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Abstract
There is a growing interest in developing novel brain stimulation methods to control disease-
-related aberrant neural activity and to address basic neuroscience questions. Conventional
methods for manipulating brain activity rely on open-loop approaches that usually lead to
excessive stimulation and, crucially, do not restore the original computations performed by
the network. Thus, they are often accompanied by undesired side-effects. Here, we intro-
duce delayed feedback control (DFC), a conceptually simple but effective method, to control
pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis
and numerical simulations we show that DFC can restore a wide range of aberrant network
dynamics either by suppressing or enhancing synchronous irregular activity. Importantly,
DFC, besides steering the system back to a healthy state, also recovers the computations
performed by the underlying network. Finally, using our theory we identify the role of single
neuron and synapse properties in determining the stability of the closed-loop system.

Author Summary
Brain stimulation is being used to ease symptoms in several neurological disorders in cases
where pharmacological treatment is not effective (anymore). The most common way for
stimulation so far has been to apply a fixed, predetermined stimulus irrespective of the
actual state of the brain or the condition of the patient. Recently, alternative strategies such
as event-triggered stimulation protocols have attracted the interest of researchers. In these
protocols the state of the affected brain area is continuously monitored, but the stimulus is
only applied if certain criteria are met. Here we go one step further and present a truly
closed-loop stimulation protocol. That is, a stimulus is being continuously provided and
the magnitude of the stimulus depends, at any point in time, on the ongoing neural activity
dynamics of the affected brain area. This results not only in suppression of the pathological
activity, but also in a partial recovery of the transfer function of the activity dynamics.
Thus, the ability of the lesioned brain area to carry out relevant computations is restored
up to a point as well.
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Introduction
Open-loop brain stimulation has emerged as a common tool to restore aberrant neuronal activ-
ity. The most successful example is the application of high-frequency deep-brain-stimulation
(DBS) used to ameliorate motor symptoms in Parkinson’s disease (PD). However, even in this
case the stimulation induces side-effects such as gait imbalance, cognitive impairment, speech
impairment, depression etc. [1]. The main cause of these side-effects is likely to be the constant
stimulation, but additional explanations are plausible, e.g. the inability of open-loop stimula-
tion to recover the original computations carried out by the impaired brain area. Thus, there is
a clear need for more sophisticated brain stimulation schemes [2–4].

Moreover, to exploit the full potential of external brain stimulation as a research and thera-
peutic tool it is important to obtain theoretical insights that can guide the design of novel stim-
ulation protocols. The goal for these new stimulation methods should ideally be twofold: to
alter the dynamical state of the brain activity in a desired manner and to recover the computa-
tions performed by the network. Here, we demonstrate that DFC, a method with its origin in
chaos control [5, 6], can achieve these objectives.

To show that DFC is effective in altering the global activity state, we focus on its ability to
switch the network state between synchronous-irregular (SI) oscillatory and asynchronous-
irregular (AI) non-oscillatory activity. This choice is motivated by the fact that several brain
diseases are manifested as a transformation of the AI state to persistent SI oscillations, e.g. in
PD [7] and in certain forms of epilepsy [8], or as the inability of the network to generate tran-
sient SI activity, e.g. in schizophrenia [9]. To demonstrate that DFC facilitates the recovery of
certain types of computations, we also illustrate how a network under DFC can effectively pro-
cess and route rate as well as temporally coded signals. Thus, DFC not only steers the system to
a more physiological activity regime, but it also recovers to a considerable degree the coding
abilities of the network as they were present before the onset of the pathology.

Previous theoretical models of closed-loop stimulation are not suitable to study the control
of SI oscillations because the dynamics that arise in networks of phase oscillators [10–12], in
networks of Hodgkin-Huxley neurons [13, 14] and in Wilson-Cowan type firing rates models
[15] are qualitatively different from the SI oscillations [16, 17]. In addition, the physiologically
plausible SI oscillations are known to be robust to both noise and heterogeneities [18–20] and,
therefore, require a more differentiated control approach.

Our control strategy is applicable to any network with arbitrary connectivity that undergoes
a Hopf bifurcation and it is useful but not critical to know the parameters a priori. In fact, we
show how adaptive tuning methods can be used to estimate the control parameters if the pre-
cise network parameters are not known. The DFC based stimulation method proposed here
can be in principle applied in all animal models where the use of optogenetic tools allows for
direct modulation of the membrane potential. In human patients, where optogenetics is cur-
rently not an option, manipulation of the membrane potential can be achieved indirectly via
subthreshold electrical stimulation. Importantly, the method is not restricted to stimulation of
deep structures, but could be applied non-invasively to modulate activity in cortical layers as
well [21]. Finally, the theoretical insights we provide into the mechanisms of feedback control
in SNNs could also explain the recent success of event-driven stimulation schemes [22–24].

Results
Excitation and inhibition (EI) in balanced random SNNs cause asynchronous irregular (AI)
and non-oscillatory population activity. This state resembles the ongoing activity in the healthy
state [17]. Changes in the EI balance, caused by altered inputs and/or changes in the recurrent
synaptic strengths, can result in two qualitatively different types of oscillations. The

Closed-Loop Control of Spiking Neural Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004720 February 1, 2016 2 / 27

analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



synchronous-regular (SR) oscillations arise when the mean input to the individual neurons
exceeds their spiking threshold, resulting in high firing rate and high frequency regular oscilla-
tions [16, 17]. By contrast, the synchronous-irregular (SI) oscillations arise because of strong
synaptic coupling and increased variance of the total input to the neurons. Importantly, the
emergence of the SI oscillations is accompanied by a change in the network transfer function
and its ability to represent stimulus-related activity. Persistent SI oscillations often are signa-
ture of brain diseases, e.g. in PD [7] and epilepsy [8]. The altered network transfer function
and the robustness of the oscillations to noise and neuronal heterogeneities pose a serious chal-
lenge for stimulation-based therapeutic approaches. In the following we show that DFC is able
to both quench SI oscillations and to recover the original network transfer function.

In order to provide an explanatory account of the exact mechanism by which DFC operates
we provide specific examples of neuronal networks with known parameters that can generate
SI activity. To this end, we used mean-field theory to describe the dynamics of homogeneously
and randomly connected recurrent SNNs. The mathematical analysis was corroborated with
appropriate numerical simulations of sparsely connected SNNs. We considered networks with
only inhibitory and both excitatory and inhibitory neurons.

