b, yellow blobs). Such patches naturally arise because of the non-

uniform distribution of axons releasing the neuromodulator and its diffusion in the neural tis-

sue, which presents an inhomogeneous medium. A similar patchy spatial profile of dopamine

has been recently observed experimentally in vivo [37]. Most synapses within the regions of

high neuromodulator concentration will be potentiated (schematically shown in Fig 9b, blue

neurons) and, hence, create an asymmetric, spatially correlated connectivity for as long as

the neuromodulator concentration remains high. That is, the effective connectivity along the

Fig 8. Stimulus evoked STAS. (a) Evoked STATS (red dots) in the weak input regime as a function of time. The gray dots show the

background activity. (b) Evoked STAS in strong input regime. Note that every 5th spike is displayed. The values for input mean and

input standard deviation used for panels panels a (red) and b (orange) are marked by circles of corresponding colors in panels c-f,

respectively. (c) Number of clusters (STAS) as a function of the mean and standard deviation of the input current. This panel is the

same as in S3b Fig. (d) Probability, (e) the reaction time and (f) the life span of evoked STAS as a function of of the mean and standard

deviation of the input current.

https://doi.org/10.1371/journal.pcbi.1007432.g008
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spatial gradient of the neuromodulator concentration (Fig 9b, arrows) may be modified to

generate STAS.

This neuromodulator based mechanism to generate spatially correlated asymmetric, aniso-

tropic connectivity automatically provides a mechanism to rapidly switch between sequences.

A change in the spatial profile of the neuromodulator concentration will potentiate another set

of synapses, possibly leading to the recruitment of new neurons into the activity sequence (Fig

9b and 9c red neurons), or to the assignment of neurons to a different sequence (Fig 9b and

9c, blue neurons). In the reasoning above, we assumed that the neuromodulator enhances syn-

aptic strengths, but the same argument also holds when the neuromodulator suppresses synap-

tic strengths. Thus, neuromodulators may play a crucial role, not only in the formation of

STAS, but also in rapidly switching between different sets of sequences. Moreover, by their

spatial concentration distribution, neuromodulators can also control the speed of the activity

sequence. This idea is consistent with experimental observations, e.g. the finding that acetyl-

choline is important for retinal waves [38].

Discussion

Here we have shown that spatial inhomogeneities in network connectivity can lead to the

emergence of STAS in the network. Unlike existing models of sequence generation, which

require either manual wiring of neurons or supervised learning, we provide a simple genera-

tive rule that renders an LCRN with the ability to generate STAS. We showed that when (1)

individual neurons project a small fraction (approximately 2-5%) of their axons in a preferred

direction ϕ (i.e. the connectivity is asymmetric), and (2) ϕs of neighboring neurons are similar,

whereas ϕs of neurons further apart are unrelated (i.e. the network is anisotropic), the network

will generate STAS. That is, asymmetric but spatially correlated connectivity of neurons trans-

lates into sequential spiking activity. Note that, a spatial asymmetry of neuronal connectivity

can also be achieved when a neuron makes stronger instead of more synapses in the preferred

direction (ϕ). Under this mechanism, the number of STAS and their propagation velocity are

Fig 9. Dynamic reorganization of activity sequences in a recurrent network. (a) Schematic of a network in which

neurons connect in all direction equally. The blue background shows the baseline level of a certain neuromodulator

substance. Two pairs of neurons (blue and red triangles) are shown, the axons of which project in all directions

uniformly. This is equivalent to the symmetric configuration and, hence, no sequential activity will emerge. (b) Non-

uniform distribution of concentration of the neuromodulator in different parts of the network, as indicated by the

colormap. The colored lines indicate the enhanced synaptic strength in specific directions. Asymmetric connectivity of

neighboring neurons caused by such non-uniform neuromodulator concentration distribution may result in activity

sequence in some regions of the network (e.g. neurons marked in blue). The short arrows mark the potential flow of a

neuronal activity sequence along the spatial gradient of the neuromodulator concentration. (c) Same as in b for a

different pattern of neuromodulator concentration which may lead to a different flow of neuronal activity, resulting in

the appearance of activity sequences in a new set of neurons (e.g. those marked in red) and a change in direction of the

sequence in others (e.g. those marked in blue).

https://doi.org/10.1371/journal.pcbi.1007432.g009
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determined by the spatial extent of the connectivity asymmetry and the spatial scale of the ϕ-

correlations (Fig 6). Beyond the generation of sequences of neuronal activity, the network cre-

ated using our generative rule also produces structured activity which can be used to create

motor patterns, for example using supervised learning [39].

