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Jiří Hammer1,2,3,4, Tobias Pistohl2,5, Jörg Fischer2,6, Pavel Kršek3,
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Abstract
How neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single
neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity
vector. Recently, there is also increasing interest in the representation ofmovement parameters in neuronal population activity,
such as reflected in the intracranial EEG (iEEG). We show that in iEEG, contrasting to what has been previously found on the
single neuron level, speed predominates over velocity. The predominant speed representation was present in nearly all iEEG
signal features, up to the 600–1000 Hz range. Using a model of motor-cortical signals arising from neuronal populations with
realistic single neuron tuning properties, we show how this reversal can be understood as a consequence of increasing
population size. Our findings demonstrate that the information profile in large population signals may systematically differ
from the single neuron level, a principle that may be helpful in the interpretation of neuronal population signals in general,
including, for example, EEG and functional magnetic resonance imaging. Taking advantage of the robust speed population
signal may help in developing brain–machine interfaces exploiting population signals.
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Introduction
There is an increasing interest inunderstandinghowmovement is
represented in intracranial electroencephalography (iEEG) signals.
This interest is due, among other factors, to (1) the growing popu-
larity of the iEEG as a tool to study human cortical functions in

general and motor control in particular (Mukamel and Fried
2012), and (2) the application in brain–machine interfaces (BMIs)
that aim to reconstruct movement from brain activity recordings
in paralyzed patients (Lebedev and Nicolelis 2006; Schwartz et al.
2006; Vaadia and Birbaumer 2009; Milekovic et al. 2012).
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Anumber of different kinematic parameters and their relation
to motor-cortical activity have been previously studied using vol-
untarymovement paradigms that broadly fall into 2 categories: (1)
“event-related” tasks (Pfurtscheller and Lopes da Silva 1999),
where subjects make repetitive, short-duration movements of
up to a few seconds, for example, after a “go” cue followed by a
period of rest, or (2) continuousmovement tasks, lasting for long-
er periods from tens of seconds up to several minutes. The
category of the event-related tasks (e.g., center-out movements)
was already described with an impressive degree of detail in
most of the available neuronal signals: single unit activity (SUA)
(Ashe and Georgopoulos 1994), local field potential (LFP) (Mehring
et al. 2003), electrocorticogram (ECoG) (Ball et al. 2009), scalp EEG,
or magnetoencephalography (MEG) (Waldert et al. 2008). First re-
sults were also demonstrated in the continuous movement tasks
in SUA (Paninski et al. 2004), LFP (Mehring et al. 2003), ECoG
(Schalk et al. 2007), and EEG (Bradberry et al. 2010). Among the
many different kinematic parameters, movement direction
turned out to be strongly represented especially in SUA (Georgo-
poulos et al. 1982), but also in LFP (Mehring et al. 2003), and to
some degree also in ECoG (Ball et al. 2009), and even in EEG or
MEG (Waldert et al. 2008). Besides velocity (Paninski et al. 2004;
Pistohl et al. 2008), other important parameters investigated
were position (Pistohl et al. 2008), acceleration (Bourguignon
et al. 2011; Hammer et al. 2013), or speed (Jerbi et al. 2007).

Another factor leading to diversity among studies is that there
aremany different signal components that can be extracted from
analog population signals. iEEG, for example, is typically investi-
gated either in its temporal domain or as a power modulation in
different frequency bands. The time domain signal is usually
low-pass filtered, yielding the so-called low-pass filtered compo-
nent (LFC). The LFC was shownmultiple times to be very inform-
ative about some of the major kinematic parameters such as
direction (Ball et al. 2009), velocity (Pistohl et al. 2008), position
(Schalk et al. 2007), or acceleration (Hammer et al. 2013). The
ECoG power spectrum is analyzed in many different frequency
bands (Sauseng and Klimesch 2008): δ (0–4 Hz), θ (4–8 Hz), α (8–12
Hz), β (13–30 Hz), low γ (30–45 Hz), high γ (55 to ∼300 Hz); very little
is currently known about the representation of movement in
even higher iEEG frequency bands (>300 Hz).

As a consequence, results on motor-cortical iEEG are dis-
persed among different studies, investigating different sets of
kinematic parameters, signal features, and decoding algorithms.
For example, Ball et al. (2009) investigated decoding ofmovement
direction both in ECoG LFC and in different frequency band power
modulations, but not of other kinematic parameters. Moreover,
different studies typically used different decoding methods,
such as a Kalman filter used by Pistohl et al. (2008) or a linear dis-
criminant analysis used by Ball et al. (2009), hindering a direct,
quantitative comparison of the results. It is hence currently not
clear whether there is a systematic difference between popula-
tion signals and single neuron activity with respect to which
movement parameters are strongly represented.

Therefore, we designed continuous motor tasks and system-
atically analyzed neuronal population activity from iEEG record-
ings covering parts of themotor cortex in patients suffering from
intractable epilepsy. From the executed movements we derived
direction, position, velocity, speed (magnitude of velocity), accel-
eration, and magnitude of acceleration and analyzed not only
their decoding, but also their representation (tuning) in different
iEEG signal features. An important aspect of the data analysis
was to clarify how the observed properties of motor-cortical
iEEG could be understood also from the perspective of SUA
recordings (Ashe and Georgopoulos 1994).

One of the first striking observations wemade was that speed
of movement (the magnitude of the velocity vector) was the best
represented of all kinematic variables in nearly all iEEG signal
features investigated, up to the 1-kHz signal range. Such a result
is in clear contrast to the situation aswas previously documented
in SUA, where the directional tuning was shown to be much
stronger than the SUA tuning to speed (Schwartz and Moran
1999).

We show that the observed robust speed representation in iEEG
can beunderstoodbased onpreviously describedproperties of dir-
ectional- and speed-tuning of SUA (Moran andSchwartz 1999).We
used themodel of firing rate for a single motor cortex neuron pro-
posed byMoran and Schwartz (1999) to simulate the firing rate of a
whole neuronal population (similar toWaldert et al. 2009). Several
studies demonstrated considerable complexity and heterogeneity
of movement-related SUA inmotor cortex deviating from the “ca-
nonical” Moran and Schwartz model (Sergio et al. 2005; Church-
land and Shenoy 2007). As such deviations can act as noise with
respect to speed and directional tuning terms in our model, we
also investigated various levels of such noise.

The ensuing numerical model reproduced the predominance
of speed- over direction-related information in neuronal popula-
tion activity consisting of many thousands of neurons. Our find-
ings thus demonstrate that the information profile in large
population signals may substantially differ from the single neu-
ron level. We anticipate the same principle to be useful for
understanding the relation between the single neuron level and
physiological population signals, such as in EEG and fMRI, in
general.

Materials and Methods
Subjects

Nine subjects with iEEG electrodes in the area of hand/armmotor
cortex participated in 2 different continuous movement tasks,
after giving their informed consent. The site of the implantation
was selected exclusively based on the clinical requirements for
the surgical evaluation in these patients with pharmaco-resist-
ant epilepsy. The study was approved by the University Clinics’
Ethics Committees in Freiburg, Germany, and Prague, Czech Re-
public. Detailed information about subjects (S1–S9), electrode
type, and location is provided in Table 1.

Continuous Motor Tasks

The tasks were designed to produce continuous, natural hand/
arm movements, which would be close to casual, every-day be-
havior. The experimental data were recorded by using the soft-
ware described by Fischer et al. (2014) and consisted of several
3–5 min recording sessions. All pauseswithoutmovement longer
than 200 mswere rejected from the analysis (see below) to ensure
the continuous nature of the motor task.

The first taskwas the car-driving computer game as described
in detail by Hammer et al. (2013), a one degree-of-freedom (1-D)
task, as the control of the car was restricted to the horizontal di-
mension (left/right). Subjects were instructed to drive a carwith a
gaming steering wheel on a randomly curved road displayed on a
computer screen (Fig. 1A). For subjects S1 to S3 in the present
study (corresponding to subjects S1–S3 in Hammer et al. 2013),
the upward (vertical) car scrolling speed was held constant
throughout the recording sessions, while for subjects S4–S6 the
vertical scrolling speed of the car was varied in the different

2 | Cerebral Cortex

 by guest on M
arch 19, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 



Table 1 Subject information

Sex (age) Pathology Electrode type, location Hand/arm
channels

Sampling
rate (Hz)

Task

S1 F (47) Cryptogenic 64-Contact ECoG grid, right frontal 14 2500 1-D
S2 M (46) FCD right inferior frontal gyrus 64-Contact ECoG grid, right fronto-temporal 12 2500 1-D
S3 M (50) cryptogenic 64-Contact ECoG grid, right fronto-lateral 8 2500 1-D
S4 M (13) FCD left insular 62-Contact SEEG, left operculo-insular 13 1000 1-D
S5 F (29) Gliosis right parietal cortex 62-Contact SEEG, left and right fronto-parietal 12 8000 1-D
S6 F (22) FCD left superior frontal gyrus 28-Contact ECoG grid, left fronto-parietal 9 2000 1-D
S7 M (30) FCD right rolandic cortex 48-Contact ECoG grid, right fronto-parietal 13 1024 2-D
S8 M (14) FCD right frontal cortex 64-Contact ECoG grid, right frontal 11 256 2-D
S9 M (27) FCD left SMA 64-Contact ECoG grid, left fronto-parietal 11 1024 2-D

SEEG, stereoelectroencephalography; FCD, focal cortical dysplasia; SMA, supplementary motor area.