Control of SI activity in I-I networks
While our goal is to reveal the mechanisms by which DFC controls SI activity in excitatory-
inhibitory SNNs, it is more instructive to first demonstrate the concept in a simple, purely
inhibitory SNN. In the AI state the population average of the firing rate is constant in time
r(t) = r0. Therefore, the mean recurrent input that each neuron receives is also constant:

IrecðtÞ ¼ C $ J=C $ ðs ? rÞ½t&
¼ C $ J=C $

R
sðtÞrðt ' tÞdt

¼ J $ r0 $
R
sðtÞdt

where C is the average in-degree, J/C the synaptic coupling strength and s(t) the postsynaptic
current. In such a network, the emergence of SI oscillations can be investigated by analyzing
the stability of the network firing rate in the AI state [18, 19]. A small perturbation in the
steady-state firing rate

rðtÞ ¼ r0 þ Re½r̂1ðlÞelt&

where eλt is an eigenmode of the network dynamics with complex eigenvalue λ, leads to a per-
turbation in the recurrent input

IðtÞ ¼ I0 þ Re½Î 1ðlÞelt&

with Î 1ðlÞ ¼ 'JSðlÞr̂1, where J is the synaptic coupling strength and S is the synaptic response
function. In a recurrent network both perturbations have to be consistent, that is

r̂1ðlÞ ¼ RðlÞÎ 1ðlÞ

where R is the neuron response function. This results in the self-consistency equation:

J $ RðlÞ $ SðlÞ ¼ 1 ð1Þ

In a purely inhibitory network J is negative, but here the negative sign of J has been absorbed
in the phase S(λ). We can then compute the eigenvalue spectrum, that is the roots λ that satisfy
Eq (1). When the eigenvalues have a positive real part, the AI state is unstable and the SNN set-
tles in the SI state. Note that due to the synaptic delays the spectrum is infinite. However, in
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time-delay systems of the retarded type that we are considering here, the total number of unsta-
ble eigenvalues is always finite [25]. Increasing J shifts the spectrum towards more positive val-
ues on the real axis. For a critical value Jcr a complex pair of eigenvalues crosses the imaginary
axis and the system becomes unstable through a supercritical Hopf bifurcation [18] (Fig 1). In
the following we consider a SNN in which J> Jcr, thus resulting in the emergence of SI oscilla-
tions. We aim at designing a controller that can alter the global activity state from SI to AI by
placing the unstable eigenvalues back to the left half-plane (Fig 1e).

For the implementation of our DFC controller we made two assumptions. First, we chose
the instantaneous population rate to be the output state of the system. This state needs to be
continuously monitored by the controller. Based on this state, the controller evaluates an
appropriate control signal. The second assumption is that the control signal can be applied via
current injection directly to the somata of the neurons. Note that the control signal is identical
for all neurons in the network. Thus, the synchrony in the network activity was not decorre-
lated because each neuron received different input. To include the contribution of DFC the
self-consistency Eq (1) needs to be modified:

JRðlÞSðlÞe'l$d ' KRðlÞMðlÞe'l$dc ¼ 1 ð2Þ

where K is the control gain, dc the control delay andM the control kernel. The roots of the
above equation (see methods) yield the range of parameters K, dc that move the unstable eigen-
values back to the left-half plane (Fig 1e), which results in a switch of activity from SI to AI.

To verify the analytical solution we simulated an Erdös-Rényi type inhibitory recurrent net-
work of N = 10,000 sparsely connected leaky-integrate-and-fire (LIF) neurons. The neurons
were connected with a connection probability ! = 0.1. Switching on the DFC with parameters
estimated from Eq (2), almost immediately results in suppression of oscillations and in a net-
work state that resembles the AI regime (Fig 2a–2d). The suppression of stochastic oscillations
is evident both in the spiking activity of single neurons (Fig 2a) and in the population activity
of the network (Fig 2b). The spike count variability and the irregularity of single neuron inter-
spike intervals, estimated by the Fano Factor (FF) and the coefficient of variation (CV) respec-
tively, confirm that under DFC the firing of individual neurons in the network follows Poisson
statistics (AI: FF = 1.04, CV = 1.01, DFC: FF = 1.02, CV = 0.99). Moreover, the oscillation index
that captures the degree of oscillatory activity (see methods) is in both conditions comparable
(AI: PT = 1.47, DFC: PT = 1.45) and significantly smaller than in the SI state (PT = 3). The
change in the network spiking activity is also observed in the subthreshold membrane potential
of individual neurons (Fig 2c and 2d).

Control of SI activity in E-I networks
Next we demonstrate the applicability of DFC in changing the SI state in recurrent networks of
excitatory and inhibitory neurons. To this end we simulated a SNN composed of 8000 excit-
atory and 2000 inhibitory neurons with Erdös-Rényi type connectivity and a connection prob-
ability of ! = 0.1. As in the I-I network, we used the mean-field approach to derive appropriate
values for the parameters to attain an SI state. The self-consistency equation for the coupled
EI-network under DFC is given by

½ðJEI $ SEIðlÞe'l$dEI ' K $MðlÞe'l$dcÞ $ REðlÞ& $ JIE $ RIEðlÞ $ SIEðlÞ $ e'l$dIE ¼ 1 ð3Þ

where Jij, dij is the synaptic coupling strength and delay from population j to population i and
RE (RI) is the neuron response function of excitatory (inhibitory) neurons. Note that we
ignored the recurrent couplings within E and I populations, because we were interested only in
the oscillations created by the EI-loop. We implemented DFC by recording the activity of
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neurons in the inhibitory population while stimulating excitatory neurons. Here again K is the
control gain, dc the control delay andM the control kernel. Switching on the controller yielded
a near instantaneous transition in the network activity from SI to AI (Fig 2e–2h). In this case
the original physiological state that we wanted to recover was characterized by slightly less

Fig 1. Generation of stochastic oscillations. (a) The network is in an asynchronous irregular (AI) regime.
Single neuron firing follows Poisson statistics and (b) the population activity is stationary.(c) The network
generates stochastic oscillations. Single neuron firing is still irregular, (d) but the population activity is
oscillatory.(e) Eigenvalue spectrum computed from Eq 1. The emergence of oscillations can be explained by
the onset of a Hopf bifurcation. When a complex pair of eigenvalues crosses the imaginary axis the network
activity becomes unstable. (blue dots: AI regime, red dots: SI oscillations)

doi:10.1371/journal.pcbi.1004720.g001
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irregular firing of the individual neurons. Nevertheless, DFC successfully steered the network
to a regime with statistics comparable to the AI activity (DFC: FFE = 0.85, CVE = 0.91,
AI: FFE = 0.83, CVE = 1.03).

In a coupled network with more than one population additional possibilities for recording
and stimulating neurons exist. For instance, we could both record and stimulate the excitatory
population (see below “stability and robustness of control domains”). Our results, however, do
not depend on the exact identity of the recorded and stimulated neurons. The oscillation fre-
quency in the SI state of the network was in the beta range, f) 25–30Hz, which is characteristic
for PD [7]. This suggests that if PD-associated beta oscillations are caused by a strong coupling
between STN and GPe [26, 27], then our DFC approach could be used to suppress these beta
band oscillations. The results presented here are general and the same approach can be applied

Fig 2. Closed-loop control of oscillations. (a) Inhibitory network. Switching on the controller at t = 200 ms
leads to suppression of oscillations.(b) Population activity without (gray) and with control (red). (c) Single
membrane potential trajectories of ten randomly chosen neurons in the network (d) Averaged trace of
subthreshold dynamics. (e) Excitatory-Inhibitory network. Switching on the controller at t = 250 ms leads to
suppression of oscillations.(f) Activity of excitatory population without (gray) and with control (blue).(g and h)
Same as (c and d), now membrane potential of excitatory neurons is shown. For better visualization the spike
trains in (a) and (e) are thinned out.

doi:10.1371/journal.pcbi.1004720.g002
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to suppress oscillations in other frequency bands as well as long as the oscillations underlie a
Hopf bifurcation.

