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Keemink SW, Boucsein C, van Rossum MC. Effects of V1
surround modulation tuning on visual saliency and the tilt illusion. J
Neurophysiol 120: 942–952, 2018. First published May 30, 2018;
doi:10.1152/jn.00864.2017.—Neurons in the primary visual cortex
respond to oriented stimuli placed in the center of their receptive field,
yet their response is modulated by stimuli outside the receptive field
(the surround). Classically, this surround modulation is assumed to be
strongest if the orientation of the surround stimulus aligns with the
neuron’s preferred orientation, irrespective of the actual center stim-
ulus. This neuron-dependent surround modulation has been used to
explain a wide range of psychophysical phenomena, such as biased tilt
perception and saliency of stimuli with contrasting orientation. How-
ever, several neurophysiological studies have shown that for most
neurons surround modulation is instead center dependent: it is stron-
gest if the surround orientation aligns with the center stimulus. As the
impact of such center-dependent modulation on the population level is
unknown, we examine this using computational models. We find that
with neuron-dependent modulation the biases in orientation coding,
commonly used to explain the tilt illusion, are larger than psycho-
physically reported, but disappear with center-dependent modulation.
Therefore we suggest that a mixture of the two modulation types is
necessary to quantitatively explain the psychophysically observed
biases. Next, we find that under center-dependent modulation average
population responses are more sensitive to orientation differences
between stimuli, which in theory could improve saliency detection.
However, this effect depends on the specific saliency model. Overall,
our results thus show that center-dependent modulation reduces cod-
ing bias, while possibly increasing the sensitivity to salient features.

NEW & NOTEWORTHY Neural responses in the primary visual
cortex are modulated by stimuli surrounding the receptive field. Most
earlier studies assume this modulation depends on the neuron’s tuning
properties, but experiments have shown that instead it depends mostly
on the stimulus characteristics. We show that this simple change leads
to neural coding that is less biased and under some conditions more
sensitive to salient features.

orientation saliency; population coding; surround modulation; tilt
illusion

INTRODUCTION

Neurons in the primary visual cortex (V1) of mammals
respond to stimuli in the center of their receptive field (RF).

Although stimuli that are in the surround outside the RF do not
cause a response by themselves, they can strongly modulate the
response, as has been shown by stimulation with center-
surround grating pairs (Fig. 1A) (Blakemore and Tobin 1972;
Freeman et al. 2001; Fries et al. 1977; Gilbert and Wiesel 1990;
Girman et al. 1999; Jones et al. 2001; Maffei and Fiorentini
1976; Nelson and Frost 1978; Seriès et al. 2003; Shushruth et
al. 2012; Sillito and Jones 1996). Such surround modulation is
thought to underlie many perceptual phenomena, such as
contrast perception of center-surround gratings (Shushruth et
al. 2013), the saliency of a differently oriented bar among a
background of identically oriented bars (Li 1999; Petrov and
McKee 2006; Sillito et al. 1995) and contour integration
(Keemink and van Rossum 2016; Li 1998). Furthermore,
surround modulation has been proposed to underlie the tilt
illusion in which the center orientation is misjudged in the
presence of a surround grating (Clifford et al. 2000; Keemink
and van Rossum 2016; Qiu et al. 2013; Schwartz et al. 2009).
Crucially, the vast majority of studies investigating the func-
tional consequences of surround modulation assume that mod-
ulation depends on the angular difference between the orien-
tation of the surround stimulus and the preferred orientation of
the neuron. We term this type of modulation “neuron-depen-
dent modulation” (Fig. 1B).

However, a number of experimental studies has found that
when both the center and surround orientations are varied, only
a minority of neurons is modulated this way. For the majority
of V1 neurons the modulation depends instead on the differ-
ence between the orientation of the surround stimulus and the
center stimulus (Cavanaugh et al. 2002a; Shushruth et al. 2012;
Sillito et al. 1995). This has previously been succinctly ex-
pressed as “The surround maximally suppresses responses to
what the center sees, not to what the center prefers” (Ca-
vanaugh et al. 2002a). We term this form of modulation
“center-dependent modulation” (Fig. 1C). Center-dependent
modulation also emerges naturally from Bayesian models of
perception (Lochmann and Deneve 2011; Lochmann et al.
2012) and neural models trained by image statistics (Coen-
Cagli et al. 2012), but despite being a well-known phenome-
non, the functional consequences of center-dependent modu-
lation are largely unknown.

In this study we compare neuron-dependent to center-depen-
dent modulation using a phenomenological model of V1 in
which the surround modulation tuning can be set to either
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variant, without affecting other properties of the model, so that
any functional difference can be solely attributed to the differ-
ence in modulation tuning. First, we consider the response to
center-surround stimuli and reproduce the well-known result
that neuron-dependent modulation leads to a bias in the decod-
ing of the center orientation. This bias has been interpreted as
a possible neurophysiological correlate of the tilt illusion. In
contrast, we find that center-dependent modulation yields an
unbiased representation of the center orientation (i.e., no tilt
illusion). A mixed population with both modulation types
quantitatively explains the psychophysically observed tilt illu-
sion magnitude.

