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Dynamical state of the network 
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Spike patterns are among the most common electrophysiological descriptors of neuron types. 
Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its 
activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing 
for a change in its firing patterns independent of changes in its input-output firing rate relationship. 
Using this model, we show that the effect of single neuron spiking on the network dynamics is 
contingent on the network activity state. While spike bursting can both generate and disrupt 
oscillations, these patterns are ineffective in large regions of the network state space in changing 
the network activity qualitatively. Finally, we show that when single-neuron properties are made 
dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon 
has important implications for determining the network response to time-varying inputs and for the 
network sensitivity at different operating points.

Neurons express a large diversity in terms of their biochemical, morphological and electrophysiological proper-
ties1–4. However, it is not clear if and under which conditions such diversity plays a functional role. It has been 
shown that selective stimulation of neurons of a given type expressing specific bio-markers can modulate different 
aspects of brain function5. For instance, selective stimulation of neurons changes the excitation/inhibition bal-
ance6, network dynamics7,8 and computations performed by the network9, thereby leading to an altered animal 
behaviour. Moreover, noise introduced by intrinsic properties of neurons/synapses can have several effects. It 
can render the dynamics more robust to perturbations10 and can improve the encoding and decoding of neu-
ronal activity by reducing correlations11. These experiments provide strong support to the ‘neuron doctrine’ and 
motivate the search for novel bio-markers and specific functions of different classes of neurons4,12. However, 
experiments also suggest that stimulation of a certain neuron type may not cause any discernible change in the 
population activity and animal behaviour13. Moreover, detailed models of single neurons14 and networks15 have 
shown that multiple combinations of neuron and synapse parameters can lead to similar activity states16; sug-
gesting that exact neuronal properties are not crucial to obtain a specific dynamical network state and, hence, a 
specific function.

These conflicting studies make it important to identify: (1) Changes in neuron properties that can affect 
network dynamics. (2) Dynamical states in which the network activity is susceptible to changes in a certain 
neuronal property. Here we focus on the effect of spike bursting on the network activity dynamics and vice 
versa. Spike bursting is a common electrophysiological descriptor of a neuron type17,18. The fraction of burst-
ing neurons depends on the brain region19, and even in a given brain region the firing rate of spike bursts may 
change depending on their inputs20 and on the behavioral task21. Finally, the rate and fraction of burst spiking 
increases in Parkinson’s disease22. From a dynamics perspective, when neurons operate in an ‘integration mode’, 
temporal integration of spike bursts can qualitatively change the response of post-synaptic neurons and, conse-
quently, of the network. Such effects could be further amplified by short-term dynamics23 and long-term plas-
ticity of the synapses24,25. Therefore, the burst firing pattern, which is very different from the spike trains of the 
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leaky-integrate-and-fire (LIF) neuron model is a suitable candidate to study the influence of single neuron firing 
patterns on the network activity. Surprisingly, despite this wealth of literature on the effects of neuronal and syn-
aptic properties on network dynamics (see review by Wang26), it is not at all clear how firing patterns of various 
neuron types may affect the network dynamics and how network dynamics, in turn, may help shape neuronal 
firing patterns.

Here, we present an analytical framework to study the effect of spike bursting on the network dynamics. Using 
mathematical analysis and numerical simulations of large-scale network models of spiking neurons we investigate 
the effects of firing patterns - exemplified here by bursting activity of inhibitory neurons - on network synchrony 
and oscillations. Our analysis shows that there are two different mechanisms by which spike bursting can affect 
the network dynamics. We show that single-neuron burst firing is most effective in changing the network state 
when the latter is in a transition zone between asynchronous and synchronous firing regimes. That is, the effect 
of single-neuron bursting is contingent on the network activity state itself. Thus, our results suggest that the brain 
can exploit the heterogeneity of neuronal spike patterns if it operates in the transition zones between different 
activity regimes.

Finally, we show hysteresis in the network activity, a novel property that is emerges as a consequence of mutual 
interactions between single-neuron firing patterns and network dynamics. Hysteresis implies that the network 
output does not only depend on the current input but also on previous network states and that under certain con-
ditions the network output will change slowly compared to the input. This will influence the network sensitivity 
at different operating points and, thereby, the network response to time-varying inputs.

Results

Previous models have addressed the issue of neuronal and synaptic diversity by drawing values from various 
parameter distributions instead of assigning single values. The specific effect of neuronal heterogeneities in ran-
dom networks becomes more apparent when instead of a distribution of neuron parameters, different types of 
neurons are used27. Therefore, to study the effect of spike patterns of individual neurons, we characterised the 
activity of a randomly connected network of excitatory (E) and inhibitory (I) neurons (Fig. 1A) by systematically 
increasing the fraction of one type of neuron in the inhibitory population. This manipulation was motivated 
by two experimental observations: (1) the fraction of bursting neurons depends on the brain region19, (2) the 
probability of a neuron to elicit spike bursts depends on the inputs20 and neurons can dynamically switch their 
firing mode, depending on the context21,28 and, more permanently, in the case of specific brain diseases22. That 
is, the fraction of bursting neurons is a dynamical variable which may change, depending on the behavioral con-
text, inputs, brain region and brain condition. We considered a sparse Erdos-Renyi (ER) type network of E and I  
neurons connected with 10% probability. This choice of ER type random networks ensured that our results are 
not dependent on any specific connectivity of the bursting neurons. We used the Izhikevich neuron model for its 
computational efficiency and its ability to reproduce nearly all spike patterns observed in vitro29. All excitatory 
neurons were realised as regular spiking neurons. The inhibitory neuron population consisted of F% burst spiking 
neurons (BS) and (100 −  F)% fast spiking (FS) neurons.

Effect of bursting on the stability of oscillatory activity. We first characterised the effect of bursting 
neurons on γ-band oscillations in recurrent networks. These oscillations are considered to play a crucial role 
in brain function30–32. We tuned the parameters - external input rate and synaptic weights - of a network of RS 
excitatory and FS inhibitory neurons (i.e. F =  0) to obtain stable γ-band oscillations33,34 (Fig. 1B). In this regime, 
individual neurons do not produce an action potential in every oscillation cycle and, thus, have a mean discharge 
rate that is typically lower than the frequency of the fast gamma rhythm emerging at the network level35. These 
oscillations are known to be robust to heterogeneities (when modeled by a unimodal distribution of neuron 
parameters) and noise in the external input35–37. In the following, we study the stability of these oscillations in a 
network with two or three different types of neurons.