Stability and robustness of control domains
To determine the range of values that led to stable control we fixed the control kernelM, using
a box function of width 1 ms, and parametrized the system by the control gain K and delay dc.
For each pair of values we simulated the SNN and computed the oscillation index (Fig 3a and
3c). The (K, dc)-plane shows that a stable control domain exists at 7 ms. That is, an effective
control delay of dc,eff = 7 ms yields the maximum stability for the resulting AI state. The semi-
analytical results from mean-field theory (red contour lines derived from Eqs 2 and 3 for the
I-I network and E-I network, respectively), are in good agreement with the numerical simula-
tions (blue shades). The only discrepancy occurs when the difference between synaptic and
control coupling is small. In such a scenario it is more difficult to maintain constant rates of
the stimulated population and the system may become effectively excitatory leading to rate
instabilities [28]. Moreover, fluctuations in the mean input that are ignored in our mean-field
approach could also become more important. The analysis of these fluctuations is beyond the
scope of this work and will be addressed in a future study.

Differential control
Despite the fact that one stable control domain exists, a compensation mechanism to maintain
constant firing rates is required to achieve stable control. In real-life applications a detailed
fine-tuning may not always be possible. Therefore, we modified our control protocol and intro-
duced an additional delay term dc2, thus, effectively feeding into the controller the difference
between two time-delayed versions of the population activity. For such differential DFC
scheme the control signal is given by (see methods):

ICðtÞ ¼ K $MðtÞ ? ðvðt ' dc1Þ ' vðt ' dc2ÞÞ

Differential control has been previously used to control unstable periodic orbits [5, 29] and
to suppress synchrony in networks with discrete-time neuron models [30]. With the differen-
tial control we accounted for the fact that recording neural activity and injecting a control cur-
rent into the neurons introduces a finite time-delay. Therefore, we used a small but non-zero
value for dc2, i.e. dc2 = 1 ms, which is close to the overall closed-loop delay introduced by cur-
rent technologies [31, 32]. A crucial advantage of differential DFC is that no additional rate
compensation is required, because the mean contribution of the control signal vanishes

lim
T!1

1

T

Z T

0

ðvðt ' dc1Þ ' vðt ' dc2ÞÞdt ¼ 0

Moving in the control parameter space (K, dc), therefore, did not affect the firing rates of the
neurons. This was reflected in the near perfect overlap of theoretical predictions and numerical
simulations of the SNN (Fig 3b). In addition, differential DFC introduced two positive effects
on the stability of the control domains: (i) The first control domain was expanded, which
amounts to an increase in the robustness in the parameter variation. That is, small deviations
from the estimated values of the gain and the delay would not be critical for the stability of
the AI state achieved by differential control. (ii) A new stable control domain appeared at
t = 23 ms. Thus, with differential control there is an increase of the range of parameters that
lead to stability.
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Fig 3. Stability landscape of the network activity under DFC. (a) Direct DFC in the inhibitory network. One
stable control domain appears at d = 7 ms. The results frommean field theory (red contour) correctly predict
the location and shape of the domain. The discrepancy for K > 200 mV is explained by a deviation of the firing
rates between numerical simulations and mean-field theory. (b) Differential DFC in the inhibitory network. The
first stable control domain around 7 ms is enlarged. An additional small, but stable control domain appears
around d = 23 ms. Moving in the state space does not affect the firing rates and therefore no rate
compensation is required. The numerical and analytical results (red contour) are in perfect agreement. (c)
Direct DFC in an E-I network. The excitatory population is being stimulated while the activity of the inhibitory
neurons is recorded. A stable control domain appears around d = 7 ms which reflects the effective delay from
the inhibitory to the excitatory population. (d) Same as (c) but here the excitatory population is both recorded
and stimulated at the same time. The theoretical analysis yields a small but stable control domain around
d = 15 ms. The location of the domains reflects the larger E-I-E loop (see text). In the numerical simulations
this control domain does not arise, because fluctuations, which are ignored by the mean field-approach,
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DFC also enhanced the robustness of the system to external disturbances, e.g. undesired sig-
nals at the controller output, measurement noise etc. This becomes evident when we consider
the distance Bcr of the complex eigenvalues λi from the imaginary axis for the main stable con-
trol domain at t = 7 ms. A more robust closed-loop system is reflected in higher values of Bcr.
Differential and direct control yielded Bcr

diff ¼ maxðReðliÞÞ ¼ '257 and

Bcr
direct ¼ maxðReðliÞÞ ¼ '224, respectively, clearly revealing a more robust system with differ-

ential DFC.
Both direct and differential control were effective in a E-I network as well. The location of

the stable control domains depended on the exact implementation (Fig 3c–3e). When the activ-
ity of the inhibitory population was monitored while stimulating the excitatory population, the
main stable control domain appeared at t = 7 ms (Fig 3c). This location is identical with the
purely inhibitory network and reflects the overall delay of the I-E path (I-I loop) in the E-I (I-I)
network. Indeed for both the I-E path and I-I loop the effective delay is deff = 7 ms (see meth-
ods). By contrast, when the excitatory population was both recorded and stimulated then the
location of the domains shifted to around t = 14 ms reflecting the larger overall delay in the
E-I-E loop. (Fig 3d and 3e). Note that in this case the stable control domain for direct control
was smaller. The reason is that the size of the stable control domains shrinks for larger delays.

DFC control vs noise injection
In both the I-I and E-I SNNs we applied an identical control signal to all stimulated neurons.
That is, we did not disrupt oscillations and decorrelated network activity by injecting different
currents to each of the neurons. This is in contrast with a widespread assumption that common
input always tends to increase correlations in neural activity [33]. The results from the applica-
tion of DFC reveal that common input can both increase or decrease correlations in SNNs. It is
the timing and the amplitude of the common input that determines the direction in which cor-
relations are affected.

It is important to point out that injection of a control signal is not equivalent to the applica-
tion of additive noise to the system. To demonstrate this we simulated an I-I network and
injected Gaussian noise with the same mean and variance as the control signal to all neurons.
This stimulation approach failed to suppress SI oscillations (Fig 4a and 4b) indicating that the
temporal structure of the control signal is crucial for successful control. Increasing further the
noise intensity, e.g. by a factor of ten, eventually resulted in desynchronization of the activity
and in quenching of oscillations (Fig 4d and 4e). However, with such strong external noise the
network dynamics is predominantly influenced by the input rather than the recurrent activity.
This condition is disastrous from a computational point of view, because any information pro-
cessing taking place within the stimulated brain region would be severely impaired. To illus-
trate this we recorded the subthreshold dynamics of ten randomly selected neurons in the
network (Fig 4f). The huge fluctuations in the membrane potential under the influence of
strong external noise are rather pathological. By contrast, the fluctuations in the case of DFC
are comparable to those in the physiological AI regime.

quickly destabilize the system. (e) Same as (d) but differential DFC is used. The stable control domain is
enlarged showing that differential DFC yields more robust control in coupled E-I networks as well. Here only
the first delay dc1 is varied and the second delay is kept constant to dc2 = 1 ms. In all panels regions of stable
activity are indicated by shades of blue color (dark shades:higher stability). The dashed lines denote that total
network coupling J.

doi:10.1371/journal.pcbi.1004720.g003
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Recovery of network function
The detrimental effect of strong external noise became even more apparent when we studied
the response of the network to incoming stimuli. We examined two scenarios. First, we tested
how a series of incoming pulse packets composed of randomly distributed spikes are processed
by the SNN. We evaluated the network response by the area under the curve (AUC, see meth-
ods) for each of the following network states: AI, SI quenched DFC and SI quenched by noise
stimulation. A high AUC value reflects better separability of two conditions. It is evident that
the AUC in the AI state and in the DFC condition is close to unity indicating that both condi-
tions are comparable in terms of stimulus separability (Fig 5a and 5b). By contrast, when the SI
oscillations were quenched by the injection of strong external noise the AUC dropped signifi-
cantly. That is, DFC, in contrast to strong noise stimulation, does not impair the ability of the
network to detect incoming stimuli.

