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Extraction of different sets of controls10

It is very useful to have different options of controls or sensors. For example, one or more nodes belonging to a set of control or11

sensor nodes may not be accessible for stimulation or recording. Without losing the minimality of control count, the existence12

of other choices makes it easier to consider a better set.13

14

For a large network size, the number of different maximum matching sets is very large. Moreover, several maximum15

matching sets could result in the same set of control nodes. Therefore, one could use sampling via re-indexing † to extract dis-16

tinct sets of control nodes for comparison. Moreover, such re-indexing could also be used to cope with a possible combinatorial17

explosion and estimate the likelihood of nodes to be included in a randomly chosen set of control nodes.18

19

Enumeration of all maximum matchings of a bipartite graph is known.1 Because a digraph can be treated as a bipartite20

graph (see the main text: Maximum matching extraction algorithm), the method is easily adaptable to our interest of control21

nodes identification. The algorithm takes the bipartite version Gb of the given digraph G with a maximum matching set, M0.22

We also ignored the direction of the bipartite graph to avoid confusion as it is evident that edges are projecting from the source23

to the target pool. A maximum matching M0 could be identified by the maximum flow algorithm described in the main text.24

The algorithm is then summarised as follows:25

26

†re-indexing: A ⇠ PAP�1 where P is the permutation matrix



Algorithm27

Input: Gb, M028

1. Color Gb such that all the edges in M0 are red while all the remaining are black.29

2. Check for an alternating cycle. If not, go to 5.30

3. Choose any red edge e in the cycle C. Generate the new maximum matching set M1 by replacing the red by the black31

edges of the cycle in M0.32

For example, M0 = {e1,e2,e3,e4} and C = {c1,e2,c2,e3,c1} ) M1 = {e1,c1,c2,e4}33

4. Breakdown the problem in to two subproblems34

(a) Let Ḡb be the graph obtained from Gb by removing the nodes of e and all of their edges if any. With input Ḡb,35

M0 �{e}, go to 1.36

(b) Let Ĝb be the graph obtained from Gb by removing only the edge e.37

With input Ĝb, M1, go to 1.38

5. Check for an alternating path of length 2 such that either the initial or the terminal node has no red edge. If no, end.39

6. Choose the red edge e in the path. Generate the new maximum matching set M0
1 by replacing the red by the black edge of40

the path in M0.41

7. Breakdown the problem in to two subproblems42

(a) Let Ḡb be the graph obtained from Gb by removing the nodes of e and all of their edges if any. With input Ḡb,43

M0 �{e}, go to 1.44

(b) Let Ĝb be the graph obtained from Gb by removing only the edge e.45

With input Ĝb, M0
1, go to 1.46

In steps 4 and 7 of the above algorithm, the problem of maximum matching extraction is split into two simpler problems after47

a specific edge e is chosen: those that do and those that do not contain e in the following recursions. An illustration of this48

algorithm is presented in Supplemental Figure S1.49

As an example, suppose there is a digraph G with all its edges E, given as E = {(n1,n2),(n2,n3),(n3,n4),(n4,n5),(n2,n5),50

(n5,n2),(n4,n3),(n4,n6)}. Then one can find a maximum matching set using the maximum flow approach, explained in the51

main text. One such set could be the subset with the first four elements, i.e. M0 = {(n1,n2),(n2,n3),(n3,n4),(n4,n5)}. The52

above algorithm requires the graph G along with M0 (see first panel of Supplemental Figure S1 (b)).53
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Supplementary Figure S1. Extraction of all possible sets of control nodes from the maximum matching set
The parent of the tree in a. The example considers a digraph edge set
E = {(n1,n2),(n2,n3),(n3,n4),(n4,n5),(n2,n5),(n5,n2),(n4,n3),(n4,n6)}. For this network, M0 = {(n1,n2),(n2,n3),(n3,n4),(n4,n5)}
can be an MM set. a: Given the edge set E and a master MM set M0, new MM sets, M1 . . .M7, are extracted at each branch of the tree using
the bipartite version of the digraph. A branch is possible if there exists an alternating directed cycle (e.g. the parent bipartite graph of the tree
contains such a cycle {n5,n4,n3,n2,n5}) or a special path of length two (e.g. the child bipartite graph contains such a path (n1,n2,n5)) (see
the algorithm in section ). Edges in red form a maximum matching set at each consideration. b. The digraph, all the eight maximum
matchings (in red), and the corresponding control nodes (in magenta). The possible control nodes are {n1,n6},{n1,n3} and {n1,n5}.