Figure 1. ECoG recording in the continuous car-driving task. (A) Subjects were instructed to steer a car (red) on a randomly curved road (gray). Trajectory of the car is
marked as a black line (note that the trajectory was not displayed to the subjects). (B) Velocity time series corresponding to the trajectory shown in A, normalized to
unit standard deviation. (C) Example of ECoG grid position (subject S1) visualized on a standard brain. Electrodes with hand/arm motor response upon electrical
stimulation mapping colored in magenta (otherwise in cyan). Black line: central sulcus identified from post-implantation MRI of the individual patient. (D) Raw ECoG
(gray) and LFC (brown) aligned with the velocity data in B. Note the definition of the time offset τ: For example, τ = −1.0 s indicates that the iEEG feature vector
precedes movement execution. (E) Relative power modulations (colored traces) in the different frequency bands investigated: δ (0–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (13–
30 Hz), low γ (30–45 Hz), high γ (55–300 Hz), and high-frequency bands “HFB 1” (300–600 Hz) and “HFB 2” (600–1000 Hz). (F) The correlation coefficients of the different
iEEG signal features (LFC and power modulations), computed as mean over all subjects, motor channels, and recording sessions.
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recording sessions in order to test the resilience of the decoding
results for different distributions of the kinematic variables.

The second task was the target pursuit task as described in
detail by Pistohl et al. (2008), a 2 degree-of-freedom (2-D) task,
where a computer cursor was controlled on the whole plane of
the computer monitor. To perform this task, the subjects S7–S9
were instructed to move a cursor using either a gaming joystick
or amanipulandum to a target appearing on a computer monitor
randomly in 1 of 9 possible locations arranged as 3 × 3 grid. As
soon as one target was reached, another, new target appeared
in a different location to which the subjects navigated the cursor
again. Only those subjects with coverage of hand/armmotor area
and with ECoG recordings without strong epileptic discharges
were included in the present analysis, corresponding to subjects
S4 to S6 in the study by Pistohl et al. (2008).

Continuous Kinematic Variables

During all motor tasks, rotation of the steering wheel (car-driving
task) or movement of the joystick/manipulandum (in target pur-
suit) was linearly translated into car/cursor position on the screen
(see Fig. 1A, black line). Movement velocity and acceleration were
estimated bya 5-point derivative approximation (Abramowitz and
Stegun 1970) from the recorded position. All kinematic variables
were normalized to their standard deviation (SD) and smoothed
(eighth order Butterworth with 10-Hz cut-off frequency and
zero-phase shift), with the exception of movement direction.
The directional vectorwas derived by normalization to unit length
from the velocity vector. To exclude pauses during the otherwise
continuous movement task, for example, on the straight parts of
the road, the pauses were defined whenever speed was continu-
ously below 0.05 SD for longer than 200 ms. The corresponding
timewindowswere excluded from further analysis (both decoding
model estimation and tuning, see below). We examined the fol-
lowing kinematic variables: direction, position, velocity, speed,
acceleration, and magnitude of acceleration.

As some of the most important observations and hypothesis
in this study concern speed of movement, we would like to
underline the distinction between speed and velocity. Velocity
v(t) is defined as a vector variable, having a certain direction
and amagnitude, while speed s(t) = ||v(t)|| is defined as themagni-
tude of the velocity vector, that is, a scalar variable with only
positive values. While velocity also includes information about
direction of movement, speed only reflects how fast or slow
this movement was, irrespective of direction. Thus velocity, but
not speed, captures also the basic properties of directional tun-
ing, because direction of movement is indicated by direction of
the velocity vector.

iEEG Recording and Pre-Processing

ECoG electrode grid arrays (see an example of subject S1 in
Fig. 2C), with 10-mm interelectrode distance, 4-mm electrode
diameter, and 2.4-mm brain surface contact diameter, were sub-
durally implanted in each subject, with the exception of subjects
S4 and S5 whowere implanted with intracranial stereoelectroen-
cephalography (SEEG, cylindrical electrode contactswith 0.8-mm
diameter, 2-mm height, and 1.5-mm interelectrode distance).
Throughout this study, we use the term iEEG to refer to both,
ECoG and SEEG. The raw iEEG recordings were common-average
re-referenced. All data analysis was performed inMatlab (version
R2011b, The MathWorks Inc., Natick, MA).

Individual iEEG electrodes (ECoG or SEEG) were electrically
stimulated to produce functional mapping underneath/around

each electrode contact (Pistohl et al. 2008; Hammer et al. 2013).
In all patients, the implantations covered parts of the hand/arm
motor cortex as verified by electrical stimulation mapping (ESM).
The number of electrodes which induced ESM hand/arm motor
responses in each subject is given in Table 1.

Time-Domain LFC Analysis

Previous studies (Mehring et al. 2003; Schalk et al. 2007; Pistohl
et al. 2008; Waldert et al. 2008; Ball et al. 2009; Hammer et al.
2013) consistently reported the best motor decoding results
from the time-domain LFC in different neuronal population sig-
nals (LFP, ECoG, EEG, and MEG). To derive the LFC in the present
study, the iEEG data were high-pass filtered (sixth order Butter-
worth with 0.1-Hz cut-off frequency and zero-phase shift) to
remove offsets and slow drifts. Amplitudes were normalized
to the SD of each game session. To extract the LFC (Fig. 1D), a
low-pass filter was used (eighth order Butterworth with 4.0-Hz
cut-off frequency and zero-phase shift) (Waldert et al. 2008).

Spectral Analysis

As in many previous iEEG motor decoding studies (e.g., Rickert
et al. 2005), we used the short time Fourier transformation
(STFT) for time–frequency decomposition. The time-resolved
power spectral density, P(f,t), was computed in 10-ms steps
from the common average re-referenced iEEG data. In order to
better estimate the power modulation at different frequencies,
the STFT Hanning window sizew was adjusted based on the fre-
quency band f of interest as follows: w = 2 s for 0 Hz ≤ f < 4 Hz,

Figure 2. Tuning functions expected in the case of “perfect” velocity and speed
dependence. (A) The expected “perfect” velocity tuning function in the 1-D case
is a (scaled) identity function, and (B) for speed it is a (scaled) absolute value
function. Similarly, in the 2-D case, the “perfect” velocity tuning (C) has a
maximum response for a certain preferred direction (in this example oriented
north-east), while “perfect” speed tuning (D) shows a radially symmetrical
response. These “perfect” tuning patterns were used to classify the significantly
tuned iEEG features as velocity-type or speed-type.
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w = 1 s for 4 Hz ≤ f < 8 Hz, w = 0.5 s for 8 Hz ≤ f < 30 Hz, w = 0.25 s
for 30 Hz≤ f < 55 Hz, w = 0.125 s for 55 Hz≤ f < 1000 Hz, where f is
the frequency of a band of interest. The relative power, RP(f,t),
was normalized to the mean (denoted here by 〈. . .〉) power
of each STFT frequency bin over time in each game session
(RP(f,t) = P(f,t)/<P(f,t)>t). This procedure of spectral whitening
avoids dominance of the power in lower frequencies, as the
lower frequencies in neuronal population signals have higher
magnitudes due to the 1/f power decay (Miller et al. 2009). The fre-
quency band relative power, FBRP(t), was averaged over a defined
frequency band (f1→ f2): FBRP(t) = <RP(f,t)>[f1,f2], log-transformed,
and normalized to zero mean and unit SD.