Fig 4. Noise injection. (a and b) Injecting Gaussian noise with the same mean and variance as the control
signal does not result in suppression but rather in enhancement of oscillations. (c) Current injected into the
somata of the neurons. Gray: Gaussian noise, red: DFC signal used in Fig 2a–2d. (d and e) Injecting strong
Gaussian noise, σ = 14 mV, yields to suppression of the oscillatory activity. (f) The subthreshold dynamics of
ten randomly chosen neurons reveal that this strong external noise results in very large fluctuations in the
membrane (gray). By contrast, the fluctuations under DFC are significantly smaller (red).

doi:10.1371/journal.pcbi.1004720.g004
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Next we tested how DFC affects temporal aspects of the network response. To this end, we
provided external correlated inputs to all stimulated neurons and measured the spike train sim-
ilarity in the network response. We computed the spike distance D that captures the time-
resolved degree of synchrony between individual spike-trains ([34], see methods). Again DFC
did not impair the temporal processing as indicated by a clear separation of the two clusters
during baseline DB and stimulation DS (Fig 5c). For external noise, however, the two distribu-
tions of values strongly overlapped, showing that aspects of temporal processing as measured
by pairwise synchrony are clearly compromised when the SI state is disrupted by open-loop
noise injection. These results suggest that processing of incoming signals either locally or by
downstream areas is feasible in a DFC scheme, but not in an external noise scheme.

Fig 5. Recovery of rate and temporal based computations. (a) AUC values indicating how well the
population rate response to incoming stimuli estimated for different time scales (different dots within each
group) is separated from baseline activity for three different scenarios. (b) AUC values for DFC are
systematically higher and close to unity compared to noise injection. (c) A clear separation of spike distance
values between baseline (dots) and response to incoming stimuli (triangles) indicates that temporal aspects
of computations during DFC are comparable to the AI state. By contrast, noise injection leads to a strong
overlap of the two distributions resulting in impaired temporal processing.

doi:10.1371/journal.pcbi.1004720.g005
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Mechanism of DFC
The above two results clearly demonstrate that DFC has multiple advantages compared to the
open-loop noisy stimulation. DFC does not only suppress SI activity steering the network to an
AI regime, it also facilitates the recovery of the network’s ability to process stimulus related
information. From its design it is evident that DFC effectively counteracts the increase in cou-
pling strength, which is one of the main causes for the emergence of SI activity. Indeed, the
goal of the DFC design was to move the poles of the system at, or close, to their original posi-
tions. Ideally, the stimulation kernelM would match the synaptic kernel S with dc = d and the
amplitude of the control gain K would be tuned to match the pathological increase of the cou-
pling strength ΔJ. If this were the case, DFC would completely eliminate the effects on the
mean recurrent input. This is evident if we consider the modulation to a perturbation in the
average input to a neuron

IðlÞ ¼ ðJ þ DJÞ $ RðlÞ $ SðlÞ $ e'ld ' K $ RðlÞ $MðlÞ $ e'ldc

¼
K¼DJ; M¼S

ðJ þ DJÞ $ RðlÞ $ SðlÞ $ e'ld ' DJ $ RðlÞ $ SðlÞ $ e'ld

¼ J $ RðlÞ $ SðlÞ $ e'ld

That is, under DFC the effects of ΔJ are not visible in the perturbed current term. In practi-
cal applications, of course, a perfect match between the control parameters (K,dc,M) with the
synaptic values is not feasible, because the exact shape of the synaptic kernels are not known a
priori and have to be estimated. Nevertheless, within a certain reasonable range of parameters
(see also section “stable control domains”), DFC still places the eigenvalues close to the initial
position they had before the onset of pathology. Therefore, as we showed above, aspects of
both rate and temporal coding that the network may be performing are recovered.

Effects of neuronal and synaptic response function
The understanding of the exact mechanisms by which DFC suppressed SI activity allowed us to
precisely investigate how the neuron and synapse response function R and S respectively influ-
ence the stability of the closed-loop system. To this end, we again used a mean-field approxima-
tion, which explicitly incorporates the expressions for R and S. In general, the neuron response
R depends on the specific neuron model as well as on the external input. Here, we did not
change the neuron model, but altered the external Gaussian white noise input by using different
values for the mean and variance (μ, σ2). We then assessed the stability of the system. It is appar-
ent that for a given pair of coupling and control parameters (J, d) and (K, dc), respectively, the
system becomes unstable as we move in the two dimensional parameter-space spanned by the
mean and variance (Fig 6a). For meaningful comparison we used (μ, σ2)-combinations that
yield constant rates. In the ideal case whereM(λ) = S(λ) and dc = d Eq (2) becomes:

J $ RðlÞ $ SðlÞ $ e'ld ' K $ RðlÞ $MðlÞ $ e'ldc ¼ 1

ðJ ' KÞ $ RðlÞ $ SðlÞ $ e'ld ¼ 1

ðJ ' KÞ $ GS $ RnðlÞ $ SðlÞ ¼ 1

ð4Þ

where Gs is the slope (or the static gain) of the ‘f-I curve’ at the operating point and Rn the nor-
malized neuron response (see methods). The critical effective coupling is then given by

LcrðlÞ ¼ ðJ ' KÞðlÞ ¼ 1

GsjRnðlÞ $ SðlÞj
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Fig 6. Effects of neuronal and synaptic response functions on stability. (a) For fixed network and control
parameters (J, d) and (K, dc) respectively the stability of the closed-loop system changes with the operating
point (μ, σ). (b) The static gainGs is the dominant factor for stability (see main text and S1a Fig). Lighter
shades of red correspond to higher gainGs. The gain changes significantly even along the constant firing rate
lines (blue lines, 10–60 sp/s). (c) The most stable control is achieved if the difference Δd = (d+2τr)−(dc+b/2)
between effective delays of control and synaptic kernels is minimized. The blue dashed line corresponds to
d = dc where the optimal kernel width is b = 4τr. It predicts correctly the stable regime for the range where atan
(ωτr))ωτr (see Methods). In our simulations the effective control delay is dc,eff = 7 ms, which is very close to
the optimal value (star). In panels (a) and (c) the stable and unstable regimes are marked by red and white
colors respectively.

doi:10.1371/journal.pcbi.1004720.g006
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As we move along the constant output firing rate lines both Gs and |Rn(λ)| increase (S1b and
S1b Fig) leading to a decrease of Lcr. The changes in Gs are significantly larger than those in |
Rn(λ)|, implying that the static gain is the dominant factor that affects stability. The changes in
|S(λ)| are negligible (S1c Fig). This is expected, because the frequency range we are interested
in is much smaller than the cut-off frequency of the synaptic filter ω< ω3db. Thus, when the
system operates in a dynamic regime in which single neuron responses have a higher gain the
control domains shrink and the range of K values that stabilizes the system decreases.