Second, Shushruth et al. (2012) predicted that center-depen-
dent modulation might lead to increased relative responses to
salient features (e.g., a single deviant bar among a field of
homogeneous bars). We test this by examining the effect of
surround modulation on the coding and saliency of fields of bars.
As the exact mechanism for saliency detection is unknown, we
consider two extremes: the saliency of a bar either depends on its
mean population response relative to that of other bars, or on its
maximum population response relative to that of other bars. With
the former saliency computation, center-dependent modulation
leads to a higher saliency signal than neuron-dependent modula-
tion. With the latter, neuron-dependent modulation leads to
slightly higher saliency. Thus center-dependent modulation could
indeed potentially lead to a stronger saliency signal than neuron-
dependent modulation, but this depends on the exact saliency
computation.

METHODS

Encoding Model

Center surround model. To examine the functional differences
between neuron-dependent and center-dependent surround modula-
tion, we compare two phenomenological models consisting of N � 32
neurons with preferred orientations equally spaced in the interval [0,
�]. Presented with just a center grating, a neuron’s firing rate as a
function of the orientation of the center stimulus, �c, is modeled by a
von Mises function (von Mises 1918)

g(�i, �c) � Ac exp�kc�cos2(�i � �c) � 1�� ,

where �i is the neuron’s preferred orientation, Ac is the peak firing rate
(set to 20 Hz) which is reached when the center equals the preferred
orientation (�i � �c), and kc determines the tuning width.

Presented with both a center and surround stimulus the response f()
is modeled as

f i(�i, �c, �s) � g(�i, �c)h(�ref, �s),

where �ref is the reference orientation (see below), �s is the surround
orientation, and h() models multiplicative modulation (Cavanaugh et
al. 2002b). As surround modulation is typically suppressive at me-
dium and high contrast (Shushruth et al. 2012), we model it as

h(�ref, �s) � 1 � As exp�ks�cos2(�ref � �s) � 1�� , (1)

where As (0 � As � 1) determines the modulation strength, and ks sets
the surround modulation tuning width. The strongest suppression is 1
– As. We fitted the parameters to the average normalized tuning and
modulation curves in figure 3D of Cavanaugh et al. (2002a) in the
region � � –�⁄2...�⁄2, which yielded As � 0.5, kc � 0.6, ks � 0.5.
Note that the center and surround tuning widths are quite similar in
those data; however, this is not required for our findings.

Crucially, �ref in the modulation function h() can be set to either 1)
the neuron’s preferred orientation (�ref � �i), reflecting neuron-de-
pendent modulation; or 2) the center orientation (�ref � �c), reflecting
center-dependent modulation.

To test if the results hold more generally, in addition to this
multiplicative modulation we also examined a model with subtractive
modulation (i.e., f � g – h), as has been observed in a minor fraction
of neurons (Cavanaugh et al. 2002b). This gave qualitatively similar
results (not shown).

In some cases noise was introduced by modeling the observed
neural spike count as a Poisson processes with a rate given by the
tuning functions f(), such that ri � Poisson (fiT). The observation time
T was set to 0.5 s unless indicated otherwise. Qualitatively, the results
extend to Gaussian additive and multiplicative noise models (not
shown).

Using an explicit model as above allows for both qualitative and
quantitative analysis. It is phenomenological, and includes neither
biophysical mechanisms nor any dynamics, making it easy and intu-
itive to analyze. However, in the visual cortex surround modulation is
mediated through other neurons, thus involving recurrent interactions.
Indeed, Shushruth et al. (2012) demonstrated that center-dependent

Fig. 1. Two types of V1 surround modulation. A: center-surround stimuli consisting of a center grating covering the neuron’s classical receptive field and a larger
grating covering the surround. B: responses of an example cell with neuron-dependent modulation. Modulation is strongest when the surround matches the
neuron’s preferred orientation (stars indicate the strongest suppression for each center orientation). The height of the boxes is proportional to the neural response.
“Opt” corresponds to the neuron’s preferred center orientation, “Orth” to the orthogonal orientation, and “Sub” and “Wk” correspond to 2 intermediate
orientations. C: same as B, but for the more common case of a neuron with center-dependent modulation. Here the stars shift with the center orientation, indicating
that suppression is strongest when the center and surround stimulus orientations are aligned. Data in B and C are courtesy of Shushruth and Angelucci (Shushruth
et al. 2012).
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modulation can be achieved through strong local recurrent connec-
tions. However, in such a model it is not possible to clearly dissociate
the modulation strength from its degree of center dependency. Using
the phenomenological model allows us to study the effect of center-
dependent modulation in isolation, without needing to resort to lower
level recurrent models.