It is already well known that when neurons make connections in a spatially asymmetric man-

ner, the network can exhibit travelling waves, which can be considered as a kind of STAS [23].

Note that, spatially asymmetric connectivity is not essential to generate travelling waves. Other

mechanisms (e.g. mean and variance of the synaptic weights or imbalance of excitation and inhi-

bition) can lead to symmetry breaking and travelling waves in networks with spatially homoge-

neous connectivity in excitatory neural fields [20, 40, 41] and in networks with spiking neurons

[42]. However, such travelling waves are identical across the whole networks. Moreover, such

travelling waves when rendered as temporal sequences (similar to what is shown in Fig 3) result

in periodic activity. Here, building on previous work on networks with spatial connectivity, we

showed that introducing spatially correlations in the connection asymmetry resulted in a richer

dynamics of STAS, closely resembling the experimental measurements of STAS. Thus, the key

novelty of our work is in demonstrating the importance of spatial correlations in the connection

asymmetries for network activity sequences or correlated in- and our-degree.

While our model provides a mechanism for the emergence of spatially and temporally orga-

nized sequences of neuronal activity, it should be noted that so far experimental data have not

yet revealed a clear relationship between spatial proximity of individual neurons and their

order in a neuronal activity sequence. However, neighboring neurons are more correlated

than those further apart [43, 44]. Furthermore, at the level of summated activity of neurons in

a small neighborhood (e.g. as measured by voltage sensitive dye imaging or in local field poten-

tials) spatially organized waves of neuronal activity are clearly visible (see review [41] and in

references therein). Therefore, it is possible that the lack of evidence for spatial organization

of sequences of neuronal activity could be caused by sparse sampling of neurons by extracellu-

lar electrodes or by the poor temporal resolution of calcium imaging. In case the temporal

sequences of neuronal spiking activity have no spatial structure, our model still suggests that

the mechanism underlying such sequences would be correlation in the in- and out-degrees of

the neurons involved (see Fig 7).

Feedforward networks are simple but powerful computing devices [14, 15] and, by defini-

tion, the existence of sequential activity requires such networks. Moreover, such feedforward

networks are thought to be a possible structural substrate of the phase sequences, proposed by

Hebb to ‘neuralize this behavior’ [1]. Therefore, there is a general interest in understanding

how feedforward networks may emerge in otherwise randomly connected networks. To this

end, a number of computational studies have investigated whether Hebbian synaptic plasticity

can generate such feedforward networks. These attempts were usually successful in creating

feedforward networks in small random recurrent networks [45–48], but did not scale up for

large recurrent networks [49]. Specifically, learning of feedforward networks using unsuper-

vised learning rules such as Hebbian or anti-Hebbian plasticity rules resulted in a situation in

which the learned feedforward network was completely disconnected from the rest of the net-

work, unless the plasticity rule was switched off manually [49].

In general, it is assumed that networks in the brain are ‘tabula rasa’ and that they have to

learn to generate any structured activity patterns such as STAS for behavior. However, recently

it is being recognized that neuronal networks cannot learn everything using learning algo-

rithms or synaptic plasticity rules alone and that innate connectivity structures are not

completely random and have the ‘innate’ ability to perform certain computations [50].

Our observations of feedforward networks emerging in an LCRN with Perlin configuration

provides a much simpler generative mechanism that can create feedforward networks in large
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random neuronal networks without the necessity of invoking any synaptic or structural plas-

ticity. Thus, we provide a possible mechanism by which networks in the brain can have an

innate wiring that enables them to generate STAS. It can be argued that the requirement of

spatially correlated asymmetry in connectivity also means that the STAS are hardwired in the

network structure—not very different from supervised learning. Indeed, such connectivity

requirements are too strict. Therefore, we have provided an additional mechanism by which

spatial-temporal patterns of neurmodulator release can rapidly create and dynamically modu-

late spatially correlated asymmetry in the connectivity (see Fig 9).