Next, we investigated the interaction between the synaptic S(λ) and the control kernelM(λ).
The amplitude responses for different kernels do not vary significantly (S2 Fig). Therefore, the
important factor that influences stability is the phase difference or, alternatively, the difference
Δd between the effective delays of the synaptic deff and the coupling kernel dc,eff. An optimal
result is achieved if this difference vanishes (see methods) i.e. when

Dd ¼ deff ' dc;eff ¼ 0

This point is illustrated for the case where dc = d+1ms (Fig 6c). These results show that DFC
does not strongly depend on the shape but rather on the effective delay of the kernel.

DFC induced SI activity
Interestingly, the same control strategy can be used to induce or enhance rather than to sup-
press oscillations. Choosing appropriate control parameters to increase the effective coupling,
i.e. selecting K to have the same sign as J (see methods), results in SI activity (Fig 7). This may
be helpful for the treatment of symptoms in several pathological conditions that are character-
ized by impaired oscillations, e.g. gamma power decrease in schizophrenia [35]. Thus, DFC is a
generic control approach and the control parameters (K,dc,M) can be tuned to quench or to
enhance oscillatory activity, depending on the nature of aberrant activity.

Discussion
Open-loop stimulation has been the main non-pharmacological approach to control the symp-
toms in a wide range of pathological conditions. It has been successful to some degree, but it
often introduces clinical side-effects [36]. Moreover, it inherits the drawbacks from open-loop
systems: (i) The stimulation profile is predetermined and is not adjusted to the clinically
observed short-term fluctuations in the patients’ symptoms [37]. In addition, stimulation is
continuously applied even though it may not be always necessary. (ii) The stimulation does not
adapt to long-term changes of the system, e.g. structural alterations due to the progression of
the disease. (iii) The operating point cannot be altered to deal with perturbations, caused, for
instance, by a drift of the electrode lead [38]. (iv) External disturbances due to transient unde-
sired signals are not being suppressed. In contrast to open-loop control, closed-loop control
can by design deal with all these situations. For this reason there is a growing interest in investi-
gating feedback-control both experimentally [2, 22–24] and theoretically [39]. The goal of the
experimental work has been to demonstrate that closed-loop control is indeed effective,
whereas the theoretical studies aimed at providing a deeper understanding of the underlying
conditions and mechanisms.

Here, we provide a theory for DFC, a conceptually simple but powerful form of control
[5, 6], applied to the control of stochastic SI oscillations in SNN. These oscillations are generic,
they occur in many brain areas and in multiple conditions [40] and they emerge via a supercrit-
ical Hopf bifurcation [16]. Therefore, the control objective was specific: to counteract this
bifurcation. We provide a mean-field approximation to estimate the DFC parameters and con-
firm the analytical predictions in numerical simulations in purely inhibitory and in coupled
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excitatory-inhibitory SNNs. DFC is effective in networks with arbitrary connectivity as long as
the temporal instabilities, that is uniform oscillations, dominate the dynamics.

We used two control approaches, direct and differential control, and demonstrated that
both schemes are effective in suppressing oscillations. Consistent with previous findings [5,
30], our results reveal that differential control has two main advantages over direct control.

Fig 7. DFC induces SI oscillations. (a) E-I network. Switching on the controller at t = 250 ms causes
oscillatory activity. (b) Population activity of excitatory (blue) and inhibitory neurons (red). (c) Single
membrane potential trajectories of ten randomly chosen excitatory neurons. Averaged trace of subthreshold
dynamics is shown in red.

doi:10.1371/journal.pcbi.1004720.g007
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First, the control domains are enlarged, which renders the selection of control parameters an
easier task. Larger control domains imply increased robustness of the system both to perturba-
tions in the parameters and to disturbances. This means that neither small deviations from the
nominal values of K, dc1, dc2 nor external signals compromise its stability. Second, in differential
control the stimulation signal vanishes which translates to decreased power consumption. In
clinical settings this is a highly desirable property and is, in fact, a basic requirement of any
neuroprosthetic device.

The key advantage of the approach we presented here is that the system under control is
being steered back towards its primary operating point (Fig 8). That is, DFC effectively
decreases the synaptic coupling strength and, therefore, it counteracts the causes that originally
led to the instability. This is obviously true only for the first-order statistics, because DFC does
not counteract changes in the variance of the input that a random neuron in the network
receives. Nevertheless, this is sufficient for the network to recover basic processing abilities
both for rate and temporal coding schemes. Alternative approaches that rely on increased
external noise are able to suppress oscillations [41], but they do not allow the network to per-
form any meaningful computations. We think that a similar explanation is valid also for the
traditional open-loop DBS. The exact mechanisms of this type of DBS are still debated [42],
but one of the reasons for the induced side-effects may be compromised information
processing.

DFC suppresses oscillations in SNN not by decorrelating individual neurons, but rather by
applying a common signal to all neurons that counteracts the mean input they receive from the
network. Besides the many advantages described earlier, the utility of DFC lies in the fact that

Fig 8. Recovery of network computations. DFC decreases the effective coupling between the neurons
steering the system back to its original operating point and restoring the original transfer function T1(ω).
Alternative approaches, e.g. noise injection may suppress oscillations, but they drive the system to a
dynamical regime characterized by a different transfer function T2(ω) where physiological computations are
impaired.

doi:10.1371/journal.pcbi.1004720.g008
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it is a very general control strategy, which does not depend qualitatively on lower level proper-
ties such as the specific coupling kernels of the connections. Neither does it depend qualita-
tively on the exact neuronal type (S3 Fig). Thus, DFC can in principle deal with more complex
scenarios, e.g. heterogeneities in network and in neuronal properties. Nonetheless, the exact
shapes of the neural and synaptic response functions do affect the system quantitatively and do
modify the stability landscape. Thus, it is essential to have a good understanding of their pre-
cise contribution.

The results we presented provide a clear picture about how exactly the static gain of the neu-
ron affects the size of the stable control domains. We also showed that the width rather than
the shape of the control kernel affects the stability boundary. Further, we explained how the
coupling strength and delay influence the overall stability landscape. Besides their theoretical
value, these insights have a direct implication for the design of neuroprosthetic devices and are,
therefore, of immediate practical and clinical relevance.