Encoding configurations of multiple bars. The above model de-
scribes the response of a population of neurons with identical recep-
tive field locations to a center-surround grating pair. To encode stimuli
consisting of arbitrary fields of bars, we extend the model so that a
neuron’s surround modulation is a product composed of the modula-
tion from the surrounding bars. The modulation is assumed distance-
dependent so that far away bars have little influence. The response of
neuron i at 2D location x with orientation �i, surrounded by K bars at
locations yk is

f i � g(�i, �x) �
k�1

K �1 �
c2

�x � yk�2h(�ref, �k)� ,

where c is a length scaling factor set to one, the product is over all
other bars, and �k is the orientation of bar k. As before, �ref is either
the preferred orientation of neuron i at location x, or the presented bar
orientation at location x.

Decoding Models

Population vector decoding. The population vector is given by the
sum of the neurons’ preferred orientation vectors weighted by their
firing rate (Georgopoulos et al. 1986; Schwartz et al. 2009),

v̂c � 	
i

riui, (2)

where ri is the firing rate, and ui � (sin2�i,cos2�i) is the unit vector
pointing in neuron i’s preferred orientation (multiplied by 2 to ensure

circularity). The estimated center orientation �̂c follows from the angle
of the population vector

�̂c �
1

2
� v̂c

where � denotes a vector’s angle.
In the absence of surround stimulation, the estimated center orien-

tation is unbiased. Symmetry and circularity arguments yield that any
orientation tuning curve g() that is symmetric around its preferred
orientation, i.e., a function of |�i � �c| only, yields a bias-free
estimator. This can be shown explicitly by using that for dense coding
with many neurons, Eq. 2 can be written as

v̂c � 
0

�
f�2�� � �c��u�d� ,

where f(x) is an arbitrary function symmetric around 0 with period-
icity in 2�, and u� � (sin2�,cos2�)T is the unit vector with angle �.
We make the substitution x � � – �c such that v̂c � 
0

� f�2x�ux	�c
dx,

where due to the circularity of f(2x) the integral limits are unaltered.
Considering the first vector element of v̂c

v̂c
(1) � 
0

�
f(2x)(cos 2x sin 2�c 	 cos 2�c sin 2x)dx

�sin 2�c
0

�
f(2x) cos 2xdx 	 cos 2�c
0

�
f(2x) sin 2xdx


sin 2�c

Similarly, v̂c
�2� � 
0

� f�2x� cos2�x 	 �c�d� 
 cos 2�c, resulting in v̂c
� vc, where vc � (sin2�c,cos2�c)

T is the vector representation of the
center orientation. Hence, unsurprisingly, it is unbiased.

Population vector decoding of center-surround stimuli. Next, we
derive the bias in the presence of a surround grating. For neuron-
dependent surround modulation the estimated center orientation vec-
tor can be written as

v̂c
ndep � 
 g(�, �c)h(�, �s)u�d�

��(vc � �vshift)
(3)

where � � 2�Ach(�c,�s)I1(kc) is a scalar that does not affect the
amount of bias, I1 is the Bessel function of the first kind, and � �
Asexp(�ks)I1(|kcvc � ksvs|)/I1(kc). The shift vector vshift � kcvc � ksvs

biases the decoded orientation, where vs � (sin2�s,cos2�s)
T is the unit

vector associated to the surround. The bias is absent only when the
surround is parallel or orthogonal to the center. To our knowledge no
such exact expression for the population vector for von Mises tuning
curves was published before.

In contrast, for center-dependent surround modulation, the esti-
mated center orientation vector becomes

v̂c
cdep � 
 g(�, �c)h(�c, �s)u�d�

�h(�c, �s)
 g(�, �c)u�d�

��vc

which is always unbiased.
Maximum likelihood decoding. With maximum likelihood decod-

ing the likelihood of finding a particular population response is
maximized over all possible stimuli to find the most likely stimulus

parameters �̂ � (�s,�c) as

�̂ � arg max� L(r��),

where L indicates the log likelihood and r is the population response.
Under Poisson noise the log likelihood L�r��c� � T	i�1

N rilog�Tf
��i,�c,�s�� � T	i�1

N f��i,�c,�s� � 	i�1
N �riT�!. Without surround mod-

ulation 	i�1
N f��i,�c,�s� � 	i�1

N g��i,�c� is approximately constant
for dense tuning curves, and the stimulus dependent part of the log
likelihood L�r��c� � T	i�1

N rilog g��i,�c�. In the limit of low noise, so
that there are no secondary maxima (Xie 2002), the estimated center

orientation �̂c can be found by setting the derivative of the likelihood
with respect to �c to zero, resulting in

�̂c � arctan
	
i�1

N

risin�i

	
i�1

N

ricos�i
� , (4)

which is the angle of the population vector, Eq. 2. Hence at low noise
the naive ML decoder and the population vector decoder give fully
identical results.

To decode the full center-surround stimulus we use an ML decoder
which decodes both the center and surround orientations. Under this
condition 	i�1

N f��i,�c,�s� is no longer approximately constant, and
the stimulus dependent part of the log likelihood becomes

L(r��c, �s) � T	
i�1

N

rilog�g(�i, �c)hi(�ref, �s)�

� T	
i�1

N

g(�i, �c)hi(�ref, �s).