Relationship with previous network models with spatial connectivity

Neuronal networks with spatially homogeneous and isotropic connectivity have been exten-

sively studied using neural field equations [21, 51, 52] (see review by [53]) or by numerical

simulations [17, 54]. By contrast, the dynamics of LCRNs with inhomogeneities have not

received much attention. In most cases, inhomogeneities were distributed uniformly in space

[17, 55, 56]. Models of orientation tuning in which neurons are wired according to their tuning

preferences [57] do have some resemblance with our model. However, in such models the

exact spatial distribution of the connectivity has neither been studied nor was it considered rel-

evant. In some models inhomogeneties have been introduced using mechanisms such as syn-

aptic depression [24] and/or spike frequency adaptation [25, 26]. In such networks, because

neurons cannot continue to spike forever, because of spike frequency adaptation or because of

weakening of input synapses, the activity attractor is not stable and continues to move [26].

Moreover, in these networks also the spatial distribution of inhomogeneities is not relevant for

the moving bump. Thus, to the best of our knowledge, our study presents the first example of a

systematic study of the effects of the spatial distribution of heterogeneity on the dynamics in

locally connected random networks.

Experimental evidence supporting our connectivity rule

Our connectivity rule requires that neurons preferentially project a fraction of their connec-

tions in a given direction ϕ and that ϕs of neighboring neurons are similar. The argument can

be reversed and we can also say that neurons preferentially receive a fraction of their inputs

from a direction θ and that θs of neighboring neurons are similar. This implies that axonal

and/or dendritic arbors of neurons should be spatially asymmetric and that axonal/dendritic

arbors of neighboring neurons project in a similar preferential direction. There is plenty of evi-

dence that most neuron types do have spatially asymmetric dendritic and axonal arbors [35,

58]. Moreover, dendritic arbors of some prominent neuron types are highly similar. However,

it is not possible to determine whether the correlation between the preferential projection

(reception) directions has a spatial structure. Beyond just looking at the structure of dendritic

or axonal arbors, our connectivity rule also implies that neighboring neurons should share

their input and/or output neurons. Experimental data suggest that neurons born together tend

to share their inputs [36]. Thus, some available experimental data provide support for our con-

nectivity rule, but more dedicated experiments are needed to check the full validity of our

model.

Model predictions

The key prediction of our network model is that in brain regions generating STAS, neurons

should have asymmetric but spatially correlated network connectivity. Such correlated asym-

metry can be observed in at least two different forms: (1) asymmetric but similar axonal or

dendritic arbors of neighboring neurons, and (2) neighboring neurons receiving strong
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synapses from common sources and sending out strong synapses to common targets. Sec-

ondly, we predict that neuromodulators may play a crucial role in the generation and control

of STAS in an otherwise isotropic network. The latter can be tested by experimentally control-

ling the spatial profile of the corresponding neuromodulator release pattern by optogenetic

stimulation of its source neurons.

Effectively, the asymmetric but spatially correlated connectivity of neurons implies corre-

lated in- and out-degrees of neurons. Therefore, our model predicts that even when asymmet-

ric but similar axonal or dendritic arbors of neighboring neurons are not observed, networks

with intrinsically generated sequential activity in the neurons should have correlated in- and

out-degree of these neurons.

In summary, we propose a simple generative rule that enables neuronal networks to gen-

erate STAS. How these spontaneously generated sequences interact with stimuli and how we

can create stimulus—sequence associations is an interesting and involved question that will

be addressed in future work. Similarly, more work is needed to determine the role of neuro-

nal and synaptic weight heterogeneities in shaping spontaneous and stimulus-evoked neuro-

nal activity sequences, either with or without changes in neuromodulator concentration

distributions.

Methods

Neuron model

Neurons in the recurrent networks were modelled as ‘leaky-integrate-and-fire’ (LIF) neurons.