It is also important to address certain limitations in our approach. First, we assumed that we
can directly affect the neuron membrane potential. This is currently only possible in animal
models, where optogenetic tools are applied not only for superthreshold excitation/inhibition
but also for subthresholdmodulation [32]. In humans only electrical stimulation is realistic at
the moment, therefore incorporation of volume conduction models [43] to describe the effects
of electrical fields on individual neurons would be required [44]. Second, we used the popula-
tion average of single neuron firing as our observable. Again, in more realistic settings the pop-
ulation rate has to be reconstructed from the available recordings, e.g. from multi-unit activity.
This could be done, for instance, via the use of Kalman filters [45]. Third, our theoretical analy-
sis was based on a mean-field approximation that ignores fluctuations in the input. Analytical
and numerical results were largely in a good agreement, but additional work is necessary to
specifically deal with the fluctuations in the activity. Last, we had access to the relevant parame-
ters required for the tuning of the controller. This was intended, because our goal was not to
simply demonstrate that the method is effective in large networks of spiking neurons, but also
to provide an explanation in terms of mean-field theory of the precise mechanism. In real
applications these parameters have to be estimated online from the recorded activity. The delay
could be inferred from the frequency of the oscillatory activity. Inference of the coupling
strength is less straightforward, but may still be feasible. Alternatively, once the delay is esti-
mated, methods of adaptive tuning could be used to retrieve also the optimal control gain (S4
Fig). Tuning the controller is in general a difficult problem, even for open-loop DBS, and addi-
tional research in this direction is required.

Differences from previous work
Few studies have addressed the problem of suppressing oscillations in neural activity (see [39]
for a detailed review). They are based (i) on population dynamics [46][15], (ii) on detailed sin-
gle neuron descriptions [13], (iii) on simplified but computationally efficient models (e.g.
Rulkov maps [47]), (iv) or on combinations thereof [14]. These approaches have their merits,
but they come with limitations: (i) the parameters cannot be directly mapped to experimental
measurable quantities (ii) it is not clear if the results scale to large networks of neurons.

The approach that we presented here is a trade-off between biophysical realism and analyti-
cal tractability. We used the LIF model, which captures single-neuron dynamics to a sufficient
degree, while at the same time allows computationally efficient simulations of large networks.
We applied DFC that was originally proposed in the context of chaotic systems as a method to
control unstable periodic orbits [5]. DFC has been also used to control dynamics in extended
media [48] and has been applied in different contexts as well [49]. It was later used to control
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coherence [50] and to suppress synchronous activity in networks in which the neurons them-
selves act as oscillators [10–12].

Here, we did not use simplified population dynamics or phase oscillators. Instead, we used
spiking neurons that fire irregularly and are nevertheless able to generate oscillations. We used
a single proportional control term to provide a proof of principle of the method and to be able
to delineate the control domains semi-analytically. Alternative approaches, e.g. linear PI/PID
control [4] or non-linear control schemes [11] are also possible and may improve performance,
however, their theoretical analysis is less straightforward. We also inserted realistic descriptions
of synaptic dynamics and, therefore, were able to explicitly study their contribution to stability.
This allowed us to design an appropriate control kernel, which resulted in increased control
domains. In addition, by using a mean-field theory that explicitly incorporates the synaptic
and neuronal response functions we could study their contribution in a systematic way. The
neuronal response function enabled us to investigate the influence of external and recurrent
inputs and to relate them to experimentally measurable quantities. Indeed, as we showed
above, the statistics of the mean field for activity states with very similar firing rate profiles may
be significantly different affecting stability. Therefore, feasible measurements of the population
activity can be directly used to characterize the operating point of the network and to fine-tune
the control parameters to achieve the desired results.

Finally, the results presented here provide us with an understanding of the recent success of
event-triggered control strategies. Event-triggered control can be placed between open-loop
and continuous closed-loop control (e.g. DFC). Open-loop provides constant magnitude stim-
ulation independent of the ongoing activity. Event-triggered approaches provide also constant
magnitude stimulation, but only if a certain event occurs, for instance the power of beta oscilla-
tions crosses a certain threshold. Thus, the overall stimulation time and, therefore, the unde-
sired stimulation side-effects are reduced. In DFC the stimulation side-effects are likely to be
further reduced, because the stimulation amplitude is continuously adjusted to the ongoing
activity. That is, no excessive stimulation is applied. This is particularly true for differential
DFC, in which the stimulation amplitude vanishes over time.

Conclusions
We used DFC, a relatively simple form of control that includes only a proportional gain term,
because it is still possible to analytically study the stability of the closed-loop control system.
More sophisticated control strategies could further increase the performance of the system.
They come, however, at the price of increasing the number of control parameters that have to
be estimated and of increasing complexity precluding a formal proof of stability. Our approach
spans multiple levels of analysis of neuronal dynamics, enabling an understanding of how the
control stimulus interacts with both low-level synaptic and high-level properties of the popula-
tion activity to influence stability. At the same time the complexity of the controller is low
enough to be of practical relevance. Thus, here we have provided a general conceptual frame-
work for future studies that address both theoretical and practical aspects of closed-loop con-
trol in neuronal systems.

Methods
Numerical simulations
We simulate networks of N LIF neurons randomly connected with a probability of ! = 0.1.
Thus each neuron receives on average C = !N connections from other neurons in the network.
For the purely inhibitory network we use N = NI and for the coupled excitatory-inhibitory case
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N = NE+NI. The subthreshold dynamics of a neuron i in the network is given by

tm
dviðtÞ
dt

¼ ðvrest ' vðtÞÞ þ Rm $ Ii;recðtÞ þ Rm $ Ii;extðtÞ ð5Þ

where Rm is membrane resistance, τm is the membrane time constant and vrest is the resting
potential. The recurrent input term

Ii;recðtÞ ¼ '
XN

j¼1

Jijcij
X

k

sðt ' tkj ' dijÞ ð6Þ

describes the total synaptic current arriving at the soma due to presynaptic spikes. cij are ele-
ments of the binary connectivity matrix. Each presynaptic spike causes a stereotypical postsyn-
aptic current s(t) modeled as an α-function [51]

sðtÞ ¼ t
ts
e
1'

t
tsHðtÞ ð7Þ

where τs is the synaptic time constant andH(t) the Heaviside function.
The double sum in Eq 6 runs over all firing times tkj of all presynaptic neurons connected to

neuron i. For all connections in the network we use the same synaptic coupling strength Jij = J/
C, where C is the average in-degree and dij = d the transmission delay. The external input

Ii;extðtÞ ¼ mþ s ffiffiffiffiffitm
p ZiðtÞ ð8Þ

contains a mean term μ and a fluctuating term resulting from the Gaussian white noise ηi(t)

that is uncorrelated from neuron to neuron with<ηi(t)> = 0 and<ηi(t)ηi(t0)> = δ(t−t0).