We examined time-resolved spectral power modulations of
iEEG frequency bands (Fig. 1E) up to approximately two-fifth of
the sampling rate (Nunez and Srinivasan 2006). The lower
frequency bands (<50 Hz) were defined in the traditional way
(Sauseng and Klimesch 2008), namely: δ (0–4 Hz), θ (4–8 Hz), α
(8–12 Hz), β (13–30 Hz), low γ (30–45 Hz). The higher frequencies
(>50 Hz) were divided into 3 broad frequency bands: high γ (55–
300 Hz), “high-frequency band 1” (HFB 1) in the range 300–600 Hz,
and “high-frequency band 2” (HFB 2) between 600–1000 Hz. Note
that which of the highest frequency bands (>300 Hz) could be
analyzed depended on the sampling rate in each subject. Thus,
for example, only data of 4 subjects (S1–S3 and S5, c.f. Table 1)
could be analyzed in HFB 2 (600–1000 Hz). The correlation matrix
of the different investigated iEEG signal features showed low, but
positive correlations among the 3 high-frequency bands “high γ”,
“HFB 1”, and “HFB 2” (Fig. 1F). The positive sign of the correlations
may suggest that these high-frequency bands share a common
physiological origin (cf. Miller et al. 2014). On the other hand,
the low values of these correlations may be a consequence of
high-frequency (amplifier) noise. The highest correlations were
observed between the α and β bands (CC = 0.35 ± 0.11, mean ± SD
over all subjects).

Statistical Analysis Using Surrogate iEEG Datasets

To assess statistical significance, surrogate datasets were con-
structed by the approach described by Pistohl et al. (2008), that
is, by computing the Fourier transform (FT) of the raw iEEG
time-series in each recording session, randomly shuffling the
phases of all complex-valued FT coefficients (different shuffling
for different sessions), while preserving their magnitudes, and
transforming the shuffled data back to time-series by inverse
FT (Faes et al. 2004). These surrogate iEEG datasets have identical
power spectra as the original signals and hence according to the
Wiener–Khinchin theorem also preserve their autocorrelations
(Khinchin 1934), but their time-courses are not systematically
correlated with the original iEEG datasets and hence also with
the behavioral task. The surrogate iEEG datasets were used to as-
sess the significance of decoding accuracy as well as the tuning
strength (see below).

Decoding Model

Multiple linear regression (MLR) (Georgopoulos et al. 2005;
Bradberry et al. 2010; Hammer et al. 2013) was used for decoding
kinematic variables with the following prediction step:

ŷðtÞ ¼
XP

ch¼0

xchðtþ τÞβchðτÞ;

where ŷ(t) is the predicted (kinematic) variable at time t, xch(t + τ) is
the predicting iEEG feature vector extracted from selected

channels ch with a certain time offset τ. τ < 0 implies that the
iEEG feature vector precedesmovement execution and can there-
fore be used to truly predict the decoded movement variable, as
would be required in real-time applications. βch(τ) are the regres-
sion coefficients for an MLR model built with the time offset τ.

The predictors, xch(t), were either the STFT frequency band
power or the LFC of the iEEG signal. To allow for an offset in the
prediction model, each feature vector x included an additional
value of x0 = 1 followed by samples of processed iEEG signal
from selected channels ch (e.g., channels that induced hand/
arm motor response upon ESM). The predicted variable, ŷ(t),
was the x-component and in case of the 2-D task also the y-com-
ponent of the vector kinematic variables: that is, direction, pos-
ition, velocity, and acceleration, as well as the scalar kinematic
variables: speed (the magnitude of the velocity vector) and the
magnitude of the acceleration.

Accuracy of Prediction Assessment

The decoding performance of the MLR model was assessed by
cross-validation. The recorded datasets were split into N non-
overlapping, continuous movement parts (so-called “validation
folds,” each lasting 30 s), where N − 1 of these folds were used
to build theMLR decodingmodel (training set) and the remaining
validation fold was predicted (test set) and evaluated for good-
ness of prediction by the correlation coefficient (CC) between
the actual and the predicted movement. This was repeated N
times, so that each movement validation fold was tested exactly
once. The result was amean CC over all test sets for each subject,
signal feature, and time offset τ. The significance of decoding
(e.g., comparing 2 different signal features, or comparing real
and surrogate datasets) was assessed by the Wilcoxon rank
sum test between the CCs of all movement validation folds.
In the case of multiple testing over different parameters (e.g.,
signal features, subjects), the P-values of the Wilcoxon rank
sum test were submitted to false discovery rate (FDR) correction
(Benjamini and Hochberg 1995).

Velocity Tuning Analysis

To better understand the predominance of speed in our decoding
results (see Results), we further sought to clarify the relationship
between directional and speed representation in iEEG signal fea-
tures. Both direction and speed are naturally contained in the vel-
ocity vector, and therefore any prominent representation of
either speed or direction should become apparent by investigat-
ing the iEEG as a function of movement velocity. Thus, the char-
acterization of velocity representation (or tuning) in iEEGwas our
next step. To this end, the distribution of velocity v(t), was divided
into several bins, the sizes of whichwere adjusted such that each
bin contained an approximately equal amount of velocity sam-
ples (Golub et al. 2014). In the 1-D task, where v(t) = vx(t), velocity
was divided into Nx = 15 bins. In the 2-D task, the velocity vector
v(t) was represented in polar coordinates better reflecting its dis-
tribution (Paninski et al. 2004), v(t) = [s(t), φ(t)], where s(t) is speed
and φ(t) direction of movement. The v(t) was binned into Ns = 4
bins (for the radial component) and Nφ = 8 (for the angular com-
ponent). For a selected velocity bin, all samples of the velocity
falling into this “bin” were detected. From these detected
samples, corresponding iEEG feature samples with a certain
time offset τ (Fig. 1D) were extracted. The final tuning value was
calculated as the mean of all such extracted iEEG signal features.
This procedure was repeated for all velocity bins v, time offsets τ
and iEEG channels ch.
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After processing a dataset of particular iEEG features (fre-
quency band power or LFC) for each subject, the result was a
multidimensional tuning array of [v, τ, ch], a subset of which in
the case of ECoG grids could be plotted on the brain surface.
The values of the ECoG grid channels ch (at a certain time offset
τ and a selected velocity bin v) were topographically ordered,
color-coded, and—for easier orientation—interpolated (see Re-
sults). Another important subset of the tuning array [v, τ, ch] in
our analysis was the so-called “velocity tuning response”, con-
sisting of all velocity bins v (at a particular time offset τ and
iEEG channel ch). The velocity tuning response retained the
mean modulation of the processed data given the (binned) vel-
ocity and played a crucial role in deciding if the modulation
was statistically significant or not (see the following paragraph).

Significance of Tuning

We assessed the statistical significance of tuning based on its
signal-to-noise ratio (SNR) as previously done in LFP (Rickert
et al. 2005). The SNRwas computed as the variance of the “tuning
curve” divided by the mean “sample-by-sample” fluctuations,
where the “tuning curve” was represented by the velocity tuning
response as defined above, while “samples” corresponded to the
samples from which the values of velocity tuning response were
computed. The SNR(τ, ch) was computed for each time offset τ
and channel ch separately.

To test for significant deviations of the SNR values from the
null SNR distribution, 2.000 surrogate datasets from the iEEG
recordings of each subject (as described above) were used. The
P-values (for each τ and ch) were computed as the probability of
the SNR values from the 2.000 surrogate datasets being equal
to or higher than the SNR from the real iEEG. P-values were
submitted to FDR correction (q-level = 0.001) for multiple testing
(e.g., over τ and ch).

Comparison of Velocity- and Speed-Tuning Strength

Secondly, we also classified the significant velocity tuning re-
sponses as “velocity-type”, “speed-type”, or “undefined”. This
classification allowedus to compute and compare the tuning pro-
files for these classes, and particularly how close these profiles
were to the profiles to be expected in the case of perfect speed
and velocity tuning (Fig. 2). The classification rule thatwe applied
was that if the fit of a significant velocity tuning response to
either a “perfect” velocity or to a “perfect” speed-tuning profile
had a coefficient of determination R2 > 0.5, then it was assigned
as velocity-type or speed-type, respectively. Else, it was labeled
as “undefined.” The “perfect” tuning profiles were obtained
from a perfectly velocity-tuned or speed-tuned variable, for ex-
ample, by submitting the x-velocity or speed themselves—in-
stead of iEEG features—to the tuning analysis. Thus, in the 1-D
task, the “perfect” velocity-type tuning profile was the (scaled)
identity function of the velocity bins (Fig. 2A), while the “perfect”
speed-type tuning profile was the (scaled) absolute value func-
tion (Fig. 2B). Similarly, in the 2-D case, the “perfect” velocity-
type tuning profile in polar coordinates (Fig. 2C) corresponded
to a cosine function for direction and linear speed scaling (cf.
Paninski et al. 2004). Therefore, the 2-D velocity-type tuning
had a maximum response for a certain preferred direction (PD)
and a minimum for the opposite (anti-PD) direction, resembling
the well-known directional cosine tuning (Georgopoulos et al.
1982). Analogically, the “perfect” speed-type tuning in polar coor-
dinates was a radially symmetrical linear increase in polar coor-
dinates (Fig. 2D). As the PD of the 2-D velocity-type tuning was a

priori unknown, we computed the R2 between the investigated
velocity tuning response and all possible PD orientations
(i.e., the 8 directional bins as shown in Fig. 2) of the “perfect”
velocity-type tuning profile and considered only the maximum
R2 value for subsequent classification.