The sub-threshold membrane potential (v) dynamics of LIF neurons are given by:

Cm
dvi
dt
¼ � gLðviðtÞ � ELÞ þ IiðtÞ þ mGWNi

þ sGWNi
ð1Þ

where tm ¼
Cm
gL

denotes the membrane time constant, Cm the membrane capacitance, gL the

leak conductance, EL the leak reversal potential, I(t) the total synaptic current and mGWNi
and

sGWNi
are the mean and standard deviation of Gaussian white noise input to the neuron. The

neuron parameters are listed in Table 1.

Table 1. Parameter values for the neurons (top) and for the synapses (bottom) in both network models.

Neurons & synapses

Name Value Description

Cm 250.0 pF Membrane capacitance

gL 25.0 nS Membrane capacitance

τm 10.0 ms Membrane time constant

EL - 70.0 mV Leak potential, resting potential

Vth - 55.0 mV Spike threshold

Vreset - 70.0 mV Resting membrane potential

tref 2.0 ms Refractory period

τexc 5.0 ms Time constant of excitatory synapse

τinh 5.0 ms Time constant of inhibitory synapse

Jext 1.0 pA Synaptic weight of the external input

Jx 10.0 pA Base value of the synaptic weight

Jexc 0.22 mV Amplitude of excitatory post synaptic potential

Jinh 0.22 mV Amplitude of inhibitory post synaptic potential

d 1.0 ms Synaptic delay

https://doi.org/10.1371/journal.pcbi.1007432.t001
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Synapse model

Synapses in the network were modelled as current transients. The temporal profile of the cur-

rent transient in response to a single pre-synaptic spike was modelled as an α function:

Isyn ¼ Jsyn
t � tspk
tsyn

exp �
t � tspk
tsyn

 !

ð2Þ

where Jsyn, τsyn and tspk denote synaptic amplitude, synaptic time constant and spike time,

respectively. The term syn stands for exc and inh for excitatory and inhibitory synapses,

respectively.

We adjusted the synaptic currents to obtain weak synapses, such that both a unitary inhibi-

tory post-synaptic potential (Jinh) and a unitary excitatory postsynaptic potential (Jexc) had an

amplitude of 0.22 mV. The synapse parameters (synaptic strength, time constant and delay)

were fixed throughout the simulations and are listed in Table 1, bottom.

Network architecture

We studied two types of recurrent network models in which the connection probability

between any two neurons depended on the physical distance between them. Neurons in both

network models were placed on a regular square grid. To avoid boundary effect, the grid was

folded to form a torus [17]. In both network types, multiple connections were permitted (S1a

Fig), but self-connections were excluded.

Networks with only inhibitory neurons: The first type network model (I-network) was com-

posed of only inhibitory neurons. The brain regions striatum and central amygdala are exam-

ples of purely inhibitory recurrent networks in the brain. These neurons were arranged on a

100×100 grid (npop = 10, 000). Each neuron projected to 1,000 other neurons (corresponding

to an average connection probability in the network of 10%). The distance-dependent connec-

tion probability varied according to a Γ distribution [30] with the following parameters: κ = 4

for the shape and θ = 3 for the spatial scale. All I-network parameters are summarized in

Table 2.

Networks with both excitatory and inhibitory neurons: The second type network model (EI-

network) was composed of both excitatory and inhibitory neurons. EI-networks are more

common in the brain than I-networks, and are observed throughout the neocortex and CA3

Table 2. Parameter values for the networks (top), for the connections (middle) and for an external input (bottom)

in I network model.

I network model

Name Value Description

Neuron model Integrate and fire

nrow, ncol 100 number of rows/columns in a network layer

npop nrow � ncol = 10,000 number of neurons

Synapse model α function, current-based model

κ 4 Shape for gamma distribution function

θ 3 Scale for gamma distribution function

pconn 0.1 Average connection probability of target neurons

nconn pconn � npop = 1000 Number of recurrent connections per neuron

Jrec −Jx = -0.22 mV Synaptic weight of recurrent inhibitory connections

μGWN 700.0 pA Mean of external GWN input

σGWN 100.0 pA Standard deviation of external GWN input

https://doi.org/10.1371/journal.pcbi.1007432.t002

Emergence of spatiotemporal sequences in spiking neuronal networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007432 October 25, 2019 18 / 27

https://doi.org/10.1371/journal.pcbi.1007432.t002
https://doi.org/10.1371/journal.pcbi.1007432


region of the hippocampus. Excitatory and inhibitory neurons were arranged on a 120×120