Network generation procedures54

All networks studied here are without self connections and assumed to have non-overlapping nodes. As described in the main55

text, both experimental and artificial network data have been investigated for the susceptibility of their control profile to edge56

pruning. The main synthetic complex random networks included scale-free networks and networks with high, intermediate and57

low small-world indices. In this section, we describe how these synthetic networks were generated.58

Small-world, random and intermediate networks59

We adapted the Watts-Strogatz mechanism of generating different graphs to digraphs.60

• Step 1: Generate a ring lattice61

According to the desired density, we generated a ring network of N nodes with k degree each. The edges were oriented in62
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one direction so that the network had a circulant adjacency matrix.63

• Step 2: Randomise targets64

With a chosen probability p, we randomised the targets of each edge.65

• Step 3: Randomise sources66

Similarly, the sources of edges were rewired with probability p.67

Small-World networks are characterised by low average path-length and high clustering coefficients. For an undirected network,68

there is always a finite average path-length. However, it is common to find a node in a directed network that cannot reach69

some nodes in any number of steps. It is difficult to characterise a network with small-world features without a finite distance70

between each pair of nodes. The initial clockwise or counter-clockwise flow of edges in the first step gets rid of this problem as71

it is clearly a strongly connected network. A network with high small-world index could be formed by randomising the edges72

of the ring lattice with a small probability. A small probability to randomize the connections preserves the high clustering,73

unless it is as sparse as a simple ring network. We chose p = 0.02, p = 0.1 and p = 1 to create small-world (SW), intermediate74

(W-S) and random (E-R) networks, respectively.75

76

As the second step randomises the targets of the edges, the out-degree of the nodes remains unaffected. Because ran-77

domisation at the end of this step is half-complete, the rewiring of the sources was performed in a similar manner (step78

3).79

Scale-free networks80

Scale-free network generation models share similar procedures: the network expands in size following a rule from a small81

network such that the degree distribution of the resulting network follows a power law. The three models to generate scale-free82

networks were adopted using the procedure as in Ruths and Ruths.283

• Barabasi-Albert84

In this algorithm, the network is created according to a growth process by systematically adding new nodes. Based85

on the final size N and the total number of edges nE of the desired network, the number of edges m a new node adds86

to the network is equal to the average degree of the network. The generation begins by few m connected nodes. For87

the remaining, progressive addition of N � m nodes, the m neighbours of the new node are determined by the degree88

distribution of the existing nodes in rich-gets-richer basis. That is, the higher the degree of a node, the more likely it is to89

become connected to the newly added nodes.90

• Local Attachement91

Similar to the Barabasi-Albert model, we first fixed the size of the network N and the number of edges m that a new node92

adds to the existing network. The procedure begins with a full network of size m without self-connections. To extend the93
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size to N, we added N � m nodes one by one. For each newly added node, r nodes were randomly selected from the94

existing nodes (the parent nodes – P). Next, m� r nodes (O) were selected at random from all out-neighbours of P that95

were not in P. The new node was then connected to the m nodes belonging to the set P[O. This addition was repeated96

in the same procedure until the size reached N.97

• Duplication Divergence98

By fixing the size of the network N and the probability p of edge duplication, we started the network with a pair of99

interconnected nodes without self-edges. Then, for each newly added node (n) of N �2 nodes, a random node k was100

chosen from the existing network and each out-neighbor and in-neighbor of k became an out-neighbor and in-neighbor101

of n, respectively, with probability p. In case no edge was duplicated for the new node, the node was deleted and the102

process was repeated. This process was iterated until the desired size N was attained.103

Alternative implementations of resilient pruning104

Different implementations of resilient pruning exist. Their effect is similar, although they differ in computational costs.105

• Random testing: In this procedure a random edge is selected and removed if it does not cause network fragmentation106

and a change in the number of controls. The process is repeated until every edge has been checked. After that, pruning107

for the next larger number or random pruning without fragmentation could be performed to reach a minimum spanning108

directed tree (MSDT). In most cases, the edges that show a change from the original size in this procedure are only a few.109

• Reverse-ordered pruning: This method was described in the main text and was used to generate the results throughout110

this manuscript. Whereas ordered-MM pruning tries to destroy the edges that have larger relative rank, this method starts111

with edges with the least tendency of belonging to a first generation maximum matching set. Therefore, the deletion of112

such edges does not affect the original number of controls for almost the entire pruning. This method is computationally113

cheap compared to the former. One could use a mid-point approach, since a change in the control count is mostly less114

likely at 50% of edge deletion in this procedure.115

• Fixed MM - based pruning: This procedure starts with a maximum matching and supplements it with a few more edges116

to form an MSDT and protects the tree from deletion. This is not as flexible as the first two methods because it relies on a117

specific maximum matching set.118

Pruning of networks with different size and density119

Even though the network size and connection density affect the dynamical properties of the network,8 the efficacy of different120

pruning strategies in changing the controllability profile is largely independent of the size of the random networks (Supplemental121

Figure S2 a-c). With increasing connection density, the order of efficacy of pruning strategies was also preserved (Supplemental122

