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Oscillations and synchrony in neuronal network activity dynamics

Balance of excitation and inhibition shapes both population synchronization and oscillations — two key features of the global
dynamics of spiking neuronal networks that affect the propagation of spiking activity within and between such networks.

Population oscillations

In a network of excitatory and inhibitory neurons, persistent excitation of the excitatory population and/or inhibition of the
inhibitory population generates oscillations, whereas persistent inhibition of the excitatory population and/or excitation of the
inhibitory population suppresses oscillations. This general rule can be derived from the dynamics of a firing rate-based model.
A standard mean-field model with additive interactions (Wilson-Cowan model)! is described by:
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where r, is the average firing rate and 7, is the effective time constant of the a population; w,y, is the effective coupling strength
from population b to a; f, is the transfer function of the a population activity (e.g. sigmoid function); I, and 1, are the external
input and noise to the population a. The synaptic interaction matrix of the network is:
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In the linear regime, eigenvalues of the matrix A determine the dynamics and stability of the network activity. For stability,
the real part of the eigenvalues should be negative. When synaptic weights are altered in such a way that the eigenvalues of
A become complex, the network makes the Andronov-Hopf bifurcation” and exhibits oscillations':3. Typically, in a linear
network of excitatory and inhibitory populations, the Andronov-Hopf bifurcation occurs when the effective excitation in
the excitatory population exceeds the effective inhibition in the inhibitory population®>. Rate-based models provide only a
qualitative description and cannot be used to understand how neuronal and synaptic properties affect the oscillations, because
there are no physiological correlates of variables such as 7¢ and 7;.

The estimation of the linear response of spiking neuronal networks is a better strategy to reveal how neuron and synapse
properties affect the oscillation dynamics*©. In this approach, the network response to a perturbation is studied. If the response
to a perturbation is smaller than the perturbation itself, the network state is considered stable, because the network will
eventually return to its original state. To test whether a network with a certain set of parameters will exhibit oscillations, the
stability of the network activity is checked using an oscillatory perturbation at different frequencies (1). Both the neuron
membrane and the synapses act as linear filters, introducing a phase shift and amplitude attenuation in the response. For a stable
oscillatory activity we require that the response is identical to the input perturbation in amplitude, frequency and phase. This
condition can be written as*:
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where Ay p(A) = wapRy(A)Sap(L), wyp is the magnitude of the post-synaptic potential from population b to a, the frequency-
domain transfer functions of the neurons are R,(A) and of the synapses are S,,(A); A is the frequency of the oscillatory input
perturbation. R,(A) and S,;(A) capture the fact that both neurons and synapses act as low-pass filters.

When the above condition (Eq. 3) holds, oscillations arise. Because the network operates in an inhibition-dominated
regime, the firing rates of individual neurons can be smaller than the oscillation frequency and a different set of neurons
participates in each oscillation cycle. In this sense, these oscillations are better characterized as stochastic oscillations (SO)*©.
The oscillation frequency of such oscillations is primarily determined by both synaptic delays and membrane time constant, but
can be modulated by changing the relative strength of inputs.

Eq. 3 implies that all four types of interactions between the excitatory and inhibitory neurons (E - E, E = 1,1 - E, I — 1)
influence the network oscillations and a possible mismatch between excitation/inhibition amplitude and timing is the key to the
emergence of oscillations. Only under specific conditions, oscillations may be mainly determined by inhibitory interactions
alone (interneuron gamma:ING) or both excitatory and inhibitory interactions (pyramidal-interneuron gamma:PING)’.