To find the estimate of both center and surround orientation, ��̂c,�̂s�,
the likelihood needs to be maximized with respect to both �c and �s.
As to our knowledge there is no closed expression for its solution, we
maximized the log likelihood numerically, starting from different
initial conditions for the estimated stimulus to avoid local maxima.
We generated several noisy realizations of the population response r,
and used gradient descent to find the stimulus pair which maximized
the likelihood.
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Computer Simulations

All data analysis and models were implemented in Python 2.7.13,
using the Numpy 1.13.1 and SciPy 0.19.1 toolboxes. The figures were
plotted using the HoloViews toolbox (Stevens et al. 2015).

RESULTS

To examine the functional differences between neuron-
dependent and center-dependent surround modulation, we
compare two phenomenological models of V1, with parame-
ters constrained by experimental data (METHODS). The response
of a neuron is modeled as the combination of the tuning curve
for the orientation at the center, g(), and a multiplicative
modulation term h(). Apart from the surround orientation �s,
the modulation term depends either on the center orientation
�c, or on the preferred orientation of the neuron �i. This leads
to two subtly different tuning curve variants:

f i
ndep��i, �c, �s� � g��i, �c�h��i, �s� neuron dependent (5)

f i
cdep��i, �c, �s� � g��i, �c�h��c, �s� center dependent (6)

These two variants can be seen as two extreme types of
modulation; intermediate forms have also been observed
(Shushruth et al. 2012).

The single neuron responses of the two models are illus-
trated in Fig. 2. For neuron-dependent modulation the suppres-
sion depends on the surround orientation and the preferred
orientation, and thus is strongest at the preferred orientation
(Fig. 2A). In contrast, for the center-dependent model, the
modulation is strongest whenever center and surround orien-
tations are aligned (Fig. 2B).

Tilt Illusion and Center Orientation Decoding

To examine the effect of the modulation type on coding
biases, we decode the center orientation from the population
response. Whereas many population coding studies concern the
decoding accuracy, i.e., the trial-to-trial variation and its rela-
tion to the neural noise model (e.g., Shamir 2014), here we are
interested in the biases in decoding, that is, the systematic
mis-estimation of the stimulus that remains after averaging
over many trials (Cortes et al. 2012; Keemink et al. In press;
Seriès et al. 2009).

A well-known perceptual bias is the tilt illusion (e.g., Clif-
ford 2014; Westheimer 1990). In the tilt illusion the perceived
orientation of a center grating is influenced by the presence of
a surround grating. For small and intermediate angles the tilt
illusion is repulsive, and for larger angles the illusion becomes
weakly attractive. A shift in the population response under
neuron-dependent modulation has been hypothesized to under-
lie the tilt illusion (Clifford et al. 2000; Qiu et al. 2013;
Schwartz et al. 2009).

First, we decode the center orientation from the population
response using the population vector decoder (see METHODS;
Georgopoulos et al. 1986; Schwartz et al. 2009). We present a
center grating and a range of surround orientations and decode
the center orientation. The biases for both models are plotted
against surround orientation (Fig. 3A). As expected and in line
with previous models, we find that the neuron-dependent
model has a strong repulsive bias. However, with center-
dependent modulation this bias completely disappears.

These results can be understood from how the two modula-
tion types affect the population response (Fig. 4). Neuron-
dependent modulation depends on the preferred orientation of
each neuron, thus modulating each neuron differently and
shifting the population response away from the surround ori-
entation, resulting in a repulsive illusion (Fig. 4, solid curves in
the middle and bottom rows). Center-dependent modulation
instead depends on the center stimulus, irrespective of the
preferred orientation, thus modulating each neuron equally.
This reduces, but does not shift, the population response,
resulting in zero bias (Fig. 4, dashed curves in the middle and
bottom rows). The absence of bias extends to all models where
surround modulation is felt equally across neurons, whether the
surround modulation is multiplicative, subtractive, or some
combination of both, that is, for all models of the form
fi(�i,�c,�s) � g(�i,�c)h(�c,�s) � k(�c,�s), where k() is a function
describing subtractive modulation.

The bias for neuron-dependent modulation can be calculated
exactly. The population vector v̂c

ndep is a function of both the
center stimulus (represented by unit vector vc) and the surround
stimulus (METHODS, Eq. 3),

v̂c
fix 
 (vc � �vshift) , (7)

where � is a positive number. The shift vector vshift � kcvc �
ksvs lies between vc and vs (except if �c � �s � (1/2)�n, when

Fig. 2. Modeled single neuron responses to
center-surround gratings, for neuron-depen-
dent and center-dependent surround modula-
tion. A: the neural response for different center
orientations (0°, 30°, and 60°) against the
surround orientation, for neuron-dependent
surround modulation. The center orientations
are indicated by the dashed lines and their
respective colors. The curves do not shift
horizontally, since modulation does not de-
pend on the center orientation. B: same as A,
but for center-dependent modulation. As mod-
ulation is now strongest when center and sur-
round are aligned, the curves shift with the
center orientation.
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it points at vc). Due to the minus sign in Eq. 7, the vector v̂c
fix

is repelled from vshift. The amount of repulsion, given by � and
vshift, depends on the modulation strength As, as well as the
tuning widths, as given by kc and ks. The bias increases with
decreasing kc (broader tuning curves) and increasing ks

(sharper surround modulation).

