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ABSTRACT
The ultimate goal of brain-computer-interface (BCI) research on speech restoration is to develop 
devices which will be able to reconstruct spontaneous, naturally spoken language from the underlying 
neuronal signals. From this it follows that thorough understanding of brain activity and its functional 
dynamics during real-world speech will be required. Here, we review current developments in 
intracranial neurolinguistic and BCI research on speech production under increasingly naturalistic 
conditions. With an example of neurolinguistic data from our ongoing research, we illustrate the 
plausibility of neurolinguistic investigations in non-experimental, out-of-the-lab conditions of 
speech production. We argue that interdisciplinary endeavors at the interface of neuroscience and 
linguistics can provide valuable insight into the functional significance of speech-related neuronal 
data. Finally, we anticipate that work with neurolinguistic corpora composed of real-world language 
samples and simultaneous neuronal recordings, together with machine-learning methodology 
accounting for the specifics of the neurolinguistic material, will improve the functionality of speech 
BCIs.

1. Introduction

Establishing approaches to enable communication 
in severely paralyzed patients is a major aim of brain- 
computer-interface (BCI) research [1]. One increas-
ingly pursued method is to infer the message the patient 
desires to convey from the underlying neuronal activity in 
speech-related brain areas and to externalize the message 
using an assistive technical device. A speech BCI based 
on this method can be referred to as ‘direct’, as it relies 
on a one-to-one correspondence between the neuronal 
activity and the behavioral output [2]. For instance, if 
a paralyzed patient wants to say, ‘I’d like to have a cup 
of strong black coffee, please’, a direct speech BCI, also 
referred to as a ‘brain-to-text’ system [3,4], will try to 
reconstruct this utterance as precisely as possible from 
the underlying neuronal signal and convert it into, for 
example, a text message or into voiced synthetic speech 
via a text-to-speech device.

Speech reconstruction from brain activity is not only 
an exciting but also a challenging endeavor, and differ-
ent recording methods, both hemodynamic and electro-
physiological, have been used to attempt it. Each of them 
has its own drawbacks and advantages. Popular hemo-
dynamic methods are functional magnetic resonance 
imaging (fMRI) and functional near-infrared spectros-
copy (fNIRS). They detect brain activity by non-invasive 
measurements of changes in the level of cerebral oxy-
genation. These are correlated with changes in neuronal 
activation [5] although this correlation can be loose [6] 
and dependent on the investigated anatomical area [7]. 
fMRI has the advantage of whole-head coverage, and 
it allows studying the entire network involved in task- 
related processing. In comparison with fMRI, fNIRS can 
only measure hemodynamic responses from the outer 
cortical layers, but it is associated with the advantages 
of being silent, portable, and cheaper to acquire [8,9]. 
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Accordingly, ECoG is available for research only at large 
neurosurgical centers, and the placement and the number 
of electrodes can differ between subjects due to their indi-
vidual clinical needs. Also, a researcher may often have 
to wait for a suitable patient, in whom the main areas of 
interest are sufficiently covered by electrodes and whose 
clinical picture allows for studying the areas of interest 
(e.g. one may want to make sure the seizure onset zone 
in patients with epilepsy lies outside the respective areas) 
[18,20,21]. Important advantages of using this method 
for speech-related research are that neuronal activity can 
be recorded directly from the cortical surface, and that 
recordings, which are usually obtained over an extended 
period of one to three weeks of pre-neurosurgical diag-
nostics, can be used to study naturalistic, self-initiated 
human behavior [21,22] and real-world communication 
[18,20,23].

Another invasive method used in previous direct 
speech BCI research is intracortical microelectrodes, 
which can record extracellular potentials from small multi- 
unit populations. Like ECoG, this recording method pos-
sesses high signal quality and robustness against ocular 
and other movement-related artifacts, and it has been 
used in long-term clinical trials due to the comparatively 
small area of implantation and hence a reduced risk of 
infection or mechanical damage to the neuronal tissue 
[24,25]. A major limitation of this approach, however, is 
that it allows recording from small cortical regions, which 
may be a risk factor for long-term stability of the recorded 
neuronal signal.

In the following, we describe the latest developments 
in the field of ECoG research on speech production using 
increasingly naturalistic approaches (section 1), illustrate 
the plausibility of studying speech production-related 
neuronal activity in conditions of real-world commu-
nication using a visualized presentation of such activity 
from our ongoing research (section 2), and address the 
challenge of understanding the functional significance of 
brain activity in its temporal dynamics during continu-
ous, non-experimental communication (section 3). Then, 
we review the latest developments in the area of direct 
speech BCI research with ECoG from linguistic (section 
4) and machine-learning (section 6) perspectives. We 
argue in these sections that direct speech BCIs can profit 
from linguistically grounded approaches embracing mul-
tiple levels of linguistic abstraction and from the usage of 
decoding methodologies accounting for the hierarchical 
and probabilistic nature of the linguistic material. In sec-
tion 5, we propose that methodology from corpus-based 
linguistic research may be useful to refine principles of 
natural speech decoding. Finally, we provide an outlook 
for the field of invasive direct speech BCIs in section 7.