(npopE = 14, 400) and on a 60×60 grid (npopI = 3, 600), respectively. Each neuron of the excit-

atory and inhibitory populations projected to 720 excitatory and 180 inhibitory neurons (aver-

age connection probability 5%). The connection probability varied with distance between

neurons according to a Gaussian distribution [17, 30, 59]. The space constant (standard devia-

tion of the Gaussian distribution) for excitatory source projected to excitatory targets was σEE
= 9 (σEI = 4.5 for inhibitory source) and to inhibitory targets σIE = 12 (σII = 6 for inhibitory

source). We considered a high probability of connections within a small neighborhood, there-

fore, these networks were referred to as locally connected random networks (LCRN [54]). All

EI-network parameters are summarized in Table 3. Whenever possible, we used parameters

corresponding to a standard EI-network [60].

Asymmetry in spatial connections

Typically, in network models with distance-dependent connectivity, the connection probabil-

ity is considered to be isotropic in all directions. In the network models studied here, however,

we deviated from this assumption and introduced spatial inhomogeneities in the recurrent

connections. Specifically, we considered a scenario in which the neuronal connectivity was

asymmetric in the sense that each neuron projected a small fraction of its axons in a particular

direction ϕ (Fig 1a and 1b). At the same time we ensured that the out-degree of each neuron

was the same as in an LCRN with isotropic connectivity. In I-networks all the neurons had

asymmetric connectivity, whereas in EI networks only connection asymmetry was introduced

only for excitatory to excitatory projections. The fraction of extra connections in the direction

ϕ depended on the shift in the region of post-synaptic neurons (green circle in Fig 1a). To

quantify the change in connection probability, we estimated the average distance-dependent

Table 3. Parameter values for the networks (top), for the connections (middle) and for an external input (bottom)

in EI-network model.

EI network model

Name Value Description

Neuron model Integrate and fire

nrowE, ncolE 120 number of rows/columns in exc. network layer

nrowI, ncolI 60 number of rows/columns in inh. network layer

npopE ncolE × nrowE = 14,400 number of excitatory neurons

npopI ncolI × nrowI = 3,600 number of inhibitory neurons

npopratio npopE : npopI = 4 : 1 Ratio of exc.—inh. neurons

Synapse model α function, current-based model

σEE 9 Space constant for E!E connectivity

σIE 4.5 Space constant for E!I connectivity

σEI 12 Space constant for I!E connectivity

σII 6 Space constant for I!I connectivity

pconn 0.05 Connection probability of target neurons

nconnE pconn × npopE = 720 Connection number of excitatory targets

nconnI pconn × npopI = 180 Connection number of inhibitory targets

g 8 Ratio of recurrent inhibition and excitation

JE Jx = 0.22 mV Synaptic weights of excitatory source

JI g × JE = -1.76 mV Synaptic weights of inhibitory source

μGWN 350.0 pA Mean of external GWN input

σGWN 100.0 pA Standard deviation of external GWN input

https://doi.org/10.1371/journal.pcbi.1007432.t003
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connectivity in the symmetric configuration (S) and in the homogeneous configuration (H).

The change in connectivity was then measured as (S −H)/S.

Shifting the connectivity region of a neuron by one grid location in our network model

means that the probability of a neuron to make a connection in that direction was increased or

decreased by some amount Δp § (0 − 100%), depending on the distance between the neurons.

At short distances, the connection probability almost doubled, whereas at distances between

10-20 grid points, there was only a very small change in the connection probability (S1b Fig).

At larger distances (> 20 grid points), the connection probability changed by a large

amount (S1b Fig). This is because at such distances the connectivity is sparse (connection

probability < 0.01) and the measure (S −H)/S amplifies small changes for small S. Because we

maintained the out-degree of the neurons, an increase in the connection probability in one

direction implied a reduction in connection probability by the same amount in the opposite

direction.

Note that an increased connection probability also increased the probability to form multi-

ple connections in the close neighborhood of the projecting neuron (S1a Fig). The preferred

direction (ϕ) for each neuron was chosen at random from a set of eight different directions,

considering that neurons were positioned in a grid pattern. All other synaptic parameters,

such as the number of total connections, the space constant of the connectivity kernel and the

synaptic weights were identical for all neurons.