When all inhibitory FS neurons were replaced by BS neurons, with all other parameters kept constant as in 
(Fig. 1B), the oscillations were severely weakened (Fig. 1C). For an intermediate fraction of BS neurons (F =  20%), 
the oscillations were not completely diminished, but the stability of the oscillations was severely affected and short 
oscillatory epochs were interrupted by non-oscillatory activity. To quantify the stability of the oscillations, we esti-
mated the spectral entropy (Hs) of the population activity spectrum, which provides a measure of the dispersion 
of the spectral energy of a signal (see Methods). We found that the spectral entropy increased with the fraction of 
BS neurons and saturated to its maximum value (Fig. 1D). Irrespective of the strength of the external input (η), 
about 30% BS neurons were sufficient to quench the oscillations (Fig. 1D).

For a fixed proportion of BS and FS neurons, the excitatory input strength (η) shifted the operating point of 
the network by increasing the firing rate of the individual neurons (Fig. 1E). This also resulted in an increase in 
the dominant oscillation frequency (60–100 Hz), however, the spectral entropy remained unaffected (Fig. 1F). 
Thus, it is likely that the reduction in oscillation power is a consequence of the spike pattern of the BS and not of 
the different f −  I curve of the BS neurons. Unfortunately, though, it is not trivial to separate the contribution of 
the spike patterns and the f −  I curve to the network activity state. As we will show later, the effect of spike patterns 
and f −  I curve can be separated by adapting the standard LIF neurons.

Response of network activity to single neuron bursting. In the above, we showed the effect of BS 
neurons on the oscillatory dynamics of a random network only for a specific activity regime of the network. 
Sparsely connected random networks of excitatory and inhibitory neurons can exhibit distinct activity states 
depending on the external excitatory input (η) and the ratio of recurrent inhibition and excitation (g). While 
individual neurons can fire in a regular (R) or irregular (I) manner, the population activity can be synchronous (S) 
or asynchronous (A). Thus, the network activity could be either AI, SI, AR, or SR38,39. In the mean-driven regime 
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the neurons fire in a regular manner whereas in the fluctuation driven regime their spiking becomes irregular. 
Because neuronal activity in vivo is irregular, only SI and AI are biologically relevant for information processing. 
Therefore, we studied how the AI and SI activity regions in the parameters space of η and g are changed when 
FS are systematically replaced by BS neurons (Fig. 2A–C). The parameters η and g were varied to obtain low to 
mid-range firing rates (≤ 25 spikes/sec) and irregular spiking in the RS neurons (CVISI ≥  0.5).

Replacement of FS neurons by BS neurons altered the various regions in the network parameter space differ-
ently. We identified four different ranges of parameters giving rise to four distinct modulations of activity regimes 
(see Fig. 2D,E): (1) A parameter range in which the network remained in the synchronous state, irrespective of 
the fraction of BS neurons. This invariance of the synchronous network activity to the neuron types was observed 
for small values of g. In a network where all neurons have identical f −  I curves, this parameter regime would 
correspond to a mean-driven regime. This classification is, however, not directly applicable here, because FS and 
RS neurons have different slopes of their f −  I curves. (2) A parameter range in which the network remains in 
an asynchronous state, irrespective of the fraction of BS neurons. In this regime, g is large enough to drive the 

Figure 1. Effect of increasing the fraction of bursting neurons in the inhibitory population on the stability 
of γ-band oscillations. (A) Schematic of the network. (B) Spiking activity in a network with only FS neurons 
constituting the inhibitory population. A clear oscillatory activity is seen in the excitatory neurons (blue dots) 
and inhibitory FS neurons (orange dots) (g =  7.1, η =  2.8 ×  104 sp/s, JE =  0.1 mV). (C) Spiking activity in a 
network with only BS neurons (gray dots) constituting the inhibitory population. All other network parameters 
are the same as for the activity shown in (B). Inhibitory BS neurons weaken network oscillations. (D) Stability 
of the oscillations (quantified by the Spectral Entropy) of excitatory neurons as a function of the fraction of BS 
neurons.(g =  7.1) (E) Spectral entropy, excitatory and inhibitory (FS +  BS) population firing rate as a function 
of the external input (η) to a network with 40% BS and 60% FS inhibitory neurons. (F) Oscillation frequency as 
a function of the external input. For a fixed fraction of BS neurons, spectral entropy remained unchanged while 
the oscillation frequency and the firing rate of the neurons increased.
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network into the fluctuation-driven state, resulting in irregular and asynchronous (non-oscillatory – HS ≥  0.6) 
firing. (3) The network activity makes a transition from the synchronous to the asynchronous state, that is, BS 
neurons tend to weaken or even quench the weak synchrony. (4) In a relatively small parameter regime, we also 
observed that for a small fraction of BS neurons, the network activity changed from the synchronous to the asyn-
chronous state (similar to (3)), but for a larger fraction of BS neurons, the activity returned to the synchronous 
state again. That is, for 100% BS or FS neurons, the network remained in a synchronous (also oscillatory, HS ≤  0.6) 
state, whereas for intermediate fractions the network synchrony was destroyed (HS >  0.6).

The Izhikevich neuron in its bursting mode, differs from its fast-spiking mode in two respects: it produces 
more than one spike every time the membrane potential crosses the spiking threshold (see Fig. 3A) and the f −  I 
curve of the bursting neurons has a larger slope than that of the FS neurons (see Fig. 3B). In the existing neuron 
models (Izhikevich neuron model, generalised integrate-and-fire neuron), it is not possible to change the f −  I 
curve of the neuron without affecting its firing pattern.

The state-dependent stochastic bursting neuron model. To understand the role of spike patterns 
in shaping the network dynamics it is important to isolate their effects from the different f −  I curves. Therefore, 
we modified the standard LIF neuron model to produce bursting of B spikes in a stochastic manner with a prob-
ability 1/B every time its membrane potential reaches the spiking threshold (see Methods). We refer to this new 
model as the State-dependent Stochastic Bursting Neuron (SSBN) model when the parameter B depended on the 
input level. In a special case, B could be a fixed number. The SSBN model not only ensures that the f −  I curves of 
the bursting and fast-spiking neurons remain identical (Fig. 3D), but it also allows us to change the size and the 
duration of the burst without cumbersome parameter tuning (Fig. 3C). Moreover, unlike the Izhikevich neuron 
model and the generalised LIF model, which are often used to model bursting dynamics of neurons, the bursting 
characteristics of the SSBN remain unchanged, irrespective of the input statistics. The response characteristics of 
the SSBN are similar to that of the LIF, except that an increase in the number of spikes per burst B decreases the 
high-frequency firing limit of the neuron (Supplementary Fig. S1).