Recent BCI studies have shown that fNIRS can be used 
to decode intended simple communication via ‘yes’ or 
‘no’ responses in paralyzed subjects [10,11], suggesting 
that fNIRS can aid restoration of communicative abili-
ties in complete paralysis [12]. Hemodynamic methods 
of measurement are non-invasive, and they possess good 
spatial resolution. Nevertheless, their main demerit for 
speech-related research is that the temporal resolution 
of the recorded signals only allows detecting changes on 
the temporal scale of seconds, corresponding to the slow 
speed of metabolic processes inherent to these methods.

To be able to capture dynamic speech-related changes 
in the time range of milliseconds, electrophysiological 
recordings [3] or combinations of electrophysiologi-
cal and hemodynamic methods [10] may be helpful. 
Electroencephalography (EEG) and magnetoencepha-
lography (MEG) are popular non-invasive methods to 
study speech-related neuronal processing. These methods 
can record electrophysiological signals from the cortical 
surface, and they possess very high temporal resolution 
and spatial resolution comparable with fNIRS and fMRI, 
respectively. One demerit of these methods, however, 
is that they can only record bone- and scalp-filtered  
signals and therefore offer inferior signal-to-noise ratios 
compared with intracranial electrophysiology [13]. An 
important methodological drawback of both hemody-
namic and non-invasive electrophysiological methods 
for studies on expressive language is that they are prone 
to distortion of the brain signal by myographic activ-
ity. It accompanies expressive speech, during covert 
production as well [14], and may thus obscure biologi-
cally relevant neuronal responses. Due to this drawback, 
 perception-based paradigms are often preferred when 
studying linguistic phenomena with the help of non- 
invasive methods [15], and research on linguistic func-
tions in conditions of speech production is underrepre-
sented in comparison [16].

Electrocorticography (ECoG) obtained in neurological 
patients is an attractive alternative to non-invasive data, 
especially for studies on expressive language. Such record-
ings have a high signal-to-noise ratio, they possess very 
high temporal and high spatial resolution under the area 
covered by electrodes [13,17], and their invasive nature 
keeps the impact of myographic activity on the recorded 
signal moderate (a comparison of simultaneously 
recorded ECoG and EEG over the same cortical region 
is shown in Fig. 1 of Derix et al. [18]; also see Fiederer  
et al. [19] for a characterization of myographic impacts 
on ECoG signals). Due to its invasiveness, this method of 
measurement can only be implemented for neurolinguis-
tic research in consented neurological patients in whom 
ECoG electrodes are implanted for diagnostic procedures. 
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Figure 1. Spatially and temporally specific ECoG responses can be observed at different temporal stages of non-experimental, real-life 
production of simple clauses. (A) Individual electrode positions of one subject are visualized on the standard brain from SPM5 based on 
their MNI coordinates. Anatomical assignment (procedure described in detail in [21]) and the results of electrocortical stimulation mapping 
(ESM) are color-coded (see legend). Electrode labels (e.g. C3) are included for ease of reference. PMC, premotor cortex; PFC, prefrontal 
cortex; BR, Broca’s area; SPC/IPC, superior/inferior parietal cortex; PoP, parietal operculum; A1, primary auditory cortex;  S1, primary 
somatosensory cortex; STG, superior temporal gyrus without assignment to a particular Brodmann area. (B) A schematic illustrating 
linguistic compositions of the simple clauses. Dotted lines with marker names above them (‘ss’, speech start; ‘cls’, clause start; ‘cle’, clause 
end; ‘se’, speech end) indicate the positions of the corresponding linguistic events (also referred to as ‘conditions’) in the simultaneously 
recorded raw ECoG signal. A schematic of the raw potential at one electrode is visualized as a black solid line. Vertical dashed lines: onset 
of the respective condition. (C) Examples of relative spectral magnitude changes (RSMC) in speech-relevant anatomical areas of the 
respective subject during non-experimental, real-world production of 232 simple clauses. ‘0’ (white color) indicates no change in spectral 
magnitude relative to the baseline period, yellow and red colors depict increases and blue colors decreases relative to the baseline. The 
time information above the bullets shows trial-averaged (median) temporal differences between conditions in the course of the speech 
production epoch. Please note that the short temporal differences between ‘ss’ and ‘cls’, ‘cle’ and ‘se’, ‘cls’ and ‘mp1’, and ‘mp2’ and ‘cle’ may 
be due to the fact that these trial categories could, in some instances, coincide in time due to their linguistic definition. Abbreviations: 
frq., frequency; log., natural logarithm. Asterisks before the dotted line, significant effects in the early time window; asterisks after the 
dotted line, significant effects in the later time window; other conventions as in (B).
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spontaneous, naturally spoken language from the under-
lying neuronal signal. From this it follows that a thor-
ough understanding of brain activity during connected, 
real-world speech will be required. Current knowledge on 
the neuronal processes involved in expressive language, 
however, has largely been gathered using decontextualized 
and disconnected linguistic output. It is thus conceivable 
that natural speech production may differ from speech 
elicited in simplified experiments, e.g. with regard to a 
different amount of working memory, behavioral restrict-
edness or associated attentional resources [18,39]. Non-
experimental research based on speech produced during 
continuous, real-world communication can enable com-
parisons with previous experimental observations.