The linear response of spiking neuronal networks also reveals that, independently of the synaptic and neuronal parameters,
the network activity regimes are determined by the effective excitatory drive and the ratio of recurrent inhibition and excitation
(I/E ratio, Fig. 1Left)*°. When inhibition and excitation are balanced, the network exhibits a non-oscillatory asynchronous-
irregular regime (AI). In that case, spiking among neurons is asynchronous, because correlations due to shared inputs are
actively canceled. Spike patterns are irregular, because spikes are driven by fluctuations in the synaptic input. As the I/E ratio
is increased, the Andronov-Hopf bifurcation occurs and network oscillations emerge (SO state). In addition, synchrony may
also emerge when correlations are not canceled. Thus, this activity regime is termed synchronous-irregular (SI, see below).
(Fig. 1Left). As the effective excitation is increased, the bifurcation occurs at smaller values of the I/E ratio (or smaller recurrent
inhibition)(Fig. 1Left).

Under healthy physiological conditions, the network operating point is close to the Andronov-Hopf bifurcation. That is, the
network does not exhibit any oscillation, but an external input can induce damped oscillations with the following set of events:
transient excitation of excitatory neurons increases recurrent inhibition, which suppresses the activity of both excitatory and
inhibitory neurons. As a consequence of the reduced inhibitory activity, excitatory neurons are released from inhibition and
spike at a higher activity. As this sequence of events repeats, oscillations emerge. All these events can be clearly observed
at the level of individual neuron membrane potentials and synaptic conductances®. Because the network operates below the
Andronov-Hopf bifurcation, the response magnitude progressively decreases, resulting in damped oscillations and network
resonance (Fig. 1)%,°. The same set of events can be initiated by transiently inhibiting the inhibitory population.

As the operating point of the network moves closer to the bifurcation, the network response may also display more complex
dynamics alongside oscillations'”. Finally, we note that available analytical methods only provide insights into single frequency

oscillations.
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Figure 1. (Left) Schematic description of network activity regimes as a function of effective excitatory drive (y-axis) and the
ratio of recurrent inhibition and excitation (x-axis). The Al and SI/SO regimes are observed in the shaded and non-shaded
regions, respectively. Insets: examples of spiking activity raster displays in Al and SI/SO regimes, respectively. These rasters
schematicaly show of Al and SI/SO activities. For actual spiking activity in Al and SI/SO state please refer to Kumar et al.'!).
(Right) Lower traces show a scheme of excitatory (blue) and inhibitory (red) population activity in the SI/SO state. The top
traces show damped oscillations in the excitatory (blue) and inhibitory (red) population activity, when a network operating
close to the Andronov-Hopf bifurcation is perturbed with a PP.
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Pairwise correlations
The origin of synchrony lies in shared inputs. Such shared inputs may arise due to sharing of direct or indirect projections 2.
Even in sparsely connected random networks (with connection probability = 0.1) there are sufficient shared inputs to induce
a population-wide synchronization'!. However, recurrent inhibition (I/E ratio) can be tuned to cancel the bulk of pair-wise
correlations and maintain an Al state. Consider a pair of excitatory neurons receiving shared input from excitatory pre-synaptic
neurons. Because of the shared inputs, this pair of neurons will spike in a correlated fashion. However, the shared inputs can be
canceled if the same shared input also arrives at the two neurons via shared inhibitory projections'?,'#. That is, when neurons
share both excitatory and inhibitory inputs, the effect of shared input is suppressed, resulting in an asynchronous state. An
imbalance between the degree of shared excitatory and inhibitory neurons (either due to unequal numbers, synaptic weights
and/or firing rates) tends to synchronize the neuronal activity.

Both synchrony and oscillations can coexist in a neuronal network, because they arise due to a mismatch between excitation
and inhibition (amplitude and/or time), but synchrony does not automatically imply oscillations and vice versa.