Effects of different firing patterns of inhibitory neurons on the stability of network oscilla-
tions. In contrast to FS neurons, BS neurons spike in bursts, but for the same input the total number of spikes 
generated by a BS neuron is identical to that of an FS neuron. This implies that in the SSB neuron, spikes are 
clumped together, creating ‘empty’ temporal windows (with a duration depending on burst size) in which no 

Figure 2. Effect of increasing the fraction of bursting neurons (F) in the inhibitory population on 
synchrony in the network activity. (A) Synchrony (measured as Fano Factor) in the excitatory neurons 
as a function of the ratio of recurrent inhibition and excitation (g) and external excitatory input (η), for 
0% bursting neurons in the inhibitory population. (B) Same as in (A) when 50% inhibitory neurons are 
bursting type. (C) Same as in (A) when all inhibitory neurons are bursting type. (D) Summary of the changes 
induced by increasing fraction of bursting neurons on the different activity states of the network. (E) Four 
representative changes in the network synchrony as the fraction of bursting neurons is increased from 0 to 100% 
corresponding to the crosses in (D). (JE =  0.1 mV, d =  1.5 ms).
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spikes occur (Fig. 3C) and very short windows in which the number of spikes produced will be significantly 
higher than that of FS neurons. Therefore, while an FS neuron exerts a relatively uniform inhibition onto its 
post-synaptic neurons, BS neurons exert inhibition in clumps. Because of the temporal clustering of spikes in 
BS neurons, two distinct mechanisms emerge that define the stability of the oscillatory and asynchronous states, 
respectively.

Stability of the oscillatory state: Additional spikes part of the burst disrupt oscillations. γ-band 
oscillations could be described as ‘interneuron gamma’ (ING) or pyramidal-interneuron gamma (PING)36. In the 
ING oscillations, recurrent inhibition of the inhibitory interneurons creates a small time window for pyramidal 
neurons to spike. In the PING mechanism, an increased activity of pyramidal neurons causes an increase in 
the activity of inhibitory interneurons, which subsequently inhibit the pyramidal neurons. In both mechanisms, 
inhibition sets the time window for the activation (ING) or inactivation (PING) of the pyramidal neurons40. The 
temporal clustering of spikes in BS neurons causes a temporal jitter in the duration of the recurrent inhibition 
and, therefore, weakens the oscillations (mechanism-I).

This is best illustrated in the case of ING oscillations. Here, the initiation of a burst at the edge of the preceding 
oscillation cycle distorts the subsequent window of opportunity for the next inhibitory cycle and, consequently, 
the oscillation is quenched in the inhibitory population. This renders the excitatory population non-oscillatory 
as well.

To demonstrate this mechanism, we simulated a simple E-I network with an inhibitory population composed 
of FS neurons only. The values of g and η were adjusted to render the network in the ING oscillation regime. Based 
on thresholding the z-scored PSTH of the population activity, the oscillatory cycles were marked (gray stripes in 
Fig. 4A). Next, we simulated the network once more with identical parameters, except that at the fifth oscillatory 

Figure 3. The state-dependent stochastic bursting neuron. (A) Izhikevich neuron producing regular spiking 
(RS), fast spiking (FS) and Bursting (BS) firing patterns for different values of the neuron parameters a, b, c and d. 
(B) The firing rate response of the neuron types for different poisson input rates. (C) Firing patterns of the State-
dependent Stochastic Bursting Neuron (SSBN) model with varying number of spikes per burst for the same value 
of constant external DC input (top to bottom). (D) The firing rate response curve of the SSBN for different number 
of spikes per burst, for external Poisson input of different rates.
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Figure 4. Mechanism-I by which spike bursting destroys network oscillations. (A) The network which is 
initially in an oscillatory state switches to a non-oscillatory state with the replacement of FS neurons (orange 
dots) with the BS neurons (grey dots) in the inhibitory population. The blue dots show the excitatory spikes 
and the dark blue line is the z-scored PSTH of the excitatory activity. The light brown stripes correspond to the 
crest of the oscillatory cycles of the excitatory population when the network consisted of only FS inhibitory 
neurons. The number of additional spikes that fall within the stripes (numadd) is added (g =  12, d =  2 ms, 
η =  11500 sp/s, F =  0.4, E : I ratio =  4 : 1). (B) A schematic to depict how additional inhibitory spikes (red dots) 
when the inhibitory oscillatory cycle wanes makes the oscillatory activity unstable in an ING oscillation. The 
excitatory population (blue dots) oscillates in the window of opportunity provided by the inhibitory population 
(orange dots). The red dots indicate the additional inhibitory spikes that are added. (C) PSTHs of the excitatory 
population shows the changes after the addition of the numadd spikes in the inhibitory population. When the 
spikes are added when the inhibitory oscillatory cycle tapers off there is maximum disturbance of succeeding 
oscillatory cycles (blue line). When the same number of spikes are added at the peak of the preceding oscillatory 
cycle, there is minimal effect on the subsequent oscillatory cycle (Control-dark blue line). The pale blue line 
shows the baseline activity when no spikes are added (g =  12, d =  2 ms, η =  11500 sp/s).(D) Same as in (C), 
except that the oscillations are PING driven. (E) PSTHs of the excitatory population affected by additional 
spikes in a PING driven oscillation (g =  7, d =  1.5 ms, η =  20000 sp/s).
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cycle (Fig. 4A), 40% of FS neurons were replaced by BS neurons. By comparing these two simulations, we deter-
mined the number of ‘additional’ inhibitory spikes (numadd) that fell outside the oscillatory window.

To mimic the effect caused by the additional spikes generated by the BS neurons, we added numadd additional 
inhibitory spikes at the exact moment when a particular inhibitory oscillatory cycle tapered off (Fig. 4B). This 
time was determined by running an identical simulation with the same random number generator seeds (base-
line) (Fig. 4C pale blue trace). Addition of the previously determined number of extra inhibitory spikes (as would 
happen in a BS neuron) indeed disturbed the next oscillatory cycle significantly (Fig. 4C blue trace).