Brain activity during spontaneous, non-experimental 
communication, however, is a largely unexplored 
phenomenon, which has been referred to as ‘the dark 
matter’ of cognitive neuroscience [40]. To bridge this 
gap, several labs worldwide have started investigating the 
neuronal activity underlying language in extraoperatively 
recorded ECoG in increasingly naturalistic experiments 
[3,4,41–44] as well as in conditions of non-experimental, 
real-world communication [18,20,21,23,45–49]. Their 
reported effects align with previous experimental 
findings (cf. Crone et al. [28]) and reflect the somatotopic 
arrangement of the human sensorimotor cortex [21]. 
This research provides proof of principle for the non-
experimental approach and allows elucidation of the 
largely unexplored neuronal signatures of authentic, 
uninstructed communication.

3. The plausibility of the non-experimental 
approach to study real-world speech production

To further extend this non-experimental line of research, 
we are currently constructing a multimodal neurolinguis-
tic corpus. It contains retrospectively documented unin-
structed, real-world, spontaneous speech production with 
concurrent ECoG recordings. The speech data have been 
acquired based on simultaneous audio and video materi-
als. These multimodal recordings have been obtained at 
the University Medical Center Freiburg for the purpose of 
pre-neurosurgical diagnostics of epilepsy, and they were 
donated for research by consented neurological patients. 
All speakers included in the corpus (data sets from a 
total amount of eight subjects at different stages of anno-
tation) gave written informed consent that these multi-
modal recordings would be made available for scientific 
investigation, and the Ethics Committee of the University 
Medical Center Freiburg approved the recruitment pro-
cedure [20]. The linguistic data in our corpus consist of 
continuous transcriptions of the subjects’ speech produc-
tion based on the audiovisual signals. Transcriptions were 

2. Developments in ECoG research on speech 
production using increasingly naturalistic 
approaches

ECoG is more and more frequently being used in neu-
rolinguistic experiments [26,27], and it has proven well 
suited to the study of the neuronal signatures of expressive 
language. Previous ECoG research has shown that spatially 
and temporally specific neuronal effects can be obtained 
in the fronto-temporo-parietal cortex during overt speech 
production [28]. They align well with speech-relevant 
areas identified by means of electrocortical stimulation 
mapping [29] and occur in a spatially [23,30] as well as 
temporally [31,32] specific manner. Until recently, ECoG 
investigations on speech production have most frequently 
addressed the general properties of the neuronal activity 
regardless of linguistic parameters of the spoken material, 
and they have classically been conducted to evaluate the 
usefulness of such data for localizing eloquent language 
cortex in pre-neurosurgical diagnostics [21,29,33,34].

In recent years, ECoG has increasingly been used to 
study speech-related neuronal processing from a linguistic 
perspective. Phonological properties of the spoken lan-
guage material, such as the place of phoneme articulation 
[4,35,36], the manner of articulation, the voicing, and the 
distinction between vowels and consonants [4], have been 
studied. Using a syntactically informed approach to seg-
mentation of continuous speech, Derix et al. [20] investi-
gated the neuronal differences between ECoG recordings 
obtained during the production of simple sentences with 
compared to without memory content. In a sociolinguis-
tic perspective on speech-ECoG data, Derix et al. [18] 
studied dialog partner-specific differences in the neuronal 
activity during spontaneous communication. Chen et al. 
[37] investigated differences between semantic categories 
of words during overt naming, and Fedorenko et al. [38] 
investigated the neural correlates of how the meaning of 
a sentence is constructed.

Linguistically grounded ECoG studies, however, are 
still a handful, and one main challenge in current research 
is ‘to break down language function into computational 
primitives suitable for biology’ (D. Poeppel in [26]). This 
is, in our opinion, a particularly urgent call for studies on 
speech production. Compared to the extensively studied 
side of speech perception, little evidence is available on 
the spatiotemporal representation of speech production 
and its subfunctions in the human brain [16]. Such evi-
dence is essential to make linguistically informed choices 
of, for example, optimal (and possibly spatially dispersed) 
implantation sites and spatial scales for direct speech BCI 
applications.

The ultimate goal of direct speech BCI research is 
to develop devices which will be able to reconstruct 
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stay of the patient’s conversation partners (private visi-
tors or medical personnel) and on the wakefulness of the 
patient. The patient was fully conscious and alert in the 
analyzed epochs of conversation, and all of these conver-
sation periods lay at least 30 minutes away from epileptic 
seizures to minimize the risk of contamination of physi-
ologically relevant responses by inter-ictal activity.