Velocity Tuning Model as a Function of Neuronal
Population Size

Our goal was to find out how our empirical results of a predomin-
ance of speed over velocity in the iEEG signal could possibly be re-
conciled with the fact that on the SUA level, velocity tuning has
been shown to be dominating over speed tuning. Therefore, we
constructed a numerical model of neuronal population activity
based on previously established experimental evidence from
SUA discharges inmotor cortex. Such amodel is by nomeans as-
piring to describe realistic biophysical mechanisms underlying
the motor cortex activity. Rather, the model was reduced to the
necessary components to allow for an intuitive insight into
how the tuning properties of neuronal population activity
might be fundamentally different than those of the individual
neurons comprising this activity, following themodel byWaldert
et al. on population cosine tuning. Adapting this approach, we
investigated the neuronal population firing rate computed as
the sum of the instantaneous discharges of individual neurons
(Waldert et al. 2009). Therefore,

PNðtÞ ¼
XN

n¼1

rnðtÞ;

where P is the neuronal population activity, N is the number of
underlying neurons, rn is the discharge rate of the n-th neuron
at time t.

The firing rate of the neuronal population was modeled as a
scalar sum of the N individual, underlying neurons. It might be
worth pointing out, to avoid possible confusion, that this constitu-
tes a difference to the summation applied in the population vector
algorithm for SUA-based BMI control (Georgopoulos et al. 1986),
where the firing rates of individual neurons serve as weights in
the vectorial sum along the axis of their estimated PDs.

Although there has been an extensive debate about which,
if any, movement-related parameters are “represented” by SUA
of motor cortex in a functional sense (Mussa-Ivaldi 1988; Fetz
1992; Todorov 2000; Churchland and Shenoy 2007; Graziano
2011), it is commonly accepted that many task- and movement-
related parameters are at least to somedegree correlatedwith the
SUA ofmotor cortex, including, for example,movement direction
(Georgopoulos et al. 1982), velocity (Ashe and Georgopoulos
1994), position (Kettner et al. 1988), acceleration (Flament and
Hore 1988), force (Evarts 1968), or distance to target (Fu et al.
1995). We based our model on that proposed by Moran and
Schwartz (1999), because it explicitly considers 2 parameters,
which together unambiguously define continuous movement
velocity, namely, direction and speed. Thus, the model of
motor-cortical activity (following eq. 1 in Moran and Schwartz
1999) had the following form:

rnðtÞ ¼ Sn % sðtÞ þ Vn % sðtÞ % cosðφðtÞ & αnÞ þ εnðσ; tÞ:

The discharge rate rn(t) of n-th neuron is thus a function of move-
ment speed s(t) and movement direction φ(t). It consists of 3
terms: (1) a nondirectional component of linearly tuned speed
scaled by factor Sn (reflecting a strength of the speed tuning), (2)

6 | Cerebral Cortex

 by guest on M
arch 19, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 



a directional component of cosine tuned velocity scaled byVn (re-
flecting a strength of velocity tuning) and with a preferred direc-
tion (PD) of discharge αn, and (3) a task-unrelated noise term εn(σ, t),
with the noise drawn from a normal distribution of width σ.

Because of the summation in neuronal population activity PN,
we assumed,without the loss of generalization, same values of Sn
and Vn for all neurons (Sn = S, and Vn = V). We set PDs randomly in
the interval [−π, π], as several studies indicate that the spatial ar-
rangement of PDs inmotor cortex on themacro-scale level (order
of millimeters) is approximately random (Amirikian and Georgo-
poulos 2003; Ben-Shaul et al. 2003). There is considerable com-
plexity in movement-related SUA in motor cortex deviating
from the “canonical” Moran and Schwartz model (Sergio et al.
2005; Churchland and Shenoy 2007). As such deviations can act
as noise with respect to speed and directional tuning terms in
our model, we also investigated various levels of such noise.
Thus, the task-unrelated noise term εn(t, σ) for each neuron was
drawn from a normal distribution of width σ in the range from
0.01 (small level of noise) to 10 (larger level of noise). We com-
puted R2 values between the ensemble nondirectional response
and movement speed, as described in Moran and Schwartz
(1999) or Churchland and Shenoy (2007). This allowed us to verify
the predictions of our model with a certain parameter settings
(tuning strengths of velocity, speed, and noise level) to their ex-
perimental observations of many SUAs recorded during center-
out reaching tasks in monkey motor cortex. For a discussion of
other assumptions and limitations for a similar model of
motor-cortical tuning properties see Waldert et al. (2009).

We computed firing rates of populations of variable sizes N
during conditions corresponding to a center-out reaching task
(Georgopoulos et al. 1982; Golub et al. 2014). In particular, we in-
vestigated 2-D movements to 8 circular equidistant directions
and with 6 different levels of speed (1%, 20%, 40%, 60%, 80%, or
100% of maximum speed). One simulation of N neurons, during
which the PDs remained fixed, included 300 trials. The neuronal
population sizeNwas varied on the log-scale from 1 (correspond-
ing to SUA) to 106 neurons. The simulations were repeated 100
times (including re-shuffling of PDs for each simulation). Similar
to the real iEEG data, the SNR of direction and speed tuning, de-
fined as a variance of class means over trial-by-trial variance
(Rickert et al. 2005), was computed as an average over all
simulations.

We also investigated the “reversal point”where speed SNR be-
came larger than directional SNR as a function of the different
relevant parameters of ourmodel. The reversal point was defined
as theminimum number of neurons, where SNRspeed was signifi-
cantly greater than SNRdirection (Wilcoxon rank sum test, P < 0.01,
FDR corrected for multiple testing over different neuronal popu-
lation sizes). The population size N was varied from 1–10 in
each order of magnitude ranging from units up to one million
(i.e., N = 1, 2, 3, . . ., 10, 20, 30, . . ., 100, 200, 300, . . ., 1 000 000).
The significance was tested over the different repetitions of
each simulation with given parameter settings. The model had
3 different parameters: strength of the velocity tuning V, strength
of the speed tuning S, and level of noise σ. We set V = 1 and varied
S, hence exploring different ratios of velocity-to-speed tuning.
Furthermore, we explored the impact of different values of σ.

Results
Speed as the Overall Best-Decodable Kinematic Variable
Across iEEG Features

First, we systematically compared the decodability of the kine-
matic variables direction, position, velocity, acceleration, speed,

and themagnitude of acceleration from iEEG powermodulations
averaged across predefined standard frequency bands, such as
the δ (0–4 Hz), θ (4- Hz), α (8–12 Hz), β (13–30 Hz), low γ (30–
45 Hz), high γ (55–300 Hz), and—if the sampling rate allowed—
even high-frequency bands HFB 1 (300–600 Hz) and HFB 2 (600–
1000 Hz), as well as from the LFC obtained by low-pass filtering
(0–4 Hz) of the time-domain signal. To ensure comparability of
the decoding results, we applied the same decoding algorithm
(multiple linear regression) and the same feature vector template
of a fixed length to extract the iEEG signal components for each
subject (see Materials and Methods for further details). In this
analysis, we used only iEEG feature samples at the time of move-
ment execution (i.e., time offset τ = 0 s), and from motor-cortical
channels (i.e., with hand/armmotor response after ESM). Similar
results, equally supporting the conclusions of our study, were
also obtained with a causal time offset (iEEG leading movement
execution, τ =−100 ms).

An example in Figure 3A illustrates a 9-s time-segment of both
real movement speed (blue curve) and the decoded speed (red
curve) from high γ (55–300 Hz) power modulations in subject S2,
together with the CC between the real and predicted speed. The
grand average (mean ± SEM over all 9 subjects) is shown in Fig-
ure 3B. The statistical significance of decoding results was tested
between real iEEG data and the surrogate datasets (Wilcoxon
rank sum test at 0.01 significance level, FDRcorrected formultiple
testing).

A striking observation was that DA was larger for the non-
directional movement speed (i.e., the magnitude of velocity)
than for direction or velocity in all frequency bands investigated.
Also the DA of the magnitude of acceleration was more than
3-fold larger than its directional counterpart (i.e., acceleration it-
self ) in nearly all frequency features (Fig. 3B). The LFC (0–4 Hz)
and the high γ power (55–300 Hz) offered the best decoding of dir-
ection, position and velocity, while the lower frequency power
modulations were not informative (e.g., α and β bands). These re-
sults are consistent with previous reports of decoding kinematic
variables both in the “event-related” (e.g., center-out) as well as
in the continuous tasks (Rickert et al. 2005; Pistohl et al. 2008;
Ball et al. 2009). The overall best-decodable kinematic parameter
was speed from time-domain LFC (0–4 Hz), and power modula-
tions of the β (13–30 Hz) and high γ (55–300 Hz) bands.