The above results use the population vector, which does not
take the effect of the surround modulation into account. To get
a better idea of what the population can in principle encode we
use the maximum likelihood (ML) decoder, which finds the
stimulus that most likely caused the observed response (Kay
1993; Pilarski and Pokora 2015; Xie 2002). When the ML
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decoder is constructed such that it is naive to the effects of
surround modulation, it performs identically to the population
vector (see METHODS). Next, we implement an ML decoder that
takes the full encoding model into account and infers both the
center and surround orientation from the population response.
The ML decoder is applied to responses drawn from a Poisson

process (see METHODS, Eq. 4). The estimate ��̂c,�̂s� is found by
maximizing the likelihood with respect to both angles, and the

corresponding center biases is given by bc � ��̂c� � �c.
For neuron-dependent modulation the ML decoder bias is

still present, but reduced compared with the population vector
decoder (Fig. 3B). The average bias across surround orienta-
tions is shown as a function of stimulus duration in Fig. 3C,
assuming perfect temporal integration by the decoder. In the
limit of very long measurement time (i.e., zero noise) the
likelihood landscape becomes very steep and is maximal when

��̂c,�̂s�, � (�c,�s), i.e., the estimate equals the true value and
hence the bias is zero for both neuron- and center-dependent
modulation. In contrast, the bias of the population vector
decoder is independent of stimulus duration (gray curves). For
center-dependent modulation the estimates are again bias-free,
independent of decoding model (Fig. 3, B and C).

Decoding from a mixed population. While a majority of
neurons seems to exhibit center-dependent modulation, some
neurons exhibit neuron-dependent modulation, and others
show intermediate tuning (Shushruth et al. 2012). We measure
the bias in such a mixed population by varying the percentage
of center-dependent vs. neuron-dependent neurons. We model
3,200 neurons, such that there are 100 neurons per preferred
orientation. When we decode the center orientation using the
population vector, the amount of bias strength is simply pro-
portional to the percentage of neurons with neuron-dependent
modulation (Fig. 3D). The ML decoder qualitatively shows the
same dependence on neurons with neuron-dependent modula-
tion, with a lower overall bias (not shown). In the DISCUSSION

we use these results to compare psychophysical to neural data.

Saliency Based on Orientation Contrast

Surround modulation is thought to underlie the saliency of
stimuli that have an orientation different from their surround
(Li 1999; Petrov and McKee 2006; Sillito et al. 1995). While
saliency computation likely includes feedback from higher
areas, it has been proposed that part of the saliency is computed
from the V1 responses in a feed-forward manner, so-called
bottom-up saliency (Li 1999, 2002). In this model, salient
features have a higher response than less salient features.
Compared with neuron-dependent modulation, center-depen-
dent modulation has previously been hypothesized to increase
the response to salient features relative to less salient features
(Shushruth et al. 2012).

We examined how surround modulation type affects visual
saliency, using stimuli consisting of multiple bars. A popula-
tion of orientation-selective neurons is associated to each bar;
the neurons’ surround consists of the other bars, which indi-
vidually modulate its response in a distance-dependent manner
(METHODS). We present the neuron-dependent and center-de-
pendent modulation variants of this model with various bar
configurations (Fig. 5, left column).

As the exact nature of saliency computation is unknown,
we define two measures of saliency. First, we assume that
the saliency of a given bar (the target) is given by the
maximum response across all orientations at the target
location, relative to the average maximum response to all
bars in the image,

smax �
max(rt)

�max(rx)�
,

where rt and rx are the population responses at the target and x
locations respectively, max(r) is the maximum across a local
population response, and �� denotes an average across all
locations. Thus if the maximum response to a bar is higher than
most other bars in an image, its saliency will be larger than 1.

Second, we consider a saliency measure which compares the
mean response of a target-bar population to the mean response
of all bars in the image (Li 1999),

smean �
mean(rt)

�mean(rx)�
.

Both averaging and max-like pooling have been proposed as
canonical computations for the visual cortex. The two types of
saliency computation can be seen as extremes of the more
generic computation where the saliency is a nonlinear sum of
firing rates in a population s�p�
�	i ri

p�1⁄p, where the exponent
P � 1 for average-based salience, and p ¡� for max-based
saliency.