The analyzed clauses consisted of the main verb (i.e. 
full verb, copula verb, or a transitive modal verb in the 
absence of a full verb [53]) plus all its syntactically gov-
erned lexical elements. Time periods between speech start 
and speech end (vertical dashed lines with markers ‘ss’ 
and ‘se’ above them in Figure 1, respectively) represent 
epochs of continuous speech production with no pauses 
exceeding 200 ms, in which clauses corresponding to time 
periods from clause start (i.e. the start of the first word in 
a clause, marker ‘cls’ in Figure 1) to clause end (i.e. the end 
of the last word in a clause, marker ‘cle’ in Figure 1) were 
embedded. The 200-ms threshold for definition of speech 
production epochs was chosen based on evidence from 
conversation linguistics indicating that pauses shorter that 
200 ms are not perceived by interlocutors as ‘pauses’ in a 
conversation [54]. Within each clause, two additional tem-
poral stages of speech production were identified accord-
ing to linguistic criteria: ‘mp1’ corresponds to the start of 
the word in the left sentence bracket: a finite verb in main 
clauses and a subordinate conjunction in conjunction- 
introduced subordinate clauses [51]; ‘mp2’ is the start of 
the word in the right sentence bracket (usually a non-finite 
verb in a main clause and a non-finite verb in a subordi-
nate clause) or the right-most word in the middle field of 
a main clause (often an adverb or a noun), depending on 
whether or not the right sentence bracket was present. 
The linguistic positions ‘mp1’ and ‘mp2’ within the clause 
were defined based on the topological sentence model in 
German [51,53]. The resulting temporal precedence of ‘ss’ 
Æ ‘cls’ Æ ‘mp1’ Æ ‘mp2’ Æ ‘cle’ Æ ‘se’ in the trial-averaged 
data in Figure 1(C) therefore shows the progression of the 
neuronal response over the course of non-experimental, 
real-world speech production.

As in our previous studies [18,20,21], spectral mag-
nitude changes were calculated based on common aver-
age reference (CAR)-filtered data using a fast Fourier 
transformation. Grid electrodes lying within the seizure 
onset area, identified by epileptologists in ongoing ECoG 
recordings (C2, D6, E3 in Figure 1(A)), were excluded 
from all analyses to reduce the impact of strong epileptic 
spiking activity at these electrodes on our observations. 
Additional details on data pre-processing are available 
in [20]. Here, we used a sliding window of 200 ms with 
a time step of 20  ms and five Slepian tapers. Since the 
sampling frequency of recordings was 1024 Hz, this anal-
ysis resulted in a 5-Hz frequency resolution. The absolute 

generated by trained linguists according to GAT-2 conven-
tions for the ‘basic’ transcript [50] established in applied 
linguistics. A crucial advantage of using this method is 
that it provides detailed information about the linguis-
tic material, including accents, pitch contours, intensity, 
pause duration, and several paralinguistic features. Simple 
clauses constitute basic units of speech production in our 
corpus. We identify them in continuous transcriptions 
of the subjects’ speech according to structural linguistic 
criteria [51], tag the outer borders of the clauses as well 
as several other phenomena relevant to clause description 
(Figure 1(C)) in ECoG data using the Coherence EEG/
PSG System software by Deltamed (Paris, France), analyze 
the clauses according to linguistic parameters (parts of 
speech, syntactic constituents, and dependency relations, 
etc.), and study the associated neuronal effects.

The main advantage of such an integrative approach 
combining expertise in linguistics and invasive electro-
physiology is that it offers a unique opportunity to elu-
cidate the neuronal correlates of linguistic processing 
in conditions of non-experimental, real-world human 
communication. The aforementioned non-experimen-
tal ECoG studies have demonstrated with the example 
of speech onset-related data that spatially and tempo-
rally meaningful neuronal effects can be observed dur-
ing real-world speech production. Here, we would like 
to provide an additional illustration of the plausibility of 
the non-experimental approach by visualizing neuronal 
effects at distinctive temporal stages of real-world speech 
production, including the starts and ends of speech and 
clause production epochs (Figure 1).

Figure 1 shows typical neuronal effects in the non- 
experimentally-obtained data from our multimodal 
corpus (previously unpublished material). This figure 
contains examples of most prominent ECoG responses 
which were observed in one native speaker of German 
(male, 41 years old at the moment of implantation, left- 
lateralized language areas) at distinctive temporal stages of 
real-world production of simple clauses. These effects took 
place in the premotor cortex, on the central sulcus and on 
the superior temporal gyrus (classic areas implicated in 
expressive language [16,52]). The three electrodes visu-
alized in Figure 1(C) showed maximum relative spectral 
magnitude changes in their respective anatomical region 
(Figure 1(A)), and they were significant at at least one of 
the six investigated time points (further also referred to 
as ‘conditions’; Figure 1(B)) in the course of speech pro-
duction. Below follows a description of the procedures 
we undertook for data analysis including the statistics.