Kinematic variablesmay be correlated, depending on the task
design. In our case, the most correlated variables were velocity
with direction (CC = 0.59 ± 0.15, mean ± SD over subjects), and
also speed with magnitude of acceleration (CC = 0.41 ± 0.05).
Therefore, it was not possible to unambiguously separate their
representation. Importantly, speed was not correlated with ei-
ther the x- or y-components of velocity (CC = 0.02 ± 0.01) or direc-
tion (CC = 0.00 ± 0.02).

Movement Speed is Decodable from iEEG Signals up
to 600–1000 Hz

To further delineate the iEEG signals informative on movement
speed, we performed a decoding analysis that was resolved
both in time and frequency (time referring to the offset between
movement execution and the iEEG signal used for decoding, see
Fig. 1). In the lower frequency range (<50 Hz), we divided the spec-
trum into the traditional frequency bands as indicated in Fig-
ure 3B, while in higher frequencies (>50 Hz), we examined
bands of 30 Hz bandwidth, up to 1000 Hz. We show the results
of subjects S1–S3 (see Table 1), as those were the recordings
with the largest (8 × 8) ECoG grids (Fig. 4A) and highest sampling
rates, which enabled us to address the question of speed
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representation up to 1 kHz. The other subjects, in those fre-
quency bands that the sampling rate allowed to investigate,
showed similar results. Overall, movement velocity was not
well decodable from any band power feature (Fig. 4B), with the
exception of a certain amount of information in the high γ (55–
300 Hz) and δ (0–4 Hz) bands, consistent with previous reports
(Pistohl et al. 2008; Ball et al. 2009). Speed, on the other hand,
was much better decodable and had a clear peak of decoding in
the β band (13–30 Hz) and a second, broader peak in higher
frequencies, most prominent in the high γ band (55–300 Hz),
even reaching to the frequency range of 600–1000 Hz (Fig. 4C).

Spatially Resolved Decoding of Velocity and Speed

Besides the high temporal resolution, another advantage of iEEG
is its high spatial accuracy that allowed us to examine the exact
cortical sources of speed- and velocity-related activity in the
human cortex. To obtain the highest possible spatial resolution,
we used the iEEG data from the individual iEEG channels for de-
coding (all results for time offset τ = 0 s). This allowed creating de-
codingmaps of themeanCC values of the predictions (cf. Fig. 4A).
In all frequency bands these maps had plausible spatial topolo-
gies, with the most pronounced effects in the hand/arm area of

the motor cortex (Fig. 5). Higher CCs for speed than for velocity
also dominated the spatially resolved results (see β and high γ
results of S3 for a particularly clear effect).

Intriguingly, for speed, therewas a spatially very focal DA dis-
tribution observed in the HFB 2 (600–1000 Hz), with its spatial
maximum in the hand/arm area of the premotor cortex. Robust
speed decoding was also prominent in the LFC, however, the
speed decoding maps based on the LFC had generally different
and more complex spatial distributions than those based on
high γ or β power modulations. Delineating the sources of move-
ment-related information in the LFC and how they differ from
those of power modulations in higher frequencies will require
further investigation beyond the present study.

Speed-Related iEEG Power Changes

We further investigated speed-related iEEG power changes in
nonoverlapping, consecutive frequency bands of 10-Hz width
covering the entire frequency spectrum up to 1000 Hz (Fig. 6).
As described in Materials and Methods (see Velocity tuning ana-
lysis), movement velocity was normalized to unit SD and its ab-
solute value (corresponding tomovement speed)was binned into
7 discrete bins. In each frequency band, the average power

Figure 3. Decoding of kinematic variables. (A) An example of the time course of the decoded (red) and the real (blue) movement speed. The goodness of prediction was
evaluated by means of the correlation coefficient (CC). In this example, speed was predicted from high γ (55–300 Hz) power modulation in subject S2. (B) Kinematic
variables (direction, position, velocity, acceleration, speed, and magnitude of acceleration) decoded from different frequency bands, using only channels with hand/
arm motor response upon ESM. Decoding accuracy (DA) was evaluated by CC (y-axis) between the real and predicted kinematic variable (here shown grand
mean ± SEM over all 9 subjects). The stars indicate significant DA in all 9 subjects (Wilcoxon rank sum test at 0.01 significance level, FDR corrected). Decoding
movement speed from the LFC, high γ and β bands yielded the highest DA of all movement parameters/signal components.
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modulation (computed as mean over all motor channels of sub-
jects S1–S3) of the fastest speed (>1.6 SD) was comparedwith that
of the slowest speed (<0.1 SD). The significance of the power
modulation was compared with the results obtained from the
surrogate iEEG datasets (see Materials and Methods). There was
a clear power decrease in low frequencies (<50 Hz) and a power
increase in high frequencies (>50 Hz) for the fastest speed bin,
significant even in the very high-frequency band, up to 1000 Hz.

The power increase in the high frequencies was most pro-
nounced in the high γ band (peak in the frequency band 105–
115 Hz), and attenuated in even higher frequencies. This could
be accounted for by the amplifier noise (we observed the increas-
ing noise effect in the power spectral density plot around 300 Hz,
where the 1/f power decay became less steep). A similar fre-
quency profile without any significant difference (P > 0.05, FDR
corrected for multiple testing over different frequency bands)
was obtained from the Hilbert transformation of band-pass fil-
tered data (10th order Butterworth filter with zero-phase shift).

Cortical Activation During the 1-D Motor Task

The high DA of movement speed from nearly all iEEG signal fea-
tures was quite surprising, especially when contrasted with the
rather low DA of velocity, which was reported to play a dominant
role on the level of SUA (Moran and Schwartz 1999; Golub et al.
2014). To clarify the representation of the directional and speed
components of velocity, we analyzed the iEEG features as a func-
tion of movement velocity (velocity tuning).

From the velocity tuning analysis, we observed a movement-
related increase of iEEG power in high frequencies (>50 Hz)
accompanied by a simultaneous decrease of power in lower fre-
quencies (<50 Hz). The power increasewas significant in subjects
S1 and S2 even in the highest frequency band (600–1000 Hz). The
LFC formed spatially more complex, dipole-like patterns (Fig. 7).
The activations (taken relative to zero speed and simultaneous
to movement execution) were spatially focal in high frequencies
(>50 Hz),most prominent in the high γ band, and broader in lower
frequencies (<50 Hz), most prominent in the β band. Moreover,
these activations had a large degree of overlap with respect to
movement direction and most of the significantly tuned chan-
nelswere close to the “perfect” speed-tuning function (cf. vertical
orientation of dashes in Fig. 7). Such direction-unspecific activa-
tionswere complementary to the highDAof speed (cf. Fig. 5). As a
complement to the above single-channel decoding analysis
(Fig. 5), we plotted the average power modulation (or LFC activa-
tion) as the ECoG grid tuning maps for the fastest left and right
velocity bins at the time offset τ = 0 s (Fig. 7). For easier compari-
son, the slowest, “zero-velocity” bin was taken as a reference
point (i.e., by definition, the frequency band power = 0 and the
LFC activation= 0 for all channels in the “zero-velocity” bin).

iEEG Signal Features as Functions of Movement Velocity

The tuning profile over all velocity bins of the significantly tuned
speed-type channels in the different frequency bands of iEEG
(e.g., in high γ, β bands, or LFC) closely resembled the absolute

Figure 4. Time–frequency resolved decoding of velocity and speed from ECoG powermodulations. (A) Position of ECoG grids in S1–S3. Magenta: electrodes with hand-arm
motor response upon ESM used for decoding; solid black line: central sulcus. Results for movement velocity (B) and speed (C), both from the 1-D task. Values refer to the
mean CC over all test sets. The horizontal white line at 50 Hz indicates the frequency position of line noise. Speed was better decodable than velocity, up to very high
frequencies (>600 Hz).
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value function or its negative sign version (Fig. 8B). In the previous
analysis (Fig. 7),we saw the topographic ECoG featuremodulations
in different frequency bands, but only for the 2 fastest left and
right velocity bins, and only at a single time offset τ = 0 s (with re-
spect tomovement execution). Here, we investigated the tuning of
all significantly tuned iEEG features (frequency band power or LFC
of channels at different time offsets sampled in steps of 100 ms) as
a function of all velocity bins (see Materials and Methods).

First, we compared the tuning functions of all significantly
tuned iEEG channels fitted to the “perfect” velocity-type
(Fig. 2A) or speed-type (Fig. 2B) profiles. Scatter plots of the

R2
speed against R2

velocity are shown in Figure 8A. If the R2
speed > 0:5

(or R2
velocity > 0:5), then such a significantly tuned function was

classified as speed-type (Fig. 8A, red dots) or velocity-type
(Fig. 8A, blue dots), respectively.