To test whether it is the timing of the bursts that weakens the oscillations and not the number of spikes 
contained in them, we added the same number of additional inhibitory spikes during the peak of the preceding 
inhibitory oscillatory cycle (control). In this case, the oscillation amplitude and frequency were not significantly 
changed (Fig. 4C dark blue trace), thereby showing that only the timing of the bursts (or the corresponding addi-
tional spikes) destroyed oscillations. A similar distortion of oscillations is observed when adding additional spikes 
in the inhibitory population in a network in which oscillations are driven by the PING mechanism (Fig. 4E) 
(scheme in Fig. 4D). The breakdown of oscillations by temporal jitter of inhibition is effective when oscillations 
are weak. In strongly oscillatory states, the effective synaptic couplings are strong and, hence, jittering of inhibi-
tion is not sufficient for quenching oscillations (see also Supplementary Fig. S2B).

Stability of the asynchronous state: Bursting makes the network susceptible to oscilla-
tions. When spikes arrive in a burst, the post-synaptic neuron receives a much bigger compound PSP due to 
the temporal summation of individual spikes. Because we preserved the f −  I curve of the neuron while making it 
bursting, effectively each spike was replaced by B spikes while reducing the input rate by a factor B. This is equiva-
lent to a network of non-bursting neurons connected with a synaptic kernel that reflects the temporal summation 
of spikes in the burst. This analogy allows us to use the established mean-field theory to investigate the stability of 
the AI state of the network activity35,37. Only when the compound PSP renders the AI state to become unstable, 
we would expect bursting neurons to transform the AI state into the SI state, otherwise a change in the neuron 
spiking behavior will not affect the network activity.

For simplicity in our network we kept the recurrent synaptic coupling strengths as JEE =  JIE =  JE and JII =  JEI =  JI, 
and JI =  g ⋅  JE (where the subscript xy indicates a connection from the y population to the x population). To test 
the stability of the AI state, we introduced a small perturbation in the steady-state firing rate rP0

 of population P 
(excitatory or inhibitory),

λ= + ⎡
⎣⎢

⎤
⎦⎥
λˆr t r Re r e( ) ( )P P P

t
0 1

where λ =  x +  jω with ω being the modulation frequency. The perturbation in the steady-state firing rate leads to 
a perturbation in the recurrent synaptic input

λ= + ⎡
⎣⎢

⎤
⎦⎥
λˆI t I Re I e( ) ( )P P P

t
0 1

where IP0
 is the baseline steady state synaptic input, λ λ λ= +ˆ ˆ ˆI J S r J S r( ) ( ) ( )P I I I E E E1 1 1

, and SI and SE are the syn-
aptic response functions37.

Subsequently, the perturbation in the synaptic input would change the network firing rate by λ λˆR I( ) ( )P P1
 

(where RP(λ) is the neuron response function37). In a recurrent network, if the rate perturbation, r̂P1
 is equal to the 

synaptic input perturbation, the perturbation does not die out, indicating an instability of the asynchronous state. 
That is, for an unstable asynchronous state:

λ λ λ=ˆ ˆr R I( ) ( ) ( )P P P1 1

We used the above equation to derive the conditions for the instability of the AI state by analyzing the follow-
ing equation37:

λ λ λ λ⋅ ⋅ − ⋅ ⋅ =J R S R S g[ ( ) ( ) ( ) ( ) ] 1 (1)E E E I I

where =g J
J

I

E
. If the synaptic coupling strength JE crosses a critical Jcr, the asynchronous activity destabilizes and 

the network activity enters an oscillatory regime. Because of the temporal summation of burst spikes, when BS 
neurons replace FS neurons in the inhibitory population, the inhibitory synaptic response function SI is altered. 
Specifically, an increase in the number of spikes per burst leads to an increase in the effective synaptic rise time 
(see Methods). This in turn, leads to a reduction of the critical coupling value Jcr, rendering the AI state unstable 
(see Fig. 5A–black dotted line). Thus, if JE <  Jcr for B =  1 and JE >  Jcr for B =  4, a change of neuron type from FS 
(B =  1) to BS (B =  4) will destabilize the AI state and lead the network activity into an oscillatory state. However, 
if JE remains below Jcr for B =  1 and B =  4, the network remains in the asynchronous state, despite the replacement 
of FS by BS neurons. If the network with FS neurons is already in a synchronous state (JE >  Jcr), a replacement of 
all of the FS neurons with BS neurons will not affect the state. However, if the oscillations are weak, replacement 
of a certain fraction of FS neurons with BS neurons can destroy oscillations through mechanism-I by temporal 
jitter of inhibition. Thus, in the asynchronous activity state BS neurons affect the network dynamics by reducing 
the value of the critical coupling (Jcr), leading to a shift from asynchronous to synchronous network activity 
(mechanism-II). As equation-1 indicates, whether or not BS neurons will change the asynchronous activity state 
to the oscillatory state by mechanism-II depends on the network connectivity parameters and the firing rate of the 
network r0.
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Effect of spike bursting on the network activity dynamics. The understanding of how BS neurons 
or spike bursts affect the network dynamics allowed us to re-examine the change in the dynamics of a recurrent 
network when FS neurons are systematically replaced by BS neurons. We simulated a random recurrent network 
with SSB neurons and studied the robustness of the synchronous and asynchronous states when single spiking 
SSB neurons (equivalent to FS neurons) were systematically replaced by SSB neurons with spike bursts of size four 
(equivalent to BS neurons).

When the network was tuned to be in an oscillatory regime (JE >  Jcr), an increase of the number of bursting 
neurons first lead to a non-oscillatory network activity (HS ≈  0.75, F =  25%). This weakening of the oscillations is 
a result of mechanism-I. However, as the fraction of BS neurons was further increased (F ≥  50%), mechanism-II 