Asynchronous state
In the stable asynchronous state the population average of the firing rate is constant in time,
r(t) = r0. The mean recurrent input that each neuron receives is therefore also constant and
given by

mrecðtÞ ¼ hJ=C $
P

cij
R
sðtÞ

P
k

dðtkj ' t' dÞdti ¼ J $ r0 $
R
sðtÞdt ¼ mrec

similarly the variance of the recurrent input is

s2
recðtÞ ¼ Var½J=C $

P
cij
R
sðtÞ

P
k
dðtkj ' t' dÞdt& ¼ J2=C $ r0 $

Z
s2ðtÞdt ¼ s2

rec

We study the stability of the asynchronous state following a linear perturbation approach
[18]. A small oscillatory modulation of the stationary firing rate r(t) = r0+r1 e

−λt with v1 * 1
and λ = x+jω where ω is the modulation frequency leads to corresponding oscillation of the
synaptic current

I1 ¼
'J $ r1 $ e $ ts
ð1þ l $ tsÞ

2 e
'ld ð9Þ
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The firing rate in response to an oscillatory input is given by

r1 ¼
I1 $ r0

sð1þ ltmÞ

@U
@y

ðyt; lÞ '
@U
@y

ðyr; lÞ

Uðyt; lÞ ' Uðyr; lÞ

0

BB@

1

CCA ð10Þ

The function U is given in terms of combinations of hypergeometric functions

Uðy; lÞ ¼ ey2

G
1þ l $ tm

2

" # F
1' l $ tm

2
;
1

2
;'y2

" #

þ ey
2

G
l $ tm
2

" # F 1' l $ tm
2

;
3

2
;'y2

" #

In a recurrent network the modulation of the firing rate and the modulation of the synaptic
input must be consistent. Combining Eqs (9) and (10) we get

1 ¼ 'J $ r0$e $ tse'ld

sð1þ ltmÞð1þ ltsÞ
2

@U
@y

ðyt; lÞ '
@U
@y

ðyr; lÞ

Uðyt; lÞ ' Uðyr; lÞ

0

BB@

1

CCA

which we write as

1 ¼ J $ RðlÞ $ SðlÞ $ e'ld ð11Þ

where the terms

RðlÞ ¼ 1

sð1þ ltmÞ

@U
@y

ðyt; lÞ '
@U
@y

ðyr; lÞ

Uðyt; lÞ ' Uðyr; lÞ

0

BB@

1

CCA

and

SðlÞ ¼ e $ ts
ð1þ l $ tsÞ

2

describe the neuronal and synaptic response functions respectively. The negative sign of J is
absorbed in the phase of S(λ).

The critical coupling values at which modes have marginal stability with frequency ωi can
then simply be computed by

Ji ¼
1

RðoiÞ $ SðoiÞ

The smallest value Jcr =min{Ji} is the critical coupling at which the first complex pair of
eigenvalues crosses the imaginary axis and the system becomes unstable. In the case of the
inhibitory network for μ = 14 mV and σ = 6 mV we have Jcr ) 115 mV. In the simulations we
used for the coupling between two neurons i and j, Jij = 0.2mV thus the total coupling is J = C $
Jij = 1000 $ 0.2 mV = 200 mV>Jcr (Fig 2a–2d).
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Stability. The solutions λ of the self-consistency Eq (11) determine the stability of the sys-
tem. If for all solutions the real part is negative, Re{λ}<0, then the system is stable otherwise it
is unstable. The stability border, λ = jω, is characterized by the occurrence of a supercritical
Hopf bifurcation. At this point the population activity will be oscillatory with frequency ω.

Delayed feedback control
In the simulations we implement DFC by recording and stimulating all neurons in the net-
work. The subthreshold dynamics of a neuron i with DFC is given by

tm
dviðtÞ
dt

¼ ðvrest ' vðtÞÞ þ Rm $ Ii;recðtÞ þ Rm $ Ii;extðtÞ þ Rm $ ICðtÞ ð12Þ

where IC(t) is the control input. Note that IC(t) is identical for all neurons in the network given
by

ICðtÞ ¼ K $mðtÞ ? ðvðt ' dcÞÞ ð13Þ

where v(t) is the instantaneous population activity at time t and ? denotes the convolution
operation ðf ? gÞðtÞ ¼

R1
'1 f ðt ' tÞ gðtÞ dt:We used as control kernelm(t) a box function

mðtÞ ¼ Hðt ' aÞ ' Hðt ' bÞ

whereH(t) is the Heaviside function

HðtÞ ¼
0; t < 0 ms

1; 0 + t + 1 ms

(

Thus the control input IC(t) was updated in steps of 1ms.
Direct control. In the case of direct DFC a modification of the self-consistency Eq (11)

yields

1 ¼ J $ RðlÞ $ SðlÞ $ e'ld ' K $ RðlÞ $MðlÞ $ e'ldc ð14Þ

whereM(λ) describes the control kernel in the frequency domain and the negative sign cap-
tures the fact that the control stimulus counteracts the effects of the synaptic coupling J.

The box function has response characteristics given by

MðlÞ ¼ e'al ' e'bl

l
e'l$dc

¼ 1' e'bl

l
e'l$dc

where a = 0, b is the width of the kernel and dc is the control delay.
Differential control. In differential DFC where the control input IC(t) is a function of the

difference between two time-delayed versions of the population activity v(t). It is given by

ICðtÞ ¼ K $MðtÞ ? ðvðt ' dc1Þ ' vðt ' dc2ÞÞ ð15Þ

In this case the self-consistency Eq (11) is modified to give

1 ¼ J $ RðlÞ $ SðlÞ ' K $ RðlÞ $MðlÞðe'l$dc1 ' e'l$dc2 Þ ð16Þ
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Rate compensation. In all simulations we adjust the mean μ and variance σ of the external
input to the neurons such that the firing rates are approximately equal for all conditions, that is

v0 ¼ vJ ¼ vK ¼ vðm; sÞ

where v0, vJ, vK are the firing rates of the uncoupled, coupled and network under DFC respec-
tively. In this way we can exclude any effects due to changes in the firing rates.

Stability analysis. The eigenvalues λ of the self-consistency Eqs (14) and (16) determine
the stability of the system. We compute for both direct and differential control the real part of
the rightmost eigenvalue Re{λ1} that determines stability. We use the (IK, dc)-parameter pair
with IK 2 [0, 300] mV and dc 2 [0, 30] ms. The second delay term in differential control was in
both cases dc2 = 1 ms.

DFC induced SI activity. If the control gain K has the same sign as the synaptic coupling J
and the control delay is chosen to be close to the synaptic delay, dc ’ d, then the effective cou-
pling in the network increases resulting in SI activity (Fig 7). In this case the self-consistency
equation is given by

1 ¼ J $ RðlÞ $ SðlÞ $ e'ld þ K $ RðlÞ $MðlÞ $ e'ldc ð17Þ

Static gain. In the frequency domain the neuron response function R(f) is simply the Fou-
rier Transform of the impulse response h(t), i.e. Rðf Þ ¼ F ½h0ðtÞ&ðf Þ. The impulse response h(t)
can be separated in two parts

hðtÞ ¼ @mr $ hnðtÞ ¼ Gs $ hnðtÞ

where hn(t) is the normalized impulse response such that
R1
0
hnðtÞdt ¼ Rðf ¼ 0Þ ¼ 1 and

Gs = @μ r is a constant term that we denote as the static gain of the response. It corresponds to
the slope of the ‘f-I’ curve at the operating point and captures the ‘susceptibility’ of the rate to
small changes in the mean μ.