Next, we plotted the speed-type or velocity-type tuning func-
tions (mean ± SEM) for all velocity bins (Fig. 8B). The average
power modulation in high frequencies (>50 Hz) of the speed-
type channels closely matched the absolute value function of
velocity (Fig. 8B, red curves), while the low frequency (<50 Hz)
power modulations were similar to the negatively signed abso-
lute value function of velocity.

Figure 5. Spatially resolved decoding of velocity and speed. For the region covered by the ECoG grids in S1–S3, velocity and speed decoding results are shown in the left
and right columns, respectively. Gray lines: central sulcus. First row: letters indicate electrical stimulation responses (black—motor response, gray—sensory response;
H—hand, A—arm, O—orofacial, E—eyes, L—leg, S—shoulder, N—neck); remaining rows: only hand/arm motor channels.
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Much fewer channels were classified as velocity-type than as
speed-type. The largest group (3%) of tuning functions labeled as
velocity-type tuning of all examined iEEG features was found in
the LFC (Fig. 8B, right panel, blue), consistent with the high DA
of velocity from this iEEG signal feature. Note that for ameaning-
ful average, the inverse in sign for the tuning functions of some
channels was necessary (by a factor of −1), thereby enforcing
positive LFC activation for the movements to the right.

Cortical Activation During the 2-D Motor Task

The increase of power in high γ band (55–300 Hz) in the hand/arm
area of the motor cortex and the simultaneous decrease in lower
frequencies (<50 Hz), most pronounced in the β (13–30 Hz) band,
was apparent also in the 2-D target pursuit task (Fig. 9). Due to
the lower sampling frequencies in these ECoG recordings, they
could only be analyzed up to the high γ band. Most of the signifi-
cantly tuned channels with a power-increase were most similar
to the speed-type tuning (Fig. 9, vertical bars). No clear, consist-
ent modulation was found in the δ power (Fig. 9E), in contrast
to the time-domain LFC signal (Fig. 9F), which represented the
same frequency band, but retained phase information. The LFC
tuning maps revealed—similarly as in the 1-D task—larger, di-
pole-like patterns of coherent and ordered cortical activations.
Thus, the observations of tuning analysis in the 2-D target pur-
suit task were very consistent with those of the 1-D task (Fig. 7).

Numerical Modeling of Speed- and Velocity-Related
Neuronal Population Activity

Astonishingly, a simple numericalmodel of thefiring rate in large
neuronal populations (see Materials and Methods) predicted the
predominance of nondirectional, speed tuning over that of direc-
tional tuning—a situation that is completely reversed to that on
the level of individual motor neurons (Moran and Schwartz 1999;
Golub et al. 2014). Moreover, the model predicted an increase of
spiking rate during high-speed movements. The single-neuron

discharges were based on the velocity-tuning model proposed
by Moran and Schwartz (1999), with a directionally independent,
linear speed tuning (scaled by factor S) and a velocity cosine tun-
ing (scaled by factor V). Thus, movement speed modulated the
discharge activity both irrespective of movement direction and
as a gain factor to movement direction.

We assessed the SNR of the directional and speed tuning as a
function of the neuronal population size in 3 different models.
First, we wanted to indicate a “noisy, baseline level” of a model
without any directional or speed-related information (Fig. 10A).
The SNR of neither speed nor direction depended on the popula-
tion size N. Next, we considered only the velocity tuning without
the directionally independent speed term (i.e., setting S = 0). The
speed tuning remained at the baseline level (Fig. 10B, red), but the
directional tuning was significantly increased and, importantly,
constant for different population sizes (Fig. 10B, blue) as analytic-
ally derived byWaldert et al. (2009). Although such a result might
appear as somewhat counter-intuitive, the sumofN cosineswith
randomphases (whichwas one of the assumptions of themodel)
will again result in a cosine functionwith a randomphase and an
amplitude of N1/2. The Gaussian noise term of the population
ensemble will also grow as a N1/2, thus yielding a constant SNR,
independent of the population size (Waldert et al. 2009).

Finally, the model accounted for both velocity tuning (V = 1)
and speed tuning (S = 0.01). Note that the strength of the speed
tuning was set to only 1% that of the velocity tuning. Therefore,
for small neuronal populations, the directional SNR clearly domi-
nated that of speed, as experimentally observed for SUA (Moran
and Schwartz 1999). However, as more and more neurons were
summed up, the speed term started to grow linearly with popu-
lation size N (Fig. 10C). Eventually, for large-enough populations,
the speed SNR surpassed that of direction (at the reversal point
N = 10 000) and clearly dominated over the directional SNR—a
situation that is opposite to the level of SUA. Therewas even a de-
crease of directional SNR for large neuronal populations (N > 105),
because the strong speed tuningmasked the directional modula-
tions (note that we included movements of different speeds in
computation of the directional SNR). This could have a profound
influence on the directional information in large-scale popula-
tion signals, such as EEG.

The values of the parameters in the model resulting in the
curves as shown in Figure 10C were set rather conservatively in
the sense of a relatively weak speed tuning strength S. To explore
the position of the reversal point for a broader range of para-
meters, we independently varied the strength of speed tuning S,
as well as the noise level σ, while keeping the magnitude of vel-
ocity cosine tuning V = 1 (Fig. 10D). Quite intuitively, the weaker
the strength of speed tuning and the larger the noise value, the
more neurons were required to reach the reversal point where
the speed SNR surpassed the directional SNR. Interestingly,
when compared with published data for some realistic settings
(i.e., speed-to-velocity tuning strength ratio of 0.1 (cf. Moran and
Schwartz 1999), and a noise level of σ = 10), our model predicted
the R2 of 0.4 between speed and the speed-dependent population
activity, similar to the experimental observation of Churchland
and Shenoy (2007) (see also Discussion). In this case, only a few
hundreds ofneuronswouldbe sufficient for the speed todominate
over direction in the population signal (Fig. 10D).

Discussion
The presented results enabled a direct comparison of decoding
accuracies of different kinematic parameters during continuous
movement tasks using different frequency features of the iEEG

Figure 6. Speed-related iEEG power changes in motor cortex. The frequency
spectrum of iEEG was divided into nonoverlapping bands of 10-Hz width. For
each frequency band, the iEEG band power corresponding to the fastest speed
(purple curve) was computed with respect to the slowest speed (green line). The
slowest speed was thus taken as a reference point and was equal to zero.
Statistical significance (purple stars) of the power modulation (FDR corrected, q-
level = 0.05) was tested against the results obtained from surrogate iEEG
datasets (orange curve). There was a clear relative power decrease in lower
frequencies (<50 Hz) and a relative power increase in the higher frequencies
(>50 Hz) statistically significant (P < 0.05, FDR corrected) even in the highest
frequencies (up to 1 kHz).
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signal within the same decoding algorithm (Figs 3–5). Such a
comprehensive overviewwas up to nowmissing in the literature.
We also complemented the decoding with the tuning analysis
(Figs 6–9), which allowed a further insight into the representation
of the iEEG features inmotor cortex during the continuousmove-
ment tasks (up to nowalso absent in the literature). Moreover, we
offered a theoretical explanation of our results based on previous
models of motor cortex SUA (Fig. 10), trying to bridge the gap be-
tween results of SUA and those of large-scale neuronal
populations.

Predominance of Speed Over Velocity in iEEG

Probably the most striking observation in the comparison of the
DAs of the kinematic parameters was the dominating represen-
tation of movement speed (or magnitude of the velocity vector),
especially when compared with the decoding of x- or y-compo-
nents of velocity itself (Fig. 3B). Significant decoding of direction,
position, velocity, and acceleration were obtained consistently in
all subjects from LFC (0–4 Hz) and high γ power (55–300 Hz) of
iEEG. Surprisingly, the nondirectional movement speed and

Figure 7. ECoG relative power (or LFC) for fastestmovements to opposite directions: 1-D task. Tuning for fastest left (odd columns) and right (even columns)movements of
subjects S1–S3 in different frequency bands (rows) and time domain LFC (bottom row). Each panel represents an interpolated ECoG grid with delineated central sulcus
(gray). Significantly tuned ECoG channels (black dashes) were compared (by R2) to the “perfect” velocity- and speed-type tuning profiles. The angle of the dashes
(defined as arctan ðR2

speed=R
2
velocityÞ) indicates the degree of speed-type (vertical orientation) or velocity-type (horizontal orientation) tuning. Increase of power in high-

frequency bands (>50 Hz) was accompanied by a simultaneous power decrease in lower frequencies (<50 Hz). LFC showed patterns of spatially complex, dipole-like
cortical activations.
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also magnitude of acceleration were robustly represented in
motor cortex (Fig. 3B) in nearly all frequency features investi-
gated, including power of very high-frequencies (600–1000 Hz),
where the iEEG signal is assumed to predominantly reflect the
compound spiking activity of the underlying neuronal popula-
tion (Miller et al. 2014, see below).