Figure 5. Mechanism-II by which spike bursting enhances oscillations. (A) In the phase space of excitatory 
synaptic strength (JE) and the number of spikes per burst (F), the bifurcation line (dotted black line) between 
the oscillatory and non-oscillatory states is the Jcr value calculated analytically (for input mean =  14 mV and 
σ  =  6 mV. d =  5 ms, tsyn =  1 ms and Vth =  20 mV). When the FS neurons in the inhibitory population are replaced 
by BS neurons the number of spikes per burst of the neurons in the inhibitory population is altered and the Jcr 
value drops. A network in an initially asynchronous state can remain asynchronous with the addition of BS 
neurons if the JE values are less than Jcr for F =  4 (bottom panels). The network can transition from asynchronous 
to synchronous states with the change in F, if the JE is higher than Jcr for F =  4 (middle panels). Also, a network 
in an oscillatory state for F =  1 remains oscillatory for F =  4 (top panels). (B) Instead of replacing the entire FS 
population with BS neurons, different proportions of the inhibitory population were changed for the networks 
in panel A with F =  1. It is observed that the addition of 25% BS neurons in a network in a synchronous state 
destroy oscillations due to the Mechanism -I. (C) Change in the firing rate of the excitatory population for 
transitions in (A) while number of spikes per burst are systematically increased.
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became more effective and counteracted mechanism-I, resulting in oscillatory network activity again (HS ≈  0.5) 
(see Fig. 5B). This non-monotonic change in HS resembles the non-monotonic change in networks with the 
Izhikevich model neuron (see Fig. 1A–C). Based on our observations made in networks with SSB neurons, we 
think that even in a network with Izhikevich model neurons, the non-monotonic state changes were largely gov-
erned by the change in neuron spike patterns. Note that a network can remain in the synchronous state for all 
values of F, provided that the inputs to the excitatory and inhibitory populations are appropriately controlled (see 
Supplementary Fig. S2B).

When the network was tuned to be in an asynchronous non-oscillatory state with weak correlations 
(HS ≈  0.7, JE <  Jcr), replacing FS neurons by BS neurons rendered the network in an oscillatory state. The spectral 
entropy monotonically decreased with the fraction of BS neurons (see Fig. 5B). Hence, the transformation of 
non-oscillatory activity to the oscillatory state was governed purely by mechanism-II.

In a network with highly aperiodic activity and very weak correlations (HS ≥  0.8, JE ≪  Jcr), i.e. when the activity 
is deep in the AI regime, the network state was robust to changes in the spike pattern properties of individual 
neurons (see Fig. 5A).

These results clearly show that neuron spike patterns can indeed change the network state, from a weakly 
non-oscillatory asynchronous state to synchronous oscillations (by mechanism-II) and vice versa (by 
mechanism-I). At the same time, a non-oscillatory state with very weak correlations is invariant to changes in the 
neuron spike pattern properties. We conclude that network activity is susceptible to neuron spiking patterns only 
in the transition zone between different regimes (here between asynchronous–non-oscillatory and synchronous–
oscillatory) and the effect of neuron spike pattern properties on the network activity dynamics is contingent on 
the network activity state itself.

Bursting activity increases the population firing rate. The bursting firing pattern of the inhibitory 
neurons aids in the transition of the network activity from the asynchronous to the synchronous state (Fig. 5A). 
This change in the stability of the network activity also influences the population firing rate (Fig. 6). The increas-
ing ‘burstiness’ of the constituent bursting neurons steers the network activity into an oscillatory state. This switch 
is accompanied by an increase in the population firing rate.

Additionally, the difference in the temporal structure of bursting could also change the statistics of the total 
synaptic inputs and the output firing rate of a postsynaptic neuron. To test this, we fixed the number of bursts of 
an SSB neuron and connected it to a LIF neuron that also received excitatory Poisson input. We measured the 
output firing rate and variance of the free membrane potential vfr of the post-synaptic LIF neuron as a function of 

Figure 6. Bursting introduces multi-stability and hysteresis in the network dynamics. (A) The increase 
in firing rate due to increase in external input and change in the burstiness of the neuron (dashed grey lines) 
is shown. The simulation protocol to generate this neuronal network hysteresis is described in Methods. It 
is seen that the onward (blue line) and return (brown line) curves do not trace the same path indicating the 
state dependence of the effect of the single neuron firing pattern on the network. The grey dots show a similar 
hysteresis loop for a network in which the burstiness of only 20% of the inhibitory neurons is changed. The 
inset plot shows the change in the firing rate of the network and therefore the burstiness of the modified-SSBN 
after given an initial perturbation of additional external input of 200 spikes/sec. The burstiness of the inhibitory 
neurons (as defined by the state variable (see Methods)) increases with the excitatory population firing rate. The 
increase in bursting in turn increases the population firing rate. This self-propelling mechanism continues till 
the single neurons produce the maximum number of spikes per burst (B =  5). (B) This panel is similar to (A), 
but the firing rate estimate of the excitatory population is estimated over a time window of 200 ms. The number 
of spikes per burst increases by 2 for every crossing of the firing rate threshold.
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the number of spikes in a burst (Supplementary Fig. S3). The mean vfr remained constant as the number of spikes 
in a burst was increased, because irrespective of burst size the total numbers of excitatory and inhibitory spikes 
were preserved. However, the temporal clustering of BS spiking increased the variance of vfr, resulting also in an 
increase of the output firing. At the network level, this could also contribute to an increase in the population firing 
rate, thereby reducing Jcr and, hence, contributing to the switch of activity from the asynchronous irregular to the 
oscillatory state by facilitating mechanism-II.

State dependent bursting of inhibitory neurons induces hysteresis in the network dynamics.  
In the above, we made the assumption that the number of spikes in a burst of the SSB neuron is fixed. In real neu-
rons, where spike bursting is governed by the voltage-dependent ion channels and interactions between soma and 
distant tufts (e.g. in pyramidal neurons20), the number of spikes in a burst would depend on the network activity 
level. Consistent with this, recent experiments indeed show that bursting can change, depending on the behav-
ioural task and the network activity state21 in both excitatory and inhibitory cells. In simulations with networks 
of Izhikevich neurons, we found the ‘burstiness’ of BS neurons also to be dependent on the network activity state 
(Supplementary Fig. S4).

To implement such state-dependence of burst size, we quantized the firing rate of the excitatory neurons into 
five disjunct ranges (5(B-1) ≤ lb < 5B spikes/sec, with B ∈  {1, 2, 3, 4, 5}). The SSB neuron generated B spikes per 
burst, depending on the level of the firing rate of the excitatory neurons.

With this model of state-depending bursting in inhibitory neurons, we further explored the relationship 
between the network level and neuron level properties. Usually, stationary Poisson inputs are used to deter-
mine the steady state of the network activity. However, such steady state will not reveal any effects introduced by 
state-dependent bursting of inhibitory neurons. Here we introduced dynamical changes in the network activity by 
slowly varying the external input (100 spikes/sec per observation window 3 sec or 200 ms; see Methods).

Random recurrent network without any state-dependent changes in neuron properties rapidly follow changes 
in the external input41 (Fig. 6A, black dots). By contrast, networks with SSBNs, exhibited hysteresis, that is, when 
the input was changed slowly, the response of the network depended not only on the current input value but also 
on its history (Fig. 6A,B orange dots).