Using either saliency signal, under either surround modula-
tion type, features of interest have increasing saliency as the
orientation differences increase. This is illustrated for a single
contrasting bar or central set of bars (Fig. 5, A and B), for a
simple contour (Fig. 5C), and a boundary region between two
differing groups (Fig. 5D). These results are consistent with the
experimentally observed increase in neural responses and the
perceived contrast of a deviant central grating (Cannon and
Fullenkamp 1991; Shushruth et al. 2013), as well as with
previous saliency models using neuron-dependent modulation
(e.g., Keemink and van Rossum 2016; Li 1999). The increase
in saliency is due to target populations being less strongly
suppressed than background populations (which have many
surrounding stimuli of the same orientation).

With max-based saliency, neuron-dependent modulation
will lead to slightly higher saliency for intermediate orientation
differences and the same saliency for perpendicular orientation
differences (Fig. 5, middle column). The saliencies are very
similar because either modulation type leads to similar changes
in the maximum firing rates when the orientation difference is
increased (see Fig. 5, insets of middle column).

Mean-based saliency leads to the opposite scenario, with
center-dependent modulation leading to higher saliency
across all orientation differences (Fig. 5, right column). This
is due to center-dependent modulation leading to stronger
mean response changes than neuron-dependent modulation
(see Fig. 5, insets of right column). Similarly to the bias
results, this occurs because center-dependent modulation is
the same across a population. In the case of parallel bars,
with center-dependent modulation, all neurons responding
to one bar will be suppressed as strongly as the most
suppressed neuron under neuron-dependent modulation
(Fig. 4, left column), and as weakly as the least suppressed
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neuron under neuron-dependent modulation for perpendic-
ular bars (Fig. 4, right column).

While here we used experimentally constrained parameters,
by assuming that bars in the feature have negligible influence
on the responses to the rest of the image (as is the case for
small features such as a single bar), we show that these results
hold more generally (see APPENDIX): smean is always larger for

center-dependent modulation at perpendicular orientations,
whereas under some broad assumptions smax is always lower
for intermediate orientations.

DISCUSSION

We compared two types of surround modulation in V1: 1)
neuron-dependent modulation, which is strongest when the

Fig. 5. Saliency for center-dependent and neuron-dependent modulation and for 2 saliency measures. A: a single deviant bar among a homogeneous background.
Left: presented scene. Middle: the saliency of the central deviant bar as a function of its orientation difference with the background, calculated from the maximum
responses. The inset shows how the maximum firing rate to the central bar changes under the 2 modulation types. Right: same as the middle panel, but with the
saliency calculated from the mean responses. The inset shows the mean firing rates to the central bar. B: a group of deviant bars among a homogeneous
background. The saliency and firing rates were averaged over the 9 deviant bars. C: a set of diagonal bars among a homogeneous background. The saliency and
firing rates were averaged over the bars on the diagonal. D: 2 groups of bars with differing orientations, creating a boundary region. The saliency and firing rates
were averaged over the bars at the boundary region. Periodic boundary conditions were imposed in all panels to prevent edge effects.
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surround orientation equals the neuron’s preferred orientation;
and 2) center-dependent modulation, which is strongest when
the center and surround stimuli are aligned. Surround modu-
lation is often used to explain observed perceptual biases and
orientation saliency, assuming neuron-dependent modulation.
In this paper we asked how center-dependent modulation, the
biologically more prevalent modulation, impacts these find-
ings.

We first examined orientation coding biases by decoding the
center orientation from the population response. Under neuron-
dependent surround modulation, due to each neuron being
modulated differently, a population vector decoder has a strong
repulsive tilt bias, irrespective of the observation time or
number of neurons in the population, as is well known from
existing tilt illusion models (Blakemore et al. 1970; Clifford et
al. 2000; Schwartz et al. 2009). For a maximum likelihood
(ML) decoder that takes the effect of surround modulation into
account, a similar bias emerges. However, in this case the bias
depends on the neuronal noise level and disappears in the zero
noise limit. In contrast, for a center-dependent modulation,
where the modulation is identical across the population, bias is
completely absent for either decoder.

In the tilt-after effect, where the orientation of a full field
grating is misjudged when presented after a differently oriented
adapter grating (Schwartz et al. 2007), similar dependences of
the bias on modulation type have previously been described.
Seriès et al. (2009) showed that an ML decoder with no
knowledge of the adapter is biased if the adaptation depends on
the preferred orientation, but that if the adaptation instead
depends on the test orientation (the equivalent of center-
dependent modulation), the bias disappears [see figure 6C of
Seriès et al. (2009)]. Jin et al. (2005) investigated the effect of
specific tuning curve changes on the tilt-after-effect. They
found that tuning curve shifts away from the adapter cause an
attractive bias, and tuning curve magnitude changes cause a
repulsive bias. For neuron-dependent surround modulation, the
tuning curves are modulated, but not shifted, resulting in the
repulsive bias. For center-dependent modulation both tuning
curve shifts and magnitude changes occur, with the net effect
of these two tuning curve changes resulting in zero bias.