Spatial distribution of asymmetry in spatial connections

In a network model with asymmetric recurrent connections it does not suffice to select the

preferred connectivity direction of target neurons for individual source neurons depending on

their positions. We also need to define how exactly the ‘directions’ (ϕ) are distributed in space.

For this, we considered four qualitatively different configurations.

Homogeneous configuration: In this configuration all neurons had the same ϕ, indicating a

single-direction bias of the projections of all neurons (Fig 1c, left).

Random configuration: In this configuration ϕ for each neuron was chosen independently

at random from a uniform distribution (Fig 1c, middle).

Perlin configuration: In this configuration ϕ was also chosen from a uniform distribution as

in the random configuration, but it was assigned to each neuron according to a 2-D Perlin

noise—a class of gradient noise [61]. The generation of Perlin noise, which amounts to a sim-

ple procedure to introduce spatial correlations in an otherwise random distribution, is

described below. This spatial distribution of ϕ ensured that neighboring neurons had similar

preferred directions (Fig 1c, right).

Symmetric configuration: In this configuration all neurons established connections in an

isotropic manner, without any directional preference.

Perlin noise

To generate Perlin noise we first created a p×p grid (Perlin grid) that covered the whole

network (of size N×N; N = 100 I-networks and N = 120 for EI-networks). We defined

p ¼ N
Perlin scale. For example a Perlin scale = 20 meant that the Perlin grid was of size 5×5 for I-net-

works and 6×6 for EI-networks. The variable Perlin scale controlled the spatial scale of the cor-

relations. After defining the Perlin grid, each grid point was assigned a value chosen from a

uniform distribution U½0; 2p�. Next, we interpolated the Perlin grid to a size of the N×N (same

size as the I-network or EI-network). The resulting value was used as the ϕ of the neuron

located at that grid point. For more details about the generation of Perlin noise please see [61].
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Input and network dynamics

All neurons received independent, homogeneous excitatory inputs from an external drive. We

selected Gaussian white noise as an adequate input for generating ongoing spiking activity

dynamics, which could be set to different activity levels by varying the input mean and vari-

ance independently.

Spectral analysis

To characterize oscillations in the network activity, we estimated the spectrum of neuronal

activity. To this end we summed the activity of a population of neurons. This summed network

activity was obtained by three different procedures: by summing the activity of all neurons, by

summing the activity of the neurons from a 10×10 region in the network, and by summing the

activity of 100 randomly chosen neurons from the entire network. In each case, the neuronal

activity was binned using 5 ms wide rectangular bins (i.e. sampling frequency = 200 Hz). The

power spectrum was obtained by using the function scipy.signal.pwelch function

from the signal toolbox of the SciPy python package. We estimated the spectrum by set-

ting nfft = 4096. For the estimation of the spectrogram (S3 Fig) we estimated the spectrum of

the network activity for shorts epochs (epoch length = 200 ms; overlap = 50 ms).

Identification of spatio-temporally clustered activity

To identify the STAS we rendered the spiking activity in a three-dimensional space spanned

by two spatial dimensions of the network and one time dimension. Each spike is a point and a

STAS is a cluster in this 3-D space. We used the density-based spatial clustering algorithm of

applications with noise (DBSCAN) [62] to determine individual clusters of the spiking activity

in space and time. The DBSCAN algorithm required two parameters for the analysis: the maxi-

mum distance between two points in a cluster (eps) and the minimum number of points

required to form a cluster (minPts). This algorithm needed a supervised control and an ade-

quate value for eps, depending on the average spatial and temporal distance (i.e. inter-spike

interval) between spikes of the neurons. For instance, when the average firing rate of the neu-

rons was too high, then multiple STAS could be coalesced into a single STAS. On the other

hand, when the average firing rate of the neurons was small, a single STAS could be dissociated

into multiple small STAS. To avoid such problems, we reduced the temporal scale of spikes by

a factor 20 and 3-5 for I-networks and EI-networks, respectively. Note that this temporal re-

scaling was not used for the estimation of other properties of the network activity dynamics.