To understand the hysteresis observed here, it is important to recall that the change in the population firing 
rate in the system was determined by two factors: (1) a change in the external input, and (2) a change in the num-
ber of spikes per burst (B) of the SSB neurons. An increase in the external input rate led to an increase in the net-
work population firing rate, until SSB neurons started to burst. Therefore, any further change in the network firing 
rate was governed by both the further rising input rate and the increasing effect of neuron bursting. Moreover, 
every time B was increased (see Methods), the network activity rapidly jumped (Fig. 6A). At the peak network 
output firing rate, when the SSB neuron elicited 5 spikes per burst, the increase in the network firing rate was 
dominated by the increase in B. In this network state, a reduction of the external input had only a very weak effect 
in decreasing the population firing rate, until the network firing rate had dropped enough to reduce the burst size. 
Once the activity dropped below this range, it rapidly returned to the baseline state. In the case of a network with 
a small fraction of BS neurons (20%), the increase in network firing rate due to the change in B was very small 
(Fig. 6A black dots), resulting in very little difference between the network responses during the increasing and 
decreasing cycles of the external input.

Balanced random networks, which are often used to model cortical network activity, do not exhibit 
such hysteresis properties in biologically relevant activity regimes such as the asynchronous-irregular or 
synchronous-irregular states38,41. However, under some special conditions, such as clustered connectivity42 
and plastic synapses43,44, spiking neuronal networks can exhibit bistability that may lead to hysteresis as well. 
Hysteresis in network activity implies slow dynamics. On the one hand, bursting increases the sensitivity of the 
network to slowly varying changes, but on the other hand, hysteresis could result in a persistent activity–that is, a 
change in network response activity, lasting long after the stimulus originally inducing it has passed.

Discussion

A specific neuron type has a functional significance only if it can induce a discernible effect on the network activ-
ity state. At the level of spiking activity, the effect of neuronal parameters can be described in terms of changes 
in the firing pattern (e.g. bursting and non-bursting) and f −  I curve (Fig. 7A). Here, we investigated when and 
how neuronal spike bursting, one of the most common descriptors of neuronal types, can introduce a qualitative 
change in network activity. Our theoretical analysis and numerical simulations of neuronal networks show that 
the impact of spike bursting is contingent on the network activity state (schematically shown in Fig. 7B).

The change in the network activity state caused by the temporal clustering of spikes in BS neurons can be 
understood in terms of two mechanisms (Fig. 7A,B). When the network operates in a moderately oscillatory 
regime (spectral entropy ≈  0.5), spike bursts distort the temporal relation between the excitation and inhibition 
necessary for these oscillations36,40 and, therefore, weaken the oscillations (mechanism-I). In this regime, BS 
neurons increase the noise, thereby weakening oscillations (Figs 4 and 7B). On the other hand, spike burst-
ing reduces the effective coupling strength Jcr (see eq. 1), causing the asynchronous activity state to destabilize 
(mechanism-II). That is, bursting reduces the region in the network parameter space for which asynchronous 
activity is stable (Figs 5 and 7B). These two mechanisms are most in effect when the network activity is in a region 
in the activity state space close to the border between asynchronous and oscillatory states. By contrast, the highly 
asynchronous and fully synchronous states remain unaffected by the change in the neuron spiking behavior 
caused by ‘replacing’ FS neurons by BS neurons.

In our study, we specifically investigated the effect of inhibitory neuron bursting on network activity. However, 
our approach is general and could be extended to probe the effects of bursting in excitatory neurons. Furthermore, 
though we kept the network size (5,000 neurons) fixed, we are confident that the results will also hold for larger 
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networks. When we scale the network size, to maintain stability we need to fix either the number of connections 
or the connection probability. In the first case, the correlations due to shared input will decrease. In the second 
case, network activity fluctuations will be smaller, because of the smaller weights. Both these effects will counter-
act the increase in noise due to sparseness. Taken together, in both cases, network scaling will improve the match 
between the mean-field approximation and the numerical network simulations.

Functional consequences of a bursting dependent network state change. We showed that weak 
oscillatory activity is especially susceptible to spike bursting and that even a low fraction of BS neurons (≈ 30%) 
in the inhibitory population is sufficient to quench oscillations (mechanism-I). Such a transient increase in the 
activity of BS neurons could form a powerful mechanism to reset network oscillations. Network oscillations in the 
γ-band (30–80 Hz) are considered to form the basis of selective communication between weakly connected brain 
regions31,40. Bursting-induced phase resetting could be a powerful mechanism to stop or start a communication 
between two such brain regions. Recent experiments show that bursting does indeed increase in a task-dependent 
manner and that it synchronizes activity between different brain areas21. Our results provide two potential mech-
anisms that can act to induce phase-resetting and/or phase-synchronization, and, therefore, provide a first theo-
retical account for these experimental findings.

In our study, we did not incorporate any specific connectivity of the bursting neurons and, therefore, may 
have underestimated the effect of spike bursting on the network dynamics. Recent experimental data suggest that 
neurons exhibiting different firing patterns may receive inputs from different sources45. Given that neuronal con-
nectivity is a key determinant of the effect a given a neuron has on the overall network dynamics46–49, the effects 
of spike bursting on network activity would be further accentuated when bursting neurons make more specific 
connections, which might possibly form in networks with activity dependent synaptic plasticity (Fig. 7A).

Network hysteresis. Spike bursting could be an intrinsic property of neurons50 or emerge as a consequence 
of network activity20,21. In our simulations, when we made the burst size dependent on the average firing rate in 
the network, we observed a hysteresis-like behaviour for time-varying inputs (Fig. 6). Classical balanced random 
networks closely track the dynamics of the external input and do not show such behaviour - in fact, a hallmark 
of their behaviour is to track an arbitrarily fast external input41. Interestingly, the speeding up or slowing down 
of network dynamics due to the presence of bursting neurons has also been observed in other complex networks 
with bursting communication patterns for specific network configurations51.