The simple clauses were extracted from 11 hours of 
continuously transcribed expressive language material 
from the subject. Different amounts of speech production 
were present in these hours, depending on the length of 
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real-world speech production (Figure 1). For instance, 
one may assume that activity in the temporal cortex ena-
bles mapping of the acoustic properties of speech onto 
conceptual and semantic representations, such as for the 
purpose of self-monitoring via state feedback control [56]. 
Activation in the motor cortex, in contrast, may reflect 
forward predictions of the intended articulatory output 
in the dorsal language stream, responsible for sound-to- 
articulation mapping.

Many open questions, however, remain as to how these 
dynamics are informative about the temporal precedence 
of linguistic functions deployed in the stream of speech. 
For instance, when do semantic, phonological, or syntactic 
processes occur? Do they take place at separate or (partly) 
overlapping temporal stages, e.g. in the production of 
words at the positions ‘mp1’ and ‘mp2’ in Figure 1(C)? 
Different ways of interpreting such dynamics are conceiv-
able. For instance, the model by Levelt et al. [57] suggests 
that word production evolves in a sequence of temporally 
distinctive stages of linguistic processing. First, the con-
ceptual and semantic information is extracted. After this, 
the lemma, i.e. the basic word form, is retrieved from the 
mental lexicon. Next, it is integrated into the morphosyn-
tactic and phonological context, and then the resulting 
word is articulated. Some electrophysiological studies 
agree with this notion of sequential processing [58,59]. 
Other linguistic models, however, suggest that a parallel 
architecture of processing phonological, conceptual, and 
syntactic information is conceivable [60]. More research 
may be needed to evaluate the physiological plausibility 
of these different possibilities.

To understand the dynamics of neuronal responses 
underlying continuous speech, taking neurolinguistic 
studies beyond the level of single words and towards larger 
speech units of real-life-like complexity will be essential. 
Also on the level of multi-word sequences, more research 
is needed to understand the exact functional significance 
of brain activity at different time points of speech pro-
duction. For instance, whenever we produce an utterance, 
how much of it do we pre-determine prior to articula-
tion: do we produce a syntactic plan of the entire sentence 
before we articulate it [61] or do we plan the structure 
of the sentence during its production in an incremental 
manner online [62], such as by putting together salient 
combinations of words (‘chunks’) stored in the mental lex-
icon as single entities as a result of the speaker’s experience 
with language [63]? A related and hitherto unexplored 
question is, what are the exact basic ‘building blocks’ of 
spontaneous, natural speech and how can their borders 
be detected in neuronal activity (e.g. Chafe [64], Frazier 
and Fodor [65])? The validity of these different linguis-
tic accounts of how we produce continuous language 
sequences remains to be evaluated neurolinguistically. To 

spectral magnitudes for each trial and electrode in the 
entire visualized time period of −1 o 1.5 s relative to the 
onset of the respective condition (‘ss’, ‘cls’, ‘mp1’, ‘mp2’, 
‘cle’, ‘se’) and in each time-frequency bin were divided by 
the same baseline activity. This baseline was calculated 
by median-averaging the absolute spectral magnitude in 
each frequency bin over the time bins corresponding to 
the time period −2 to −1.5 s relative to the onset of each 
trial of the respective condition, median-averaging it over 
all trials from this condition, and by mean-averaging the 
obtained value over the six conditions described above. 
The baseline-corrected spectral magnitudes in individ-
ual trials were then averaged over trials in the respective 
condition.

Similarly to [20], we evaluated the statistical signifi-
cance of neuronal responses in the high gamma (70–
150 Hz) frequency band in two time windows (−1 to 0 and 
0 to 1 s relative to the onset of the respective condition) 
using a sign-test (FDR-corrected over the entire number 
of CAR-rereferenced grid electrodes (61/64) and the two 
analyzed time windows at a significance threshold of q = 
.001). The examples of most prominent increases in high 
gamma activity shown in Figure 1(C) were significant in 
both time windows for the conditions speech start (‘ss’) 
and clause start (‘cls’) in the speech motor region (elec-
trodes C3, D3), and the increase in high gamma activity 
observed in the superior temporal cortex (electrode H8) 
was significant in the late time window for the conditions 
‘sentence end’ (‘cle’) and ‘speech production end’ (‘se’). 
These effects occurred in speech-relevant areas identified 
by clinicians in the course of pre-neurosurgical diagnos-
tics (Figure 1(A)).

With only about a dozen recent exceptions 
[18,20,21,23,45–49], neurolinguistic and direct speech 
BCI studies to date are based on experiments. Investigation 
of non-experimental, real-word language is a novel, largely 
unexplored approach. For this reason, we considered that 
its plausibility merits a detailed illustration (Figure 1(C)). 
The effects visualized in Figure 1 align in their location 
with results of previous experimental [23,28] and non- 
experimental [20,21] findings, and they enable illustra-
tion of temporal progression of neuronal activity at several 
temporal stages of speech production. These temporally 
meaningful and spatially reproducible neuronal responses 
lend support to our notion that spontaneous, non-exper-
imental speech is worth investigating.