The eps value was set to 3 and 3-4 for I-networks and EI-networks, respectively. Using the

DBSCAN we identified STAS in successive, overlapping time windows of duration 1 sec (over-

lap duration 0.9 sec).

Spatial arrangement of locally clustered activity

For each identified cluster, we calculated the spatial centroids of activity bumps observed in

successive time windows of 1 sec. The vectors composed of these successive centroids

described the successive spatial coordinates of the bump activity and, hence, revealed the

movement of the bump activity. Using these vectors we plotted the pathways of the moving

activity bumps in the network’s spatial map.

Quantification of activity bump movement

Keeping track of direction changes in bump movement is an adequate measure for the dynam-

ics of sequential and non-sequential activities. In travelling waves, activity bumps typically
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move in a single direction, whereas in spatially fixed patterns, activity bumps alternate direc-

tions erratically over very short time scales. Between these two extrema, activity bump move-

ments changed their direction slowly. The directional change of bump movement is given by:

da ¼ at � at� 1 ð3Þ

where αt denotes the direction of bump movement observed at time step t, and dα ranges from

−π (opposite direction) over 0 (no alternation) to π (opposite direction).

Identification of feedforward networks in the LCRN

To identify a feedforward network FF in the LCRN we started with a set of 64 neurons (Fi),
located in an 8×8 region in the network. This choice was motivated by our observation that

individual spatial clusters of active neurons were typically of size 8×8. We then identified all

post-synaptic neurons (Pi) connected to any of the neurons in the set Fi. From the set Pi we

selected the 64 neurons (Fi+1) that received the most number of connections from the Fi. We

repeated this procedure 50 times, starting at 100 different, randomly selected locations. Given

the delays in the network, 50 time steps would imply that a sequence lasted for at least 100 ms.

In this manner we identified feedforward networks with excitatory (inhibitory) connections

from Fn to Fn+1 in EI-networks (I-networks).

To quantify the feedforward path we measured the number of neurons (nFF) belonging to

F1. . .F50 over the trajectory between the centroids of F1 and F50 (Fig 7b and 7c). Note that each

neuron was counted only once. The larger nFF, the longer and/or broader was the feedforward

network.

In addition, we measured the Effective length as the Euclidean distance between the cen-

troids of F1 and F50. Based on visual inspection of the locations of F1. . .F50, we checked that

{Fn; n> 2} did not loop back to the same region where F1 was located.

To call the set of neurons that constitute F1. . .F50 a feedforward path, capable of creating

STAS, we argued that {Fn; n> 2} must be outside the connection region of the neurons in F1.

In EI-networks, the space constant of excitatory projections of a neurons was σE = 12. If we

assume that� 70% connections are within one σE (because the shape of connection probability

function is Gaussian), then in EI-networks the combined connection region of all neurons in

F1 has a diameter of 12 + 8 + 12 = 32. Therefore, to be outside the connection region of F1, the

centroid of F50 should be at least 16 grid points away from the centroid of F1 in EI-networks,

that is, the Effective length should be larger that 16. Similarly, we estimated the Effective length
for I-networks as 16.

Thus, we defined that an effective feedforward pathway capable to creating STAS should

have an Effective length> 16 (for both EI- and I-networks). Finally, we defined pFF as the fre-

quency of finding a feedforward path of Effective length> 16.

Evoked STAS

To study stimulus evoked STAS we stimulated� 50 excitatory neurons in the EI-network

model by injecting direct current with an amplitude of 500 pA. This input was in addition to

the background input every neuron received. The stimulus input lasted for 50 ms. To collect

sufficient data for further statistical analysis, each stimulus was presented 20 times to the stim-

ulated neurons. We measured the probability of evoking a STAS, the network reaction time

and the lifespan of evoked STAS. The probability of evoked STAS was calculated as Ce/Nstim,

where Ce is the count of evoked STAS and Nstim = 20 is the number of times the neurons were

stimulated. An evoked STAS was characterized by the following criteria: the existence of clus-

tered spikes in the stimulated neurons within 50 ms of stimulus onset and the absence of
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clustered spikes in the stimulated neurons for 50 ms prior to stimulus onset. The reaction time

was defined as the time the stimulated neurons took to elicit their first spikes after stimulus

onset. The lifespan was defined by the time difference of the first and the last spike of the

evoked STAS.