We can rewrite the self-consistency Eq 4 as

ðJ ' KÞ $ RðlÞ $ SðlÞ $ e'ld ¼ 1

ðJ ' KÞ $ Gs $ RnðlÞ $ SðlÞ $ e'ld ¼ 1

ðJ ' KÞ $ Gs $ jRnðlÞ $ SðlÞjei" ¼ 1

where we have separated the complex expression Rn(λ) $ S(λ) in an amplitude and phase part.
Splitting this complex equation in two real ones we get

" ¼ ð2kþ 1Þp

and

ðJ ' KÞ $ GsjRnðlÞ $ SðlÞj ¼ 1

) LcrðlÞ ¼ ðJ ' KÞðlÞ ¼ 1

GsjRnðlÞ $ SðlÞj

The first equation gives us the critical frequencies ωcr for which the modes exhibit marginal
stability, i.e. λ = iωcr. From the second equation we can compute the corresponding effective
critical coupling Lcr(ωcr).
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Control kernel dependence. To study how stability depends on the control kernel we
write again the self-consistency equation

ðJ þ DJÞ $ RðlÞ $ SðlÞ $ e'ld ' K $ RðlÞ $MðlÞ $ e'ldc ¼ '1

ððJ þ DJÞ $ SðlÞ $ e'ld ' K $MðlÞ $ e'ldcÞ $ RðlÞ ¼ '1

where ΔJ is a pathological increase in the synaptic coupling that the controller needs to coun-
teract. Separating amplitude and phase we get

ððJ þ DJÞ $ AsðlÞei"S ' K $ AMðlÞei"M Þ $ RðlÞ ¼ '1

J $ ei"S þ ðDJ $ ei"S ' K $ ei"M Þ $ RðlÞ ¼ '1

where we used AS(iω))) AM(iω) = 1, which is valid for the frequency range that we are inter-
ested in ω< 300 rad (S2 Fig). To counteract the increase ΔJ we need to minimize the effective
coupling term

Leff ¼ DJ $ ei"S ' K $ ei"M

which leads to

K ¼ DJ

"S ¼ "M

For the control kernel we use a box function defined as

MðioÞ ¼ 1' e'iob

io
e'io$dc

with phase

"M ¼ o $ dc þ o $ b
2

whereas the synaptic kernel is the α-function

SðioÞ ¼ e $ tr
ð1þ iotrÞ

2 e
'io$d

"S ¼ o $ d þ 2 $ atanðo $ trÞ

Thus

o $ d þ 2 $ atanðo $ trÞ ¼ o $ dc þ o $ b
2

and if we assume that atan(ω $ τr))ω $ τr then

o $ d þ 2 $ o $ tr ¼ o $ dc þ o $ b
2

oðd þ 2 $ trÞ ¼ o $ dc þ
b
2

" #

o $ ds;eff ¼ o $ dc;eff

Thus, the most optimal control is achieved when the effective delays of synaptic and control
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kernel ds,eff and dc,eff respectively are identical

Dd ¼ ds;eff ' dc;eff ¼ 0

In our simulations we used d = 5 ms and τr = 1ms, thus ds,eff = 7ms. For the controller we
used dc = 6.5 ms and b = 1ms, thus dc,eff = 7ms.

Recovery of network function
Response to random pulse packets. We computed the response of the network to incom-

ing stimuli that arrived in form of random Gaussian pulse packets. A pulse packet was com-
posed of a predefined number of spikes npp = 100 with normally distributed random
displacements tk * N(μ = 0, σpp = 10ms) from the center time tc of the pulse. It was fully
defined by the tuple (tc,npp, σpp). In total, ten pulse-packets with center times tk = (200k+200)
ms and 1+ k+ 10 were applied to 100 randomly chosen neurons in an inhibitory network of
size N = 1000. We computed the population response at time points tk + 10 ms and compared
it with the population activity during baseline at time points tk + 100 ms. For this, we per-
formed a receiver operating characteristic (ROC) analysis evaluating the true positive and false
positive rate for various thresholds. We then computed the area under the ROC curve (AUC),
which indicates how well the response can be distinguished from baseline activity. An AUC
value of 1 means full separability of the two activity states, whereas an AUC value of 0.5 indi-
cates full overlap of the activity sampled during the two different conditions. We computed the
AUC values for three different scenarios: (i) physiological AI state (ii) pathological (oscillatory)
state controlled with DFC (iii) pathological (oscillatory) state with noise. The results are shown
in Fig 5a and 5b.

Response to common input. We defined a spike train of nST = 500 equally spaced spikes
in a window of TST = 50 ms. Ten copies of exactly the same spike train with time onset tk =
(200k + 200) was provided as input to 100 randomly chosen neurons in an inhibitory network
of size N = 1000. Thus, in this scenario all stimulated neuron received identical input during
the stimulation periods. However, in this case we were interested in the temporal aspects of the
network response. To this end, we measured the synchrony between the spike trains of all neu-
rons in the network using the SPIKE-distance metric [34]. The SPIKE-distance is a measure of
(dis)-similarity which allows for a time-resolved analysis and can track instantaneous changes.
We computed the multivariate SPIKE-distance S both during the 50ms of stimulation (SST)
and also during 50 ms of baseline activity (SBL). We then computed the temporal average for
the stimulation

DSTðtÞ ¼
1

TST

Z tþTst

t

SðtÞ $ dt

and for the baseline DBL(t) = DST(t+100). The results, again for the three scenarios described
above (AI, DFC, noise) can be seen in Fig 5c.

Oscillation index. We estimated the discrete power spectral density P(ω) of the popula-
tion activity r(t) using the standard Fast Fourier Transform (FFT) method. We then computed
the total power in the range [0, 250/π] rad

PT ¼
P

i PðoiÞ

and used log10 PT as a descriptor of oscillation strength.
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Supporting Information
S1 Text. Effects of neural heterogeneity: bursting neurons.
(PDF)

S1 Table. Model parameters.
(PDF)

S1 Fig. Static gain. In order to maintain constant firing rates in each population we increase
the mean input μ while decreasing the variance of the input σ. (a) Moving in the state-space
while maintaining the firing-rates yields significant changes in the static gain Gs. (b) The
changes in the normalized neuronal response Rn are modest (b) and the changes in the normal-
ized synaptic response Sn are negligible (c).
(TIF)

S2 Fig. Control kernels. Sn(ω) Various control kernels have very similar amplitude responses
for the relevant frequency range f<100 Hz.
(TIF)

S3 Fig. DFC control in heterogeneous networks. (a) Raster plot. Replacing regular spiking by
bursting neurons (top 30% in excitatory and inhibitory population) does not compromise the
effects of control. (b) Population activity of E-neurons (blue) and I-neurons (red). (c) Single
membrane potential trajectories of ten randomly chosen E-neurons in the network. The aver-
aged trace of the subthreshold dynamics is shown in red.
(TIF)

S4 Fig. Adaptive parameter tuning. An adaptive procedure is used to find the optimal value
for the control gain K. (a) I network. Switching on the controller at t = 100 ms results in sup-
pression of oscillations. (b) Population activity of inhibitory neurons (blue). (c) The algorithm
converges to an optimal value (red dashed line) for the control input within 200 ms after initia-
tion of the procedure.
(TIF)
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