4. The temporal dynamics of neuronal activity 
as a challenge for research on connected speech

The classic dual-stream model by Hickok and Poeppel 
[55] can be helpful in interpreting the temporal dynam-
ics of neuronal responses underlying non-experimental, 
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gestures from postcentral areas, whereas frontal contacts 
proved more informative when decoding phonemes. 
Lotte et al. [4] decoded classes of phonemes based on the 
manner of articulation, the voicing, and the assignment 
to the category of vowels vs. consonants. They observed 
that ECoG sites which were most informative of these 
differences lay in spatially segregated areas of the fron-
to-temporo-parietal cortex. Several direct BCI studies on 
speech production have decoded auditory features, such 
as vowel formants [74] and spectrograms of the acoustic 
signal [79]. These studies speak for the suitability of sen-
sorimotor [74] as well as fronto-opercular and temporal 
regions [79] to reconstruct overt expressive speech from 
the auditory signal.

Other studies with similar implantations have per-
formed classification of individual overtly [80] and also 
covertly produced words [81], overtly produced sentences 
[82], of the semantic category the spoken word [83] or 
sentence [20] belongs to, and the identity of the conver-
sation partner [18]. These studies could achieve success-
ful classification in most of these linguistic scenarios. 
Martin et al. [84] also asked whether a decoding model 
trained on ECoG recorded during overt speech produc-
tion would elicit above-chance classification when applied 
to data obtained during a covert speech production con-
dition. This was indeed the case, with the best decoding 
performance yielded in the superior temporal and in 
the pericentral cortex. All in all, this research speaks for 
the plausibility of deciphering expressive language from 
underlying neuronal activity and supports the translata-
bility of findings from overt to silent speech production.

Direct speech BCI is a young branch of research (as far 
as we are concerned, the first study was conducted using 
ECoG by Blakely et al. in 2008 [73]; also see Chaudhary  
et al. [12] for an overview of the history of BCI technolo-
gies). In spite of recent achievements, more work is needed 
to take such speech-restoration devices into the daily life 
of paralyzed patients. One challenge in direct speech BCI 
research is that decoding approaches operate on a limited, 
pre-selected set of linguistic categories, whereas human 
language is complex and rich in combinatorics. A cur-
rently popular way of dealing with linguistic variability is 
to reduce the number of decoding categories to a basic set 
of features, such as by using the phonemic inventory or the 
entire set of articulatory gestures speech is composed of 
[3,4,77]. An advantage of these approaches is that they can 
be applied to different items of speech regardless of their 
length and combinatorial properties. The latter is espe-
cially the case with articulatory gesture-based approaches, 
as they allow on e to account for co-articulation effects (i.e. 
differences in articulation between instances of the same 
phoneme depending on the immediate phonological con-
text) [85]. Decoding approaches using the phonetic level 

this end, implementation of approaches similar to those 
used in experimental ECoG research on the spatiotempo-
ral dynamics of cortical activity during speech production 
[66] and neurocomputational simulations of the speaking 
brain [67] can be helpful.

We believe that neurolinguistic research in conditions 
of spontaneous, non-experimental communication can 
shed light on such questions, and that an interdisciplinary 
approach bringing together neuroscientists and linguists 
can play an important role in understanding the exact 
functional dynamics of brain activity to support natural 
language. For instance, usage-based linguistics, which 
offers a broad fund of theoretical and empirical knowledge 
on spontaneous speech and provides detailed descriptions 
of its structural, temporal, and distributional proper-
ties [62,63,68], may be helpful. Linguistically informed 
accounts of how information is encoded in the dynamics 
of brain activity can not only contribute to a better under-
standing of the linguistic functioning of the human brain. 
They can also aid derivation of adequate decoding models 
for speech reconstruction with direct BCIs.

5. Developments in the area of direct speech 
BCIs from a linguistic perspective

Beyond their utility in clinically oriented and basic 
research, invasive recordings of cortical activity have 
proven valuable in direct BCI approaches to speech recon-
struction. Here, we overview the advances of research on 
speech production with the help of direct ECoG-based 
BCIs from a linguistic perspective (Table 1). Please note 
that the present paper focuses on speech production. 
Studies conducted with perception-based paradigms are 
beyond the scope of the present paper, and information 
about the progress in this related field of research is avail-
able elsewhere [39,69,70].