Figure S2 d-f). Note that, at higher connection density the difference between the out- and ordered MM pruning increased,123
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because of the associated increase in its small-world index. In other words, the denser the random network, the higher the124

clustering coefficient and the lower the average path length. This implies that the maximum matching sets have smaller125

cardinality, forcing ordered-MM pruning to have a relatively smaller effect in increasing the control count.126

Supplementary Figure S2. The pruning principles on networks of different size and density
The color description is as in figure 2 of the main text. The first six subfigures (a-f) are Erdos-Renyii networks where the first three fixes the
density to 5% while changing the size, 250, 500, 1000 (a-c), where as the next three fixes the size to 250 while changing the density, 2%, 5%,
10% (d-f). The subfigures in the last column, (g-i), are scale-free networks with fixed size (N=250) but different density (1%, 2%, 5%)
generated by the local preferential attachment model. In increasing size (a-c) and density (d-f), random networks react in a similar order to
the pruning strategies. As the density increases in scale-free networks (g-i),out- pruning deviates from random pruning more. As a network
gets denser, ordered pruning performs less and gets closer to random pruning due to the more Small-World feature it gains by the additional
edges.

Sorted out-pruning127

Outpruning has been considered so far on the nodes of networks without any order (see Fig. 2, Fig. 3 in the main text and128

Supplemental Figure S2 ). In other words, a node was selected at random and its outgoing edges were deleted exhaustively one129

by one with or without fragmenting the network. The pruning was repeated for each node.130

131

In this pruning strategy, nodes were sorted according to their degree, out-degree and in-degree before pruning. We re-132

fer to such out-pruning of edges from nodes in order of increasing as well as decreasing order of their degree as sorted133

out-pruning.134
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135

In the earlier unsorted out-pruning cases, the error regions (gray) bounding the mean of the out-pruning (green) of 50136

different realisations were smaller (Supplemental Figure S3). However, in sorted out-pruning, six different sortings could result137

in large differences in the control profile of the network (Supplemental Figure S3). It is unlikely that a sorted out-pruning would138

be selected in a random selection. Even if they were selected, their effect would be highly masked by the remaining realisations139

that do not show differences among each other that much.140

Supplementary Figure S3. Outpruning with degree sorted nodes
The networks are the same as the first nine networks treated in Fig. 2 of the main text. Unlike performing out-pruning by randomly picking a
node at a time, here, nodes are sorted according to their in-degree, out-degree and degree in increasing as well as decreasing order for
out-pruning. In the color description in b, iI, iD, oI, oD, dI and dD, the first letter ’i’, ’o’ or ’d’ stands for in-degree, out-degree or degree. The
last letters I’ and ’D’ represent increasing and decreasing orders. For example, ’iI’ means that out-pruning is performed on outgoing edges
from nodes of least out-degree to nodes of most out-degree. The colors blue, cyan, red, pink, green and yellow correspond to iI, iD, oI, oD, dI
and dD. The thin black trace corresponds to the mean out-pruning also shown in green in Fig. 2 of the main text. Although the error region
for the unsorted out-pruning in Fig. 2 appears to be little, sorted out-pruning may show significant deviations from each other g-i.

Random pruning of biological neuronal networks141

Here, we investigated the experimental neuronal connectivity data of five different organisms, namely long distance connectivity142

of the Macaque brain,3 the neuronal connectivity of the nematode C. elegans,4 the cortico-cortical connectivity of the cat143

brain,5 the macroscopic connectivity of the pigeon brain,6 and the mesoscale connectome of the mouse brain.7144

Of all pruning strategies and networks that we considered in this study, random pruning turned out to cause an exponential145

growth of the control count with a decreasing average degree in the BNNs (see Supplemental Figure S4).146
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Supplementary Figure S4. The effect of random pruning on five biological neuronal networks. Left: Random pruning of the
five biological neuronal networks (BNNs): macaque, C. elegans, cat, pigeon and mouse. The horizontal axis represents the fraction of deleted
edges, whereas the vertical axis represents the percentage of the numbercontrol of controls. Right: The horizontal axis is the average degree
of the network corresponding to the deletion in the left, but flipped. The vertical axis corresponds to the logarithmic values of the percentages
in the left. All of the five investigated BNNs show that random pruning results in an exponential dependence of their number of controls on
the average degree of the network.