To the best of our knowledge this is the first demonstration of hysteresis in Erdos-Renyi random recurrent 
network models of cortical networks, with weak static synapses and sparse connectivity26,38. Typically, in net-
work models, low-level neuron and synapse properties affect network dynamics and not the reverse, as we have 
shown here. Notable exceptions are networks with plastic synapses52 and conductance-based synapses39. Hence, 
we suggest that searching for hysteresis-like behaviour in experiments could be a promising approach to identify 
mutually causal influences between low-level neuron properties and high-level network dynamics. Note that at 
this stage, hysteresis could only be observed in a network with a specifically designed neuron model that allows 
for independent control of both its firing rate and its spike bursting behavior. With more complex neuron models, 
it is not straightforward to control the firing rate and bursting behavior independently and, hence, a more exten-
sive parameter search may be needed to observe the hysteresis reported here.

When the size of the spike burst and the network activity are mutually dependent, the network gain depends 
both on the network activity state and the history of the input. This is quite unlike the conventional balanced 

Figure 7. (A) The flowchart summarizes the results depicting the relationship between the single neuron 
properties and network dynamics (black lines). The description of the network effects of bursting through the 
two mechanisms was achieved by separating the effect of f −  I curves from that of the firing patterns using SSB 
neurons. The single neuron firing pattern made dependent on the network dynamics resulted in hysteresis. The 
gray lines show the unexplored facets of the relationship between the two in the manuscript. (B) This schematic 
summarizes how the two mechanisms control the oscillatory activity in the network. The addition of BS 
neurons in an oscillating system gives rise to a recurrent noise and destroys the fine temporal balance between E 
and I populations that give rise to oscillations and quench them. Mechanism-II shifts the bifurcation line in the 
phase space by reducing the Jcr with the addition of BS neurons.
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random networks, where the input history plays no role in determining the network gain. More work is needed 
to fully understand how such input-history-dependent changes in the network gain will affect the processing of 
time-varying input signals.

Finally, we speculate that disease-related aberrant neuronal activity could be a consequence of an increased 
fraction of bursting neurons, e.g. in Parkinson’s disease22. In these cases, possible treatments could aim at identify-
ing and counteracting the precise mechanisms of bursting activity, either pharmacologically or through electrical 
stimulation.

Conclusions

In summary, bursting neurons may play a crucial role in coordinating communication between different brain 
areas, by affecting the oscillation phase of network oscillations, they may induce hysteresis and, thereby, persistent 
activity in the networks, and they could even alter the global activity state of the network. From this, it is evident 
that single neuron properties have a significant impact on network dynamics, but this is possibly only the case in 
certain network activity regimes. Therefore, the effects of low level neuron and synaptic properties can be under-
stood only in the context of higher level network activity attributes. This complex interplay between low and high 
level features introduces emergent phenomena that enrich the dynamical repertoire of the brain.

Materials and Methods

Neurons. Neuron model. Here we used the phenomenological model introduced by Izhikevich29. The 
sub-threshold dynamics of this neuron model is defined by

= . + + − +

= −

dv
dt

v v u I

du
dt

a bv u

0 04 5 140

( )

2

and the spiking is described by if v ≥  30 mV, then v ←  c and u ←  u +  d
The variable v denotes the membrane potential and u denotes the activation of K+ ionic current and inactiva-

tion of Na2+ ionic current. The parameter a determines the time scale of the recovery variable and b defines the 
sensitivity of u to the subthreshold fluctuations of v. c and d determine the reset values of v and u after spiking 
respectively. The parameters used for the three types of neurons are given in Table 1.

State-dependent Stochastic Bursting Neuron (SSBN). For the Izhikevich neuron model as well as other similar 
models, the various possible firing patterns are tightly coupled to the f −  I curve of the neurons. Thus, the effects 
of firing patterns on network activity cannot be studied independently of the neuronal firing rate. To overcome 
this problem, we introduce a novel neuron model, the State-dependent Stochastic Bursting Neuron (SSBN). The 
SSB neuron has identical membrane potential dynamics as the Leaky Integrate and Fire (LIF) neuron given by

τ = − +�v v Im m m syn

but the action-potential generation mechanism is stochastic. That is, whenever a predefined threshold uth is 
reached, B number of spikes are generated with probability 1/B. The inter-spike-interval within the burst is con-
stant (2 ms). The membrane potential is reset only after all spikes of the burst are produced. Thus, the SSBN neu-
ron produces bursts of different lengths without altering the f −  I curve. The simulation parameters are defined 
in Table 2.

To make the above neuron model more biologically realistic, we let the number of spikes/burst B be a function 
of the mean input current that a neuron receives. The mean input current, Iinp is a function of excitatory popula-
tion firing rate, r i.e., ×− Br r

r max
min

max
, where rmin is the firing rate of the population with minimum number of 

spikes per burst and rmax is the population firing rate for the maximum number of spikes per burst in the inhibi-
tory neurons, Bmax. More specifically, B is drawn from a binomial distribution (every 1000 ms) B ~ B(n, p) with 
mean E[B] =  f(Iinp) =  np, n denotes the maximum number of spikes per burst which is fixed to n =  4 and p is the 
probability of producing one spike. Thus the mean input current to the neuron Iinp affects the probability p. This 
we call the modified SSBN and this model is used in (Fig. 6 (inset)) only.

Asynchronous state. In the stable asynchronous state the population activity is constant r(t) =  rE =  rI =  r0. 
The mean recurrent input that each neuron receives is therefore also constant and given by

τ τ= ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅I t J r e J r e( )rec E s I s0 0

Neuron type a b c d
Regular spiking(RS) 0.2 0.2 − 65 2
Fast spiking(FS) 0.1 0.2 − 65 2
Bursting(BS) 0.02 0.2 − 50 2

Table 1.  Izhikevich neuron parameters.
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We study the stability of the asynchronous state following a linear perturbation approach35,37. A small oscilla-
tory modulation of the stationary firing rate r(t) =  r0 +  r1eλt with r1 ≪  1 and λ =  x +  jω where ω is the modulation 
frequency leads to corresponding oscillation of the synaptic current
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The firing rate in response to an oscillatory input is given by
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The function U is given in terms of combinations of hypergeometric functions
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In a recurrent network the modulation of the firing rate and the modulation of the synaptic input must be 
consistent. Combining (2) and (3) we get
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where SP is the synaptic response function for alpha-shaped postsynaptic currents
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P =  E, I denotes either the excitatory or inhibitory population.
If the inhibitory population is bursting the synaptic response function is given by

λ
τ

λ τ
=
⋅ + ∑

+ ⋅

λ
=
− ⋅ − ⋅

S e e( ) (1 )
(1 )I

s n
B n Tb

s

2
( 1)

2

where Tb is the length of the inter spike interval within a burst and B is the number of spikes in a burst. To com-
pensate for the increased PSP due to bursting, the recurrent inhibitory firing rate is divided by B.