Decoding studies have shown that speech production 
can reliably be distinguished from non-speech behavior 
based on ECoG data from the fronto-temporo-parietal 
region [4,22,71]. Differences between phonetic features 
of speech can also be decoded. Robust categorization 
of phonemes, for instance, has been achieved based on 
neuronal spiking activity obtained with neurotrophic 
electrodes in the speech motor cortex of locked-in indi-
viduals [24,25,72] as well as using spectral magnitude or 
power changes in the fronto-temporo-parietal cortex of 
epilepsy patients [3,4,73–78]. Recent ECoG studies report 
successful classification of phoneme categories and of 
articulatory features of speech on a subphonemic level. 
Mugler et al. [77] compared the classification performance 
for articulatory gestures (i.e. movements of the different 
articulators) vs. phonemes. These authors could achieve 
higher decoding accuracies when decoding articulatory 
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signal was evaluated. Compared with this number, The 
International Corpus of English (ICE) [90] contains 
one million words per variety of the English language. 
Wouldn’t it be interesting to extend the approach by Kellis 
et al. [80] to any word in the whole register of ICE to 
ensure better coverage of natural speech by BCI applica-
tions? This is, however, hardly feasible (or at least method-
ologically difficult without breaking down the words into 
a limited number of primitives) for the following reason. 
For a decoding algorithm to recognize differences in brain 
activity, training data with multiple examples of neuronal 
recordings underlying each word would be required. Thus, 
one would have to ask the subject to repeat the entire ICE 
corpus multiple times to obtain such data, which would 
be extremely time-consuming, burdensome to the subject, 
and most likely impossible in ECoG studies which rely on 
data recorded over relatively short time periods of about 
one to three weeks prior to surgical resection.

We anticipate that such ample data can be generated 
by adopting methodology from linguistics, similar to 
the approach we have illustrated in Figure 1. A central 
assumption in corpus-based linguistics is that the sta-
tistical properties of a language generalize across users 
of the respective language, and that these statistics are 
similarly reflected in the (para-)linguistic behavior of dif-
ferent speakers [63]. For this reason, for example, word 
frequency extracted from a retrospective corpus can be 
associated with comparable response latencies between 
speakers of the same language [91]. Neurolinguistic evi-
dence on the functional organization of language areas is 
also based on the principle of generalizability: in spite of 
inter-individual variability of language-relevant anatom-
ical [92] and functional areas [52], reproducible spatial 
[16] and temporal [57] patterns of functional organization 
can be observed. Following the same principle, one could 
expect that the neuronal signal components which are 
most informative of linguistic distinctions will, to some 
extent, generalize between speakers. It is an interesting 
open question for speech BCI research, whether and 
under what conditions a decoder trained on data from 
other subject(s) can yield successful decoding from neu-
ronal recordings of a different individual [93].

An important advantage of generating and studying 
neurolinguistic corpora may be that they would allow 
for classification of linguistic phenomena which have a 
large number of realizations in natural language, as is the 
case with the above-mentioned linguistic category ‘word’. 
Such neurolinguistic evidence can be generated similarly 
to the way linguistic corpora are generated, that is, by 
recording continuous speech of multiple speakers over 
extensive time periods, segmenting it in linguistic units 
(e.g. words) and annotating those units with regard to var-
ious linguistic categories (similarly to what we have done 

of analysis in these recent studies proved to elicit relatively 
high accuracies of decoding. Nevertheless, exploration of 
other levels of linguistic description may help to further 
enhance the performance of direct speech BCIs.

Recent work shows that neighborhood probability esti-
mates can be useful to improve speech reconstruction by 
evaluating the decoded speech unit with regard to its sta-
tistical probability in the linguistic context (e.g. a personal 
pronoun (‘he’) in English is more likely to precede a finite 
verb (‘reads’) than vice versa). It has been shown that pre-
dictive methods from linguistics, which rely on probabil-
ities of co-occurrence of language units, can enhance the 
speed of spelling in P300 interfaces in healthy [86] and in 
paralyzed [87] subjects. A recent development in ECoG-
BCI studies is that probabilistic n-gram-based models 
have been applied in production [3] and perception [88] 
studies to constrain the number of meaningful choices 
for speech decoding. Together with a recent review on 
the integration of language models into BCI classifiers 
[89], these publications support the notion that the use 
of predictive models of language, which can be derived 
from linguistic research, is a promising strategy for future 
direct speech BCI studies.

Language is a highly complex system, which possesses 
multiple levels of abstraction ranging from articulatory 
primitives to complex and abstract syntactic and semantic 
structures. Multi-level approaches with in-built models of 
language can be useful to improve the accuracy of speech 
reconstruction with direct speech BCIs. Information on 
several levels of linguistic abstraction may be helpful, e.g. 
when decoding results on these different levels are mutu-
ally incompatible. For instance, if the first estimate of the 
phoneme-to-phoneme approach is \’ sō\ (‘so’), the second 
is \’so\̇ (‘saw’), and the best estimate for the part-of-speech 
category decoding is ‘noun’ followed by the category ‘verb’, 
the mutually compatible solution (‘saw’, ‘noun’) would be 
selected. Such linguistically multi-level approaches can be 
expected to harness more information which can be used 
for decoding and to restrict the number of meaningful 
choices given the linguistic context [89].

6. Relevance of corpus-based linguistic 
methodology for direct speech BCI research

As proposed above, the performance of direct BCIs may 
benefit from accounting for multiple levels of linguistic 
abstraction. Nevertheless, a challenge when implement-
ing such an integrative approach is that neurolinguistic 
evidence of neuronal distinctions between linguistic 
entities on many of these levels still needs to be gener-
ated. Consider, for instance, the linguistic category ‘word.’ 
In a BCI study on speech decoding by Kellis et al. [80], 
classification of 10 individual words from the neuronal 
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classifiers summarized in this paragraph are associated 
with the demerit of manual feature extraction based on 
a priori assumptions as to what signal features are most 
informative for classification.