The tuning analysis of continuous movements corroborated
the predominance of speed over velocity observed in the decoding
results (Figs 7–9), and revealed 2 distinct frequency-specific phe-
nomena, namely, a speed-related increase in high-frequency
bands (>50 Hz) and a simultaneous decrease of power in lower
frequencies (<50 Hz). Such reciprocal modulations are a general
signature of cortical “activation” (Chen et al. 1998; Miller et al.
2012). We found that these continuous movement-related
modulations closely matched the brain responses established in
“event-related” paradigms: first, a broadband and spatially focal
high γ (>50 Hz) power increase, well-known in event-related para-
digms (often called event-related synchronization—Crone et al.
1998; Crone et al. 2006; Miller et al. 2007), and second, a simultan-
eous, spatially morewidespread power decrease in the α (8–12 Hz)
and β (13–30 Hz) bands (also called event-related desynchron-
ization—Pfurtscheller and Lopes da Silva 1999), likely involving
brain activation-relatedmodulations of oscillations in large-scale,
inter-areal and also cortico-subcortical networks. The reciprocal
modulation of low and high frequency components, well-docu-
mented in event-related paradigms, thus also shapes spectral
responses in continuous conditions.

Properties of the Low-Pass Frequency Component

We also analyzed the time-domain LFC, as it is generally consid-
ered a particularly rich source of movement-related information
(LFP: Mehring et al. 2003; ECoG: Schalk et al. 2007; MEG: Jerbi et al.
2007; EEG: Bradberry et al. 2010), which could be confirmed here
as well. A novel observation of the present studywas that the dir-
ectionally tuned LFC was organized in spatially coherent maps
(Figs 7 and 9G). These spatially organized activation patterns
may open a window for investigation of the cortical sources of

the directionally tuned ECoG components using source estima-
tion techniques (Dümpelmann et al. 2012). Slow oscillations
may represent changes in the balance of excitatory and inhibi-
tory synaptic input (Eccles 1951; Mitzdorf 1985), likely reflecting
a sum of local (e.g., motor and sensory) activity (Bansal et al.
2011). As suggested by Edwards et al. (2009), the presence of LFC
activation does not guarantee an increase in high γ, whereas high
γ activation generally overlaps that of the LFC—in line with our
observation of the LFC activations being spatially more extended
than those in high γ (cf. Figs 7 and 9).

Predominance of Speed Over Velocity as a Consequence
of Population Size

The observed dominance of nondirectional movement speed
over the direction-specific movement velocity is in clear con-
trast to previous findings on the level of SUA, where the direc-
tional or velocity tuning dominated that of speed (Flament
and Hore 1988; Moran and Schwartz 1999; Golub et al. 2014).
For example, Moran and Schwartz proposed a model of motor-
cortical SUA as a function of movement velocity (hence includ-
ing both speed and direction), consisting of an independent
speed-tuned term and a velocity tuning (Moran and Schwartz
1999). These findings were further corroborated by Golub et al.
(2014) where the independent speed and direction tuning best
fitted the real SUA data.

Considering directional tuning only, Waldert et al. (2009) pro-
posed amodel of neuronal population firing rate activity and pre-
dicted that (under certain assumptions, see below) the SNR of
directional tuning could be independent of its size even in the
absence of any preferential spatial arrangement of PDs over the
surface of motor cortex, and, hence, the same as in the case of
SUA (Fig. 10B). We extended this model of neuronal population
activity (see also Materials and Methods) to explicitly account
not only for movement direction, but also for the speed tuning,
building on published results of velocity-dependent discharges
in SUA proposed by Moran and Schwartz (1999). Despite its
simplicity, the neuronal population activity model makes an

Figure 8. Velocity and speed tuning profiles of iEEG features.We investigated velocity tuning functions of the iEEG features (columns, indicated by title) from all recorded
channels, sampled in steps of 100 ms at different time offsets τwith respect to movement execution. (A) Scatter plots of R2 values of the correlation of iEEG features with
the “perfect” velocity-type (x-axis) and speed-type (y-axis) tuning profiles. If the speed or velocity R2 was >0.5, an instance was classified as speed-type (red) or velocity-
type (blue), respectively (percentages of these instances in red and blue). For example, in the β band, 37% of all (n = 348) significantly tuned channels at different time
offsets were classified as speed-type. (B) Velocity tuning profiles (mean ± SEM) of iEEG features classified as speed-type (red) or velocity-type (blue). The power
modulation was taken relative to that of zero velocity (dotted horizontal black line). Movement velocity was normalized to unit SD, direction of movement is indicated
by the sign of velocity (positive = right, negative = left). The power in the higher frequency bands (>50 Hz) closely resembled the “perfect” speed tuning, linearly increasing
with magnitude of velocity, irrespective of its direction.
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important prediction: SNRspeed will become much higher than
SNRdirection when moving to larger population sizes in the range
of thousands of neurons (Fig. 10C).

The above model was based on several assumptions: (1) The
discharges ofmotor-cortical neurons considered onlymovement
velocity and consisted of a linear speed term, cosine-tuned

velocity with a certain (neuron-specific) PD, and task-unrelated
Gaussian noise. These assumptions are in line with the findings
and model proposed by Moran and Schwartz (1999). To account
for the fact that there is a considerable complexity and hetero-
geneity of movement-related SUA in motor cortex deviating
from the “canonical” Moran and Schwartz model (Sergio et al.

Figure 9. ECoG relative power (or LFC) for fastest movements to different directions: 2-D task. Velocity tuning of (A) high γ (55–300 Hz), and (B) low γ (30–45 Hz). (C) β (13–
30 Hz), (D) α (8–12 Hz), (E) δ (0–4 Hz) power modulations, and (F) the time-domain LFC (0–4 Hz). Movement directions are indicated by arrows. The ECoG grid schema of
subject S7 with ESM labels (same annotation as in Fig. 5) is shown in the middle of B. Significantly tuned ECoG channels (P < 0.001) were compared (by R2) with the
“perfect” 2-D velocity- and speed-type tuning profiles. The angle of the dashes (defined as arctan ðR2

speed=R
2
velocityÞ) indicates the degree of speed-type (vertical

orientation) or velocity-type (horizontal orientation) tuning. The ECoG power modulation is relative to that of zero velocity. Consistent with the 1-D car-driving task,
relative power in high-frequency bands (>50 Hz) increased irrespective of movement direction, accompanied by a simultaneous power decrease in lower frequencies
(<50 Hz), in the 2-D target pursuit task as well. Similarly, the LFC showed large-scale, dipole-like activation patterns.
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2005; Churchland and Shenoy 2007) and that thusmay contribute
to the noise, we also investigated the impact of the noise term
over a broad parameter range (see Materials and Methods). (2)
Randomorientation of PDswithin the simulatedpopulation. Sev-
eral studies indicate that the spatial arrangement of PDs inmotor
cortex is—at least on a large spatial scale (>1 mm)—indeed ap-
proximately random (Amirikian and Georgopoulos 2003; Ben-
Shaul et al. 2003; Naselaris et al. 2006; Georgopoulos et al. 2007;
Stark et al. 2009). (3) The assumption that population signals
can be approximately described as a sum of their instantaneous
SUA firing rates (Waldert et al. 2009; Moran 2010). Thismay be es-
pecially correct for high γ responses (Ray et al. 2008; Manning
et al. 2009; Ray and Maunsell 2011; see below).

Speed is Represented in Very High (600–1000 Hz) iEEG
Frequencies

One interesting hypothesis proposed that the broad-band shifts
of iEEG power could be a marker of local cortical activity (Miller
et al. 2014). Namely, that it is a signature of asynchronously arriv-
ing synaptic inputs in the dendrites of pyramidal neurons
(Bédard et al. 2006; Miller et al. 2007). According to our model of
neuronal population activity (Fig. 10C), high-speed movements
were characterized by a linear increase of mean firing rate of
the underlying neuronal population relative to slow or even no
movements. This increase of mean firing should, in turn, be re-
flected by a broadband iEEG power increase (Manning et al.
2009; Mollazadeh et al. 2009; Ray and Maunsell 2011). The fact
that we saw the increase as a band limited phenomena in high
frequencies (>50 Hz), could be due to themasking effect of rhyth-
mic, low-frequency activity, especially in the β band (Miller et al.