What do our results mean for the origin and magnitude of the
tilt illusion? Using a model based on the majority of V1
neurons, i.e., with center-dependent modulation, the illusion
disappears. Using our neuron-dependent model and with pa-
rameters fitted to monkey V1 data, a population vector decoder
leads to a repulsive bias of maximally 12°, compared with ~3°
psychophysically (Clifford 2014). We therefore propose that
the tilt illusion stems from a mix of center- and neuron-
dependent modulated neurons (Fig. 3D). A maximum repulsive
bias of 3° would correspond to a population with ~75%
center-dependent and 25% neuron-dependent modulation. Al-
though extracting a quantitative match between monkey neural
tuning curve properties and human psychophysics is full of
pitfalls, and depends on the decoder used, this ratio is reason-
able. Similar arguments would hold for a population that is not
strictly binary in its modulation type, but has some distribution
of modulation ranging from fully center- to neuron-dependent.
Both types of modulation (as well as intermediate cases) have
been observed electrophysiologically and although a specific
ratio is hard to infer from current literature, center-dependent

modulation is indeed more prevalent (Cavanaugh et al. 2002a;
Shushruth et al. 2012; Sillito et al. 1995).

The bias of an ML decoder decoding only from neuron-
dependent neurons was smaller than that of the population
vector, providing an alternative explanation for the magnitude
of the psychophysically observed bias. In contrast to the
population vector (and modulation-naive ML decoders), the
bias in the ML decoder depends on the noise and disappears at
lower noise levels (Fig. 3C). While several studies have re-
ported effects of the presentation time on the bias magnitude,
the results are conflicting. Several studies indeed reported a
decrease in bias magnitude with presentation time (Calvert and
Harris 1985; Wenderoth and Johnstone 1988b; Wenderoth and
van der Zwan, 1989), but some studies found an increase in tilt
illusion with presentation time (O’Toole, 1979) or an increase
for shorter time scales and a decrease for longer time scales
(Calvert and Harris 1988). The illusion was present in all these
studies, even when subjects were free to rotate a test grating
until it matched the perceived vertical (Wenderoth and John-
stone 1988a), thus arguing against a ML decoder with perfect
temporal integration and rendering this explanation of reduced
tilt illusion less parsimonious.

The full-tilt illusion has both a repulsive (for most orienta-
tion differences) and a weakly attractive effect (for larger
orientation differences). However, our current model does not
exhibit an attractive bias. While the origin of the attractive
illusion is debated, in our model it could be achieved by adding
an excitatory term similar to the current h term. Excitatory
modulation from a surround stimulus does exist with low
stimulation (a low contrast center grating with a thin surround
annulus), but is also mainly center dependent (Shushruth et al.
2012). Yet in preliminary work we were not able to construct
modulation curves that would lead to an attractive tilt illusion
and also reasonably fit the Cavanaugh data; a bias only ap-
peared for neuron-dependent modulation (whether inhibitory
or excitatory).

Center-dependent modulation has previously been hypothe-
sized to increase the relative response to more salient features
(Shushruth et al. 2012). We examined the saliency of a variety
of stimuli consisting of bar configurations containing differing
features among a homogeneous background. Either surround
modulation type results in a bottom-up saliency signal as the
response to the target is higher than the background response.
For saliency based on the maximum response there was only a
small difference between the two surround modulation types,
whereas for saliency based on the mean population response,
the larger response differences between salient and non-salient
locations leads to a stronger saliency signal for center-depen-
dent modulation. These results confirm that center-dependent
modulation might lead to stronger saliency signals, but show
that this depends strongly on the exact saliency computation.

Recent work has argued that center-dependent modulation
emerges from a normative perspective. Lochmann and Deneve
(2011) and Lochmann et al. (2012) built a spiking network
model with connections that are loosely derived from a Bayes-
ian probability model. Similarly, Coen-Cagli et al. (2012)
based the connectivity in a neural model on the image statistics
at several surround locations. In both models center-dependent
modulation seems to emerge automatically, from which one
could argue that that center dependence follows from these theo-
ries. One reason their models are center-dependent could be that
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they implicitly assumed an unbiased encoding of the stimulus, as
they are defined as probabilistic representations of an unbiased
scene; the only way to fit parameters under such a decoder is for
the surround modulations to be center dependent. We predict that
in both these models the tilt illusion is absent.

In summary, seemingly minor changes in the modulation of
neuronal tuning curves can have important functional conse-
quences. Recurrent effects are currently not explicitly included
in the model, and it would be of interest if the model responses
to more complex inputs (e.g., Fig. 5D) correctly predict elec-
trophysiological or psychophysical data. It would be of interest
to know whether our arguments translate to other domains and
levels of sensory processing, where most experimental studies
have examined contextual modulation while presenting the
preferred stimulus in the RF.

APPENDIX

Maximum-Based Saliency

Here we show that under some assumptions center-dependent
modulation leads to a lower saliency signal for saliency based on the
maximum response. In other words, the solid line in the inset of Fig.
5A, middle column, lies above the dashed line.