The critical coupling values at which modes have marginal stability with frequency ωi can then simply be 
computed by

Name Value Description
Cm 250pF Membrane capacitance
τm 10 ms Membrane Time Constant
Vth − 55 mV Firing threshold
Vreset − 70 mV Reset potential
τref 2 ms Refractory period
τsyn 2 ms Rise time of alpha function
d 1.5 ms synaptic delay
JE 0.05–0.1 mV Excitatory weight
JI 0.1–0.9 mV Inhibitory weight

Table 2.  Simulation parameters.
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The smallest value =J Jmin { }cr Ei
 is the critical coupling value at which the first complex pair of eigenvalues 

crosses the imaginary axis and the system becomes unstable. The critical coupling values for different values of B 
is given by the dotted line in Fig. 5A.

Networks. We generate networks of 4000 excitatory and 1000 inhibitory neurons randomly connected with 
a fixed probability of 0.1. In all simulations the excitatory neurons are of the regular-spiking type (RS), while the 
inhibitory neurons are divided into fast-spiking (FS) and bursting type (BS). The fraction of BS neurons is sys-
tematically varied between 0 and 1. For each network we compute the fraction of BS neurons, given by F =  NBS/NI, 
with NI =  NFS +  NBS, where NFS, NBS, NI are the number of FS, BS and total number of inhibitory neurons respec-
tively. Each neuron in the network receives poisson background input of rate η.

Synapses were modelled as current injections. The temporal profile of the PSP waveform was described by an 
alpha-function. The ratio of the synaptic strength (peak of the alpha function) of the excitatory and inhibitory 
connections is denoted by g. This choice of synapse model allowed us to perform the mean-field analysis of the 
network dynamics, which would become much more complex with more realistic conductance-based synapses. 
While the current-based synapse model used here does not account for several aspects of biologically more realis-
tic, conductance-based synapses53, networks with current- and more realistic conductance-based synapses exhibit 
comparable dynamical regimes39. Thus, due to this simplification, we ignored the complex effects of postsynaptic 
shunting. However, because our network is operating in a weak synapse regime, with weak individual PSPs (see 
Table 1), such postsynaptic shunting effects of bursting would be negligible.

To obtain an ING oscillation state (Fig. 4B), we ensured that the network oscillated without E-E and E-I con-
nections being present, before re-inserting these connections. Similarly, for the PING oscillation state, we ensured 
that the network oscillated with only E-I and I-E connections. Once this was achieved, we added the E-E and I-I 
connections.

Hysteresis. To test the network response when network activity and spikes per burst were mutually depend-
ent we changed the number of spikes per burst as a function of network firing rate. That is, at low firing rate, the 
network was composed only of non-bursting neurons. However, as the network output firing rate was increased 
by slowly increasing the external input neurons started to burst. To implement a state-dependence of the burst 
size, we quantized the firing rate of the excitatory neurons into five non-overlapping ranges ([5 ×  (B −  1) ≤ lb 
<  5 ×  B] spikes/sec, where B ∈  {1, 2, 3, 4, 5}). The SSB neuron generated B spikes depending on the level of 
the excitatory firing rate. To change the number of spikes per burst, we estimated the input rate either in 3 sec 
(Fig. 6A) or 200 ms windows (Fig. 6B). To change the network firing rate, we changed the external input to the 
network in steps of 100 spikes/sec every 3 sec (Fig. 6A) or 200 ms (Fig. 6B). The external input was varied until 
the BS neurons reached a maximal burst size B =  5), after that the external input was reduced with the same rate.

Data Analysis. We use the mean firing rate (ν) and Fano facor (FF) to characterise the dynamical states of the 
networks. Mean firing rate is measured as the number of spikes per neuron per second. FF is used to quantify the 
synchrony in the network. The FF of a population is defined as

µ
=
σFF Z

Z
[ ]
[ ]

i

i

2

To obtain a reliable estimate of the population activity, the cumulative activity of the spike trains of all the 
neurons in the network were binned in discrete time bins (bin width =  2 ms). Zi is the population activity in a bin 
i. An increase in positive correlation increased the variance Σ2[Zi] and consequently the FF[Zi].

Coefficient of variation, CVISI, of the inter-spike interval distribution T of a neuron, is given by

µ
=
σCV T

T
[ ]
[ ]

The mean CVISI of the neurons in a population gives the regularity of neuronal spiking in the population.
To calculate the oscillation frequency, we computed the power spectrum using the Fast Fourier Transform of 

the population activity v (only the excitatory activity). The frequency at which the power peaked was taken to be 
the oscillation frequency of the network activity.

Spectral Entropy. To quantify the degree of oscillatory activity in a network we compute the spectral entropy HS, 
which is a measure of dispersion of spectral energy of a signal54. It is given by

=
−∑H P P

N
log

logS
k kk

where Pk is the spectral power at frequency k and N is the total number of frequency bins considered. The power 
spectrum is computed using a Fast-Fourier-Transform of the population activity v and normalized such that 
∑ =P 1k k .

A flat power spectrum, e.g. in the white noise case, has maximum spectral entropy, i.e. HS =  1. By contrast, a 
spectrum with all power concentrated in one frequency, e.g. periodic sine signal, has zero spectral entropy HS =  0. 
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Therefore, the more oscillatory the activity dynamics is, the smaller HS will be. In our simulations, the value of the 
spectral entropy ranged from 0.25 to 0.9. Even for very strong global oscillations, the amplitude of the oscillations 
was variable. This is because of the noise in the spiking activity (spikes are irregular in the SI state) and, hence, HS 
reached its minimum value at 0.25. Also note that the random recurrent network exhibits a continuum of states 
between stochastic oscillations and asynchronous states. Therefore, HS varies between 0.25 and 0.9, continuously. 
For the purpose of demonstration, we chose HS <  0.5 as an oscillatory and HS ≥  0.5 as an asynchronous state.

While Fano factor is a good descriptor of the synchronicity in the network activity, it does not quantify net-
work oscillations. Whenever, we wanted to quantify the strength of the network oscillations specifically, we have 
used spectral entropy.

Simulation and Data Analysis Tools. All network simulations are written in Python (http://www.python.
org) and implemented in NEST (http://www.nest-initiative.org)55. A temporal resolution of 0.1 ms is used for the 
intergration of the differential equations. Results were analyzed using SciPy and NumPy libraries. Visualizations 
were done using Matplotlib56.
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