2014). Thanks to the high-sampling frequency of some of
our recordings (see Table 1), we were indeed able to show the
approximately linear power increase with movement speed not
only in the high γ (55–300 Hz) band, but even in the 300–1000 Hz
frequency range of iEEG (Fig. 8B). Spectral changesmight, in prin-
ciple, affect all frequencies equivalently (Miller et al. 2014). How-
ever, we observed an attenuation of tuning strength with
increasing frequencies (>300 Hz), which likely, at least in part, is
due to the amplifier noise floor. The ultra-high frequency range
was previously only rarely investigated. Signals in this range
have been suggested to reflect summed action potentials of pyr-
amidal cells (Curio et al. 1994; Edwards et al. 2005; Fedele et al.
2012). In our case,wewere able to observe significant,meaningful
physiological activity in the very high frequencies (Fig. 7) up to
approximately 1000 Hz. As we used standard clinical amplifiers,
our results likely underestimate the information content in
these ultra-high frequencies. Our findings could hence further
incite the interest in these ultra-high frequency signals and
in low-noise amplifiers designed for optimally capturing them
(Fedele et al. 2015).

Previous Reports on Movement Speed in Neuronal
Population Signals

The prediction of the model that the SNR of speed should grow
with the underlying neuronal population size, together with
the hypothesis that the high-frequency range closely correlates
to the mean firing rate of the underlying population, seems to
be in concordance with previously published studies. In order
to fully test the model’s predictions, we would have to measure
population signals of different, defined sizes—which was not

Figure 10. Simulation of neuronal population activity inmotor cortex.We simulated a 2-D, center-out taskwith differentmovement speeds anddirections. The population
activity was modeled as a sum of Nmotor-cortical neurons, the discharges of which consisted of (1) a linear speed tuning (scaled by factor S), (2) a velocity cosine tuning
(scaled by factorV) with a randomPD and (3) a Gaussian noise term.We investigated the SNR (y-axis) of directional tuning (blue) and speed tuning (red) as a function of the
neuronal population sizeN (x-axis). (A) Noisemodel indicated a baseline SNR in absence of any speed or velocity tuning. (B) Velocity tuningmodel. The SNR of directional
tuningwas independent of the population size. The speed-tuning SNR remained at the baseline level. (C) Modelwith velocity and speed tuning. For small populations, the
directional SNR (blue) dominated the speed SNR (red), as observed in SUA studies. The situation reversed in large neuronal populations (N > 10.000) and the speed SNR
dominated that of movement direction. The directional SNR even decreased for large populations (N = 106), because the strong speed effect masked the cosine velocity
tuning. (D) Analysis of the reversal points (color-coded), defined as minimum population size where speed SNR is significantly greater than the directional SNR, as a
function of model parameters. The velocity cosine tuning was fixed (V = 1) and the speed tuning strength S was varied together with the task-unrelated Gaussian
noise level σ. In summary, the model showed that the tuning properties of neuronal populations might be quite different, depending on their size, from the level of SUA.
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possible here, due to the constraints of the clinical requirements
of our subjects. However, in large neuronal populations, such as
those reflected by LFP, studies of monkey motor cortex (Mehring
et al. 2003; Bansal et al. 2011; Perel et al. 2013) reported that hand
movement speed was actually better predictable from the LFP
than from SUA or MUA, precisely as predicted by our model. Ro-
bust representation of movement speed in high γ iEEG of human
motor cortexwas also recently reported by Anderson et al. (2012).
These results are very much in line with our hypothesis that
speed tuning increases with the number of the neurons that
the neuronal population signal comprises.

Neuronal Population Size Needed for Speed Dominance

Howmany neuronswould be needed for the speed-related signal
to dominate over that of movement direction? From the
Figure 10C, the reversal point NRP (where SNRspeed > SNRdirection)
is around 10.000 neurons. However, as shown in Figure 10D, the
value of the reversal point, NRP, is dependent on a number of fac-
tors: speed-tuning strength S (increasing S decreases NRP), and
also thewidth σ of the task-unrelated Gaussian noise (increasing
σ increases NRP). Reports on the values of the speed-tuning
strength S or the level of noise σ in human motor cortex are
currently not available. In monkey motor cortex, Moran and
Schwartz calculated the nondirectional speed-tuning strength S
to be approximately 10% of that of the directional tuning (cf.
Fig. 10A in Moran and Schwartz 1999). Interestingly, there was a
remarkable agreement between the predictions of our simple
model (using V = 1, S = 0.1, and σ = 1) and the experimental results
of Moran and Schwartz (1999), when computing the R2 between
speed and the neuronal population activity for number of neu-
rons N = 1066 as in their study: our model predicted R2 = 0.98,
while Moran and Schwartz reported value of R2 = 0.99. Therefore,
the model’s parameter setting of V = 1, S = 0.1, and σ = 1 might
be quite realistic. In this case, the reversal point was NRP = 160
neurons (Fig. 10D). A similar analysis was carried out also by
Churchland and Shenoy (2007), where they computed the
ensemble nondirectional response for N = 137 neurons. Their
R2 = 0.95, while our model predicted 0.98 (taking into account
the higher number of trials in their study). These high correla-
tions were achieved especially in the initial (ballistic) part of
themovement. However, when considering the entire speed pro-
file of the center-out reaching, the correlation between speed and
the neuronal population activity dropped down (R2 = 0.61). We
were able to simulate this decrease of R2 by simply increasing
the noise level, σ = 8. Such an increase of noisemay be interpreted
as a consequence of larger variability of the SUAs inmotor cortex
during the latter (i.e., slow down) part of the movement.

Howmany neurons contribute to the ECoG signal? The diam-
eter of the contact area with the cortical surface of the individual
ECoG electrodes used in our studywas 2.4 mm. Assuming a dens-
ity of ∼105/mm2 neurons in human cortex, there are approxi-
mately 500 000 neurons directly beneath the contact area (Ray
et al. 2008). However, due to volume conduction not all neurons
contributing to a recorded signal must be directly underneath
the recoding electrode (Dümpelmann et al. 2012), and conversely,
not all neurons in the direct vicinity can be expected to be task-
modulated (e.g., 75% of direction-modulated cells in monkey
motor cortex were found by Georgopoulos et al. 1982). The num-
ber of neurons contributing to the ECoG may also depend on
parameters such as the correlation structure of neuronal firing
patterns, as has been recently shown for the LFP (Katzner et al.
2009; Lindén et al. 2011; Einevoll et al. 2013; Łęski et al. 2013). In
summary, it appears highly plausible that the population size N

reflected in themovement-related signalmeasuredwith individ-
ual ECoG electrodes is far abovea fewhundreds neurons and thus
above the reversal point in Figure 10C.

Relevance of Speed Information in BMI Control

Our model predicts that speed tuning reduces the directional in-
formation especially in very large neuronal populations, as we
observed a decrease of directional SNR in the presence of strong
speed-related discharges (Fig. 10C). In this case, speed effectively
masked the directional tuning properties. This could have a pro-
found influence on EEG-based BMIs striving to exploit direction-
al-related signal components (Waldert et al. 2009).

Many previous BMI studies based on single neuron activity
noted a difficulty in reconstructing movement speed, and hence
appropriate stopping signals (Carmena et al. 2003; Kim et al.
2008; Ganguly and Carmena 2009; Golub et al. 2014). Our results
strongly suggest that BMIs might greatly benefit from incorporat-
ing speed information derived from the population level, as re-
flected in intracranial EEG, alongside the already widely used
directional signals. This might be achieved by multi-scale record-
ings of both, single neuron activity and EEG-like signals. Speed
information could further enhance the currently prevailing ap-
proach of decoding movement velocity (e.g., Pistohl et al. 2008)
by utilizing the inverse relationship between curvature of trajec-
tory and speed of movement (Lacquaniti et al. 1983; Schwartz
1994; Golubet al. 2014). Another possibilityhowspeed information
might be utilized is by alternative control paradigms, where speed
would be the decoded and also the control variable, for example,
as in the 2-target right-justified box task, where the speed-related
iEEG activity would control the 1-D vertical cursor movement
(Wolpaw et al. 2003; Wander et al. 2013).

Conclusions
In summary, we have characterized the representation of differ-
ent hand movement parameters in the iEEG of human motor
cortex more extensively than before. As a novel feature, we em-
pirically demonstrated and theoretically explained pronounced
speed tuning in the high γ iEEG, dominating over directional tun-
ing, which is in opposition to the situation thatwas previously re-
vealed on the single-neuron level at least in nonhuman primates.
Assuming a similar basic cellular functional organization in
human motor cortex, we propose that this reversal in the infor-
mation content can be understood based on a simple model of
tuning properties as a function of population size. We have ar-
gued that the representation SNRdirection >> SNRspeed on the single
neuron level may be very different, even reversed, if the speed
tuning is constructively summed up across the population, and
may only become evident in large enough population averages,
arguing against a “scale chauvinism” (Nunez and Srinivasan
2010) putting exclusive emphasis on the micro-scale of neuronal
recording. Instead, multiscale techniques, such as a combination
of recordings from single neurons for directional information
with recordings from large populations for speed information,
may enable better insight into cortical function as well as more
efficient BMI control.
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