Simulation tools

All simulations of the network models were performed using the NEST simulation software

(http://www.nest-initiative.org) [63]. The dynamical equations were integrated at a fixed tem-

poral resolution of 0.1 ms. Simulation data were analyzed with Python using the scientific

libraries SciPy (http://www.scipy.org) and NumPy (http://www.numpy.org), and visualized

using the plotting library Matplotlib (http://matplotlib.org). The code to simulate the model is

available at GitHub https://github.com/babsey/spatio-temporal-activity-sequence.

Supporting information

S1 Fig. Multiplicity of connections and effect of forcing a neuron to make some connec-

tions preferentially in the direction ϕ. (a) Count distribution of multiple connections

between any pair of neurons in an I-network (left) and in an EI-network (right). The multiple

connections were formed primarily because of the connectivity rule (local connectivity). Note

that the network configuration (as indicated by different colors of the curves) had only a min-

ute influence on the distribution of multiple connections. (b:left) Average δconn for I-networks

(average over all the neurons in the network). (b:right) Same as in the left panel, but for EI-

networks. Forcing a neuron to make preferentially connections in the direction ϕ increased its

connectivity in that direction: connectivity doubled in the immediate vicinity. Correspond-

ingly, the connectivity was reduced by the same amount in the opposite direction. This change

in the opposite direction is because we achieved asymmetry by shifting the connectivity cloud

in the direction specified by ϕ (Fig 1). That is, in the immediate vicinity, the connection proba-

bility was doubled in the direction ϕ. This increase may look very large, but it nevertheless was

not large enough to alter the probability of multiple connections in the network (a). Note that

there is connectivity increase and corresponding decrease at larger distances, but such change

was not of much consequence because at these large distances the connection probability was

very small to begin with.

(TIFF)

S2 Fig. Effect of input and excitation-inhibition balance on the emergence of spatio-tem-

poral sequences in an EI-network. (a) Average firing rate of excitatory neurons as a function

of the mean (ordinate) and standard deviation (abscissa) of the input noise to the all neurons.

(b) The probability of observing an evoked STAS (cluster) as a function of the mean (ordinate)

and standard deviation (abscissa) of the input noise to the all neurons. (c) The life span of an

evoked STAS as a function of the mean (ordinate) and standard deviation (abscissa) of the

input noise to the all neurons. The values for the excitation-inhibition balance used for panels

a-c are marked by the orange circle in panels d-f. (d) Average firing rate of excitatory neurons

as a function of excitatory synaptic weight (ordinate) and the ratio of recurrent inhibition and

excitation (g, abscissa). (b) The probability of observing an evoked STAS as a function of excit-

atory synaptic weight (ordinate) and g (abscissa). (c) The life span of an evoked STAS as a

function of excitatory synaptic weight (ordinate) and g (abscissa). The values of input mean

and standard deviation used for panels d-f are marked by the orange circle in panels a-c.

(TIFF)
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S3 Fig. Spectrogram of the population activity in EI-network connected according to the

Perlin configuration. (a) Spectrogram for the EI-network with weaker recurrent synaptic

strength (Ji = 10pA). The spectrogram was estimated by splitting the time series of population

activity (bin width 5 ms) in 200 ms windows. Consecutive epochs overlapped for 150 ms dura-

tion. (c) Power in individual epochs (black curves) and the mean power (red curve) corre-

sponding to the spectrogram shown in panel a as a function of frequency. (b) Same as in panel

a for stronger recurrent inhibitory synaptic strength (Ji = 20 pA). (d) Same as in panel c but for

the spectrogram shown in panel b.

(TIFF)

S1 Video. Spiking activity in I-networks for the four different configurations. Each panel

shows the activity of inhibitory neurons observed over a time window of 50 ms (disjoint win-

dows), rendered in the two-dimensional network space. Each dot represent a spike of the

neuron located at that grid point. Active neurons are colored to identify individual spatio-tem-

poral activity sequences (STAS). Spikes rendered in the same color belong to the same STAS

and in yellow color are not part of an STAS.

(MP4)
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