Pruning without fragmenting the network147

As described in the main text, this is a conditioned pruning where an edge deletion strategy is not allowed to fragment the148

network. This variant has been considered to keep a network intact throughout the pruning process so that we have a single149

network at any stage of pruning, in contrast to the unconditioned pruning.150

Hub-based spanning tree151

A hub-based spanning tree tries to generate an spanning tree with few hubs. If there are few rich hubs that could span the152

network through their projections, many leaf and source nodes are expected in the tree. This imposes the requirement of many153

controls or sensors.154

155

Let v1, . . . ,vn be degree-sorted vertices of a given graph G, i.e. degree(vi) � degree(v j) whenever i < j. If G(v) denotes the156

subgraph of G containing the vertex v with all its neighbours and edges and [ denotes the union of subgraphs, the algorithm157

can be stated as follows:158

Algorithm159

Input: v1, . . . ,vn, vertices of G, sorted with respect to their degree160

1. Consider H := G(v1)161

2. Check if H is a spanning directed tree. If yes, go to 5.162

3. Choose unvisited vk such that H [G(vk) contains the greatest number of nodes.163

4. With H := G(v1,vk), go to 2.164
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Supplementary Figure S5. Conditioned pruning This is similar to the nine subfigures of the second figure in the main
text, (Fig 2. a-f, j-l). The only difference is that in exhaustive conditioned pruning, we did not fragment the network for each of
the pruning strategies. That is, the pruning in this case was done up to a spanning directed tree. The comparison on the
performance of the pruning strategies is similar to the unconditioned case (Fig. 2 a-f, j-l).

5. Randomly prun the SPD to an MSDT165

This process resulted in a spanning tree that requires more controls than spanning tree preferences of any of the pruning methods166

considered. (see Conditioned pruning in the main text.)167

The effect of the pruning strategies on the network structure168

In this section, a node in a complex network is referred to as a few-degree node if both its out- and in-degrees are less than three.169

A subgraph in a digraph (directed network) is strongly connected component(SCC) if there is a directed path from any node to170

any other node in the subgraph.171

The number of SCC (nSCC) and the number of few-degree nodes (n(deg < 3)) have been recently linked to or used as172

estimates for the number of controls (nCN).9–11 Liu. et al 2013 commented that nSCC estimates nCN well for non-linear173

systems but underestimates it in linear systems due to dilation. Menichetti et. al 2014 claimed that the density of nodes with174

in-degree and out-degree equal to one and two determines the number of driver nodes in the network.175

To check the validity of the claims in some of the networks, we studied how the four pruning strategies shape the relationships176

between nCN and nSCC as well as between nCN and n(deg < 3). Our result, summarized in Fig. S6, showed that neither of the177

networks we considered for this demonstration resulted in expected relationship. Resilient pruning strategy strongly contradicts178

the estimation of nCN by either of the two quantities because it resulted in an alarming change in both nSCC and n(deg < 3)179
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for the same number of controls. Moreover, a network with a specific nSCC could keep changing its nC (cf. Fig. S6c. In fact, if180

the claims had been valid to the networks we have analyzed, the relationship should have been preserved regardless of the type181

of the pruning strategy. We noted that although the claims may be valid for many networks, there are such exceptions as the182

networks analyzed here.183

i. Unconditioned pruning ii. Conditioned pruning

Figure 6. The relationship between nSCC, n(d < 3) and nCN The four networks in row are the same networks used in Fig. 2 a,c,d and
i - corresponding to the small world, Erdos-Renyii, Local-Attachment and the c-elegans neural connectome. While the left half (i. a-h) is for
unconditioned pruning, the right half (ii. i-p) is for conditioned pruning. Different pruning strategies relate the increase in control size nCN
with the increase in the number of strongly connected components nSCC (a-d, i-l) and with the increase in the number of few degree nodes
n(d < 3) (e-h, m-p) differently. It shows that nSCC or n(d < 3) can not predict the nCN alone.

12/16

i. Unconditioned pruning ii. Conditioned pruning

Supplementary Figure S6. The relationship between nSCC, n(d < 3) and nCN The four networks in row are the same networks
used in Fig. 2 a,c,d and i - corresponding to the small world, Erdos-Renyii, Local-Attachment and the c-elegans neural connectome. While
the left half (i. a-h) is for unconditioned pruning, the right half (ii. i-p) is for conditioned pruning. Different pruning strategies relate the
increase in control size nCN with the increase in the number of strongly connected components nSCC (a-d, i-l) and with the increase in the
number of few degree nodes n(d < 3) (e-h, m-p) differently. It shows that nSCC or n(d < 3) can not predict the nCN alone.
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6. Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M. & Güntürkün, O. Large-scale network organization in the avian193

forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7 (2013).194

7. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).195

8. Kumar, A., Schrader, S., Aertsen, A. & Rotter, S. The high-conductance state of cortical networks. Neural Comput 20,196

1–43 (2008).197

9. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Observability of complex systems. Proc Nat Acad Sci 110, 2460–2465 (2013).198

10. Nie, S., Wang, X., Zhang, H., Li, Q. & Wang, B. Robustness of controllability for networks based on edge-attack. PLoS199

One 9, e89066 (2014).200
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