Entrainment and resonance in neuronal oscillations

Given the matrix A, the network described by eq. 1 has an intrinsic oscillation frequency (wy = 27 f). When the system is
driven by an oscillatory external input (e.g. Iz = Arsin(@rt + @r) = Arsin[@r(¢)]), the network responds with an oscillation
with amplitude R, and phase @, (f). As the amplitude and frequency of the periodic input is systematically increased, two
different but related phenomena can be observed in the steady state network response:

Entrainment: When the receiver network is operating in an oscillatory state, periodic input from another network can
“entrain’ the oscillations of the receiver network?. It is necessary for entrainment that the input frequency () is close to the
network oscillations frequency (wp). When @y ~ @r the network gets entrained and the phase difference between input and
network output remains constant over time (A (t) = Qe (t) — @ (t) = const.). Entrainment can be observed only for a small
range of Aw (= @wr — ). This range of Aw in which entrainment can occur increases as input amplitude (Ar) is increased.
In the space spanned by Am and Ay, the region in which entrainment occurs is called the *Arnold Tongue’? (Fig. 2a). Within
the Arnold Tongue, the phase difference A@(r) converges to a fixed value after a few oscillation cycles (Fig. 2¢). Outside the
Arnold Tongue regime, A¢ () continues to change with time independently of the external input phase'®.

Resonance: When a network is tuned to operate close the bifurcation between oscillatory (SI/SO) and non-oscillatory (AI)
states, periodic input can induce oscillations provided the input frequency matches (wr) with the oscillation frequency (wyp) of
the receiving network (Fig. 2d). This phenomenon is called resonance®. For a fixed A, the amplitude of the induced oscillatons
(Ryer) changes in a non-monotonic fashion as a function of Aw (Fig. 2b).

Both entrainment and resonance require several cycles before the response magnitude, frequency and phase reach a fixed
value. Finally, while entrainment and resonance often appear concomitantly, they are different phenomena. Entrainment is
observed when the network is exhibiting persistent oscillations, whereas resonance can occur even when the network is not
exhibiting any persistent oscillations.

Role of neuron types in shaping the oscillations and synchrony in a neuronal network

The neurons, in particular the inhibitory interneurons, in the brain are highly diverse in terms of their gene expression, chemical
make-up, morphology, electrophysiology and connectivity'®~!®. Naturally the question arises how this neuronal diversity
affects the transmission of spiking activity. Because neuronal networks in the brain are composed of different types of neurons,
individual neuron properties can affect the transmission primarily by altering the network state.

The neuron transfer function features in Eq. 3 (the variable R;). Hence, individual neuron types can affect the emergence
of global oscillations, resonance and entrainment. Certain neuron types, e.g. those that spike in bursts, may also affect the
network dynamics by altering the effective synaptic weight (because of the temporal summation of PSPs induced by a burst)'.
Overall, the effect of different neuron types can be summarised in the excitation-inhibition balance (both amplitude and timing)
which eventually determines the global activity state and transmission properties of a neuronal communication system. Finally,
our previous work has shown that the impact of a neuron type on the global activity dynamics of a recurrent random network
depends on the network activity regime itself'”.

However, how neuronal diversity affects the emergence of correlations and synchrony is not well understood. Existing
computational and theoretical work has confirmed that the transfer of correlation (from input to output) depends on the spiking
dynamics of the neurons and on the slope of the input-output transfer function of the neurons”>?!. Neurons operating in a

coincidence detection regime are more suited to transfer correlations than neurons operating in the ’integrator-mode’?'.
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Figure 2. Schematic description of network entrainment and resonance. (a) The shaded region (Arnold Tongue) marks
the range of Ar and Aw for which entrainment occurs. (b) Resonance curve: network response R,; as a function of Aw, with
Ar fixed. (c) In the case when the network is tuned to operate in in an oscillatory state, if the external input has a frequency
within the Arnold Tongue, within a few cycles network activity phase matches with that of the input (steady state of the system)
and the network response magnitude reaches its maximal value. (d) A network operating close to the bifurcation between Al
and SI/SO does not exhibit oscillations in its steady state but input perturbations can create a damped oscillation. In such a state
when the input oscillation frequency is close to the intrinsic frequency of the network, the input induces oscillation in the
receiver network. In other words, the network resonates when the input frequency matches its intrinsic oscillation frequency. It
is important to note that entrainment and resonance stabilize after some transient time as shown in panels ¢ and d.
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