We denote the response of a neuron with neuron-dependent mod-
ulation by

f ndep(�, �s) � g(�, 0)h(�, �s),

and a center-dependent neuron by

f cdep(�, �s) � g(�, 0)h(0, �s),

where we treat the preferred orientation � as a continuous variable
(i.e., in the limit of infinite neurons) and assumed �c � 0. In other
words, �s equals the center-surround orientation difference. We as-
sume negligible influence from the target on the overall responses to
the image, such that background bars only experience parallel sur-
rounds, and target bars experience only the background as a surround.
The saliencies of the target are then

sndep(�s) �
max�f ndep(�, �s)

max�f ndep(�, 0)
neuron dependent

and

scdep(�s) �
max�f cdep(�, �s)

max�fcdep(�, 0)
center dependent.

First we note that across the population, fcdep(�,�s) is maximal
when � � 0, i.e., when the center stimulus aligns with the preferred
orientation, independent of the surround orientation. This maximum is
g(0,0)h(0,�s). Meanwhile, in the neuron-dependent model the activity
of the neuron with preferred orientation �c is

fndep(0, �s) � g(0, 0)h(0, �s) � max
�

f cdep(�, �s).

In other words, the neuron with the highest activity in the center-
dependent model always has the same activity as the corresponding
neuron in the neuron-dependent model, as can be observed from the
intersection of solid and dashed curves at � � 0 in the inset of the
middle column of Fig. 4.

However, in the neuron-dependent model the corresponding neuron
is not the neuron with the highest activity. To see this, consider the
derivative of the activity with respect to the preferred orientation

d

d�
f ndep(�, �s) � �kc sin(�)f ndep(�, �s)

	 ks sin(� � �s)g(�, 0)m(�, �s)

which at � � 0 equals

d

d�
f ndep(0, �s) � �kssin(�s)g(0, 0)m(0, �s).

This is only zero if �s � 0 � n�, showing that fndep(0,0) is
generally not an extremum. There must therefore be a preferred
orientation where fndep(�,�s) � fcdep(0,�s). Under the reasonable
assumption that in the background condition the maximum response
fndep(�,�s) occurs when � � 0, center-dependent modulation thus
leads to a lower maximum-based saliency signal for intermediate
orientations.

Mean-Based Saliency

Here we demonstrate that saliency based on the mean responses
always gives higher saliency with center-dependent modulation at
perpendicular orientations, than with neuron-dependent modulation,
as in Fig. 5A. We assume negligible influence from the target on the
overall responses to the image, such that background bars only
experience parallel surrounds, and target bars experience only the
background as a surround.

For dense coding across many neurons the mean response to a
single bar with orientation �c � 0 can be written as an integral

1

�

0

�
g(�, 0)d� � 2Ac exp(�kc)I0(kc).

For a background bar (which is surrounded by equally oriented
bars, and thus �c � �s) the mean response is

mean(rb) �
1

�

0

�
g(�, 0)h(�ref, �s)d�.

Substituting �c � 0 and �i for �ref we find

mean(rb) � 2Ac exp(�kc)I0(kc)h(0, 0) center dependent

and

mean(rb) � 2Ac exp(�kc)�I0(kc) � As exp(�ks)I0(�(kc

	 ks)vc�)� neuron dependent.

The mean response to the target bar (which has a different orien-
tation from the surrounding bars) meanwhile is

mean(rt) � 2Ac exp(�kc)I0(kc)�1 � m(0, �s)� center dependent

and

mean(rt) � 2Acexp(�kc)�I0(kc) � Asexp(�ks)I0(�kcvc

	 ksvs�)� neuron dependent.

The saliency of a deviant bar follows as

scdep(�s) �
h(0, �s)

h(0, 0)
center dependent

and

sndep(�s)

�
1 � As exp(�ks)I0(�kcvc 	 ksvs�) ⁄ I0(kc)

1 � As exp(�ks)I0(kc 	 ks) ⁄ I0(kc)
neuron dependent.

Although we found no proof that sndep � scdep for all orientations
�s, we can compare the nonsalient to the most salient condition. In the
nonsalient colinear condition, i.e., �s � 0, the saliency is the same for
both modulation types:
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sndep(0) � scdep(0) � 1

In the most salient condition of orthogonality, i.e., �s � �⁄2, the
saliences are given by

scdep(
�

2
) �

1 � As exp(�2ks)

1 � As
center dependent

and

sndep(
�

2
) �

1 � As exp(�ks)I0(kc � ks) ⁄ I0(kc)

1 � As exp(�ks)I0(kc 	 ks) ⁄ I0(kc)
neuron dependent.

Assuming that kc,ks � 0 and ks � 0, it follows that

1 � As exp(�2ks) 
 1 � As exp(�ks)
I0(kc � ks)

I0(kc)

and

1 � As � 1 � As exp(�ks)
I0(kc 	 ks)

I0(kc)
,

and thus

scdep��

2 � 
 sndep��

2 �.

In other words, the relative change in firing rate from isooriented to
perpendicular orientations in Fig. 4A is larger for center-dependent
modulation than for neuron-dependent modulation.
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