The decoders used in previous direct speech BCI 
research can be divided into standard algorithms using 
standard classifiers (linear regression [79,84], linear 
[73,75,82] and radial-basis-function [71] SVMs, LDA 
[4,18,20,77], a naive Bayes classifier [78], hierarchical 
k-means clustering [22]) and customized, non-standard 
methods [3,74,76,80]. As can be seen from Table 1, about 
two-thirds of previous direct speech-ECoG-BCI studies 
have opted for standard methods. These methods have the 
advantage that the decoding algorithms are well known 
and thus more transparent for the reader to understand, 
and that differences in decoding performance elicited with 
the same standard classifier can be more easily attributed 
to the other steps of the decoding pipeline such as data 
pre-processing and feature extraction. Custom meth-
ods make such comparisons difficult. However, they can 
achieve a substantially better performance than standard 
decoders by virtue of being adapted to the requirements 
of the specific decoding problem. An example is the usage 
of an in-built probabilistic language model to alleviate 
the multi-class decoding problem in the study by Herff 
et al. [3].

Another fundamental difference is between super-
vised and unsupervised decoding approaches. Supervised 
decoding approaches require known decoding targets 
such as the words produced by the subject during a 
recording. Unsupervised approaches can be used to dis-
cover meaningful structure in the data even if one does 
not have decoding targets. One example is the study by 
Wang et al. [22], in which the authors recorded the sub-
jects’ brain signals during spontaneous activities. Through 
unsupervised clustering methods, they could detect clus-
ters of similar brain activity for different behaviors includ-
ing movement, speaking, and resting, even though they 
did not use a priori labels indicating which behaviors took 
place. Unsupervised approaches therefore open the door 
for discovering meaningful insights from ample unlabeled 
recordings of brain signals.

Another class of decoding algorithm relevant to direct 
speech BCI research is deep learning, which is currently 
gaining attention in BCI research [95–97]. Deep learning 
has most prominently been used for recognition of graph-
ical patterns in computer vision, and it has rapidly pene-
trated multiple other areas due to its general applicability. 
Schmidhuber [98] provides a detailed historical review of 
the evolution of deep learning; also see LeCun et al. [99] 
for an introductory review. Deep learning approaches, 
such as convolutional neural networks or recurrent neural 

in the example in Figure 1). Many linguistic corpora are 
currently available online, which greatly promotes quan-
titative linguistic research. To our knowledge, however, 
no published neurolinguistic corpus bringing together 
spontaneously spoken speech and concurrent neuronal 
recordings is currently available, and the joint effort of 
linguists and neuroscientists is needed to create such data 
and make them available to interested researchers.

7. Developments in the area of direct speech 
BCIs from a machine-learning perspective

Direct BCI studies on speech production have taken dif-
ferent machine-learning approaches, which are summa-
rized in Table 1. These can be classified by their usage 
of high-bias vs. high-variance classifiers and usage of 
standard machine-learning algorithms vs. non-standard, 
customized algorithms tailored to the specific decoding 
problem. As in the case of recoding techniques, each of 
these approaches has its own advantages and disadvan-
tages [94].

Most studies summarized in Table 1 have used high-
bias classifiers, i.e. classifiers that make strong assump-
tions about the mathematical relationships between 
input features and decoding targets. For instance, linear 
decoders assume a linear relationship. Examples of high-
bias classifiers include linear support vector machines 
(SVM [73,75,82]), linear discriminant analysis (LDA 
[4,18,20,77]), linear regression-based [79,84] or custom 
linear decoders [76], principal-component linear regres-
sion [74], and a naive Bayes classifier [78]. Such classi-
fiers have the advantages of being fairly robust against 
overfitting. Their strong assumptions can prevent them 
from learning ‘false’ relationships, which only exist due 
to noise in the particular data they are trained on. Also, 
they are usually fast to train and fast to apply compared 
with more complex high-variance classifiers. The demerit 
of this robustness is inflexibility: if the imposed assump-
tions are far from the true mathematical relationships 
between input features and decoding targets, the classi-
fier will yield suboptimal decoding performance. High-
variance classifiers impose less strong assumptions on the 
mathematical relationships in the data, and thus they can 
learn a larger range of relationships, while being more 
vulnerable to overfitting. High-variance approaches used 
in previous studies (Table 1) include radial-basis-function 
SVM [71], dynamic time-warping-based multiple-kernel 
SVM [81], hierarchical k-means clustering [22], and cus-
tom non-linear clustering-based classifiers [3,80]. Some 
authors have also evaluated multiple classifiers, thereby 
showing which classifiers are better suited for their decod-
ing problem (e.g. [71]). All high-bias and high-variance 
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