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Abstract

The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms
that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either
limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create
local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which
explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our
model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their
propagation along weak connections (‘‘communication through resonance’’). The emergence of coherent oscillations is a
natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that
create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of
communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the
communication through resonance and propose that modulations of the ongoing activity state could influence information
processing in distributed cortical networks.
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Introduction

The brain processes sensory stimuli by an organized flow of
neuronal activity across a distributed network of specialized
cortical areas. This flow requires mechanisms that route
neuronal signals from one cortical area to another. However,
the exact nature of this routing process remains poorly
understood.
Experimental studies suggest that synchronization of spiking

activity may play a pivotal role in the flow of neuronal activity, as
synchronous neuronal firing can effectively drive downstream
neurons [1–4]. To date, our understanding of synchrony-based
neuronal routing has been dominated by two models which
attribute the origin of synchrony to dissimilar mechanisms.
According to the first model, synchronous spiking activity is

both created and routed through dense and/or strong convergent-
divergent connections between subsequent layers of feedforward
networks (FFNs). In this scenario, these connections are a source

for shared and correlated input that provides sufficient synchro-
nization for spiking activity to propagate across the FFN [5–10].
However, the requirements of either strong synapses or high

connection probability pose serious constraints on the biological
plausibility of these FFNs in the cortex, in which connectivity is in
general sparse [11] and synapses are weak [3,9,12]. Even though,
the sparse cortical connectivity could in theory host a large
number of sparsely and weakly connected (diluted) FFNs, they
would fail to generate enough synchronization to ensure propa-
gation of spiking activity [7,13,14].
The second model suggests that population oscillations could

soften the requirement of strong/dense connectivity by enhancing
synchronization and neuronal excitability during the excitable
phase of the oscillation [15,16]. A key requirement for this
propagation mode is that oscillations, which are generated locally
due to interactions between excitatory and inhibitory neurons,
must maintain a consistent phase relationship (coherence) between
the communicating networks (‘‘communication through coher-
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ence’’; [15,17,18]). However, the mechanisms underlying the
generation and maintenance of such coherent oscillations between
distant brain areas have remained elusive despite a number of
theoretical proposals [19].
Here, we propose a novel mechanism by which oscillatory activity

exploits the presence of resonance frequencies in networks of
excitatory and inhibitory neurons (EI ) to promote the propagation
of synchronous activity across diluted FFNs (‘‘communication
through resonance’’). The role of such network resonance is to
amplify weak signals that would otherwise fail to propagate.
According to our model, coherent oscillations emerge in the network
during slow propagation of synchrony, while at the same time
synchrony needs these oscillations to be propagated. Thus, spreading
synchrony both generates oscillations and renders them coherent
across different processing stages. This abolishes the requirement for
separate mechanisms providing the local generation of oscillations
and establishing their long-range coherence. Moreover, coherence
between oscillations may be viewed as a consequence of propagation
instead of being instrumental to establish communication through
synchrony. Our results also suggest that the emergence of coherent
oscillations is influenced by the dynamical state of the ongoing
activity. We propose that changes in the ongoing activity state can
have an influence on cortical processing by altering the communi-
cation between different brain areas.

Materials and Methods

Network model
The network models were multi-layered FFNs. Each layer

consisted of two recurrently connected homogeneous neuronal
populations. In Figure 1, Figure 2 and Figure 3 we used 2,000
excitatory (E) and 500 inhibitory (I ) neurons. For the rest of the
figures, we reduced the number of E neurons to 1,000 while
keeping the number of interlayer projecting neurons fixed to 300.

This reduction, which was done in order to improve simulation
efficiency, did not affect the results in any qualitative manner.
The connectivity within each layer was random with the

following connection probabilities: EEE~0:05 and EII~
EEI~EIE~0:1, where EXY denotes the probability of connection
from a neuron in population X to a neuron in the population Y .
Connections between layers were strictly feedforward and
excitatory, and restricted to a sub-population of 300 randomly-
chosen E neurons (in the rest of the paper referred to as P) in every
layer. The interlayer connectivity was sparse with probability
EPiPiz1~EPP~0:1 (cf. Table 1).

Neuron model
Neurons were modeled as leaky integrate-and-fire neurons, with

the following membrane potential sub-threshold dynamics:

Cm
_VVm~{Gleak½Vm(t){Vreset"zIsyn(t) ,

where Vm is the neuron’s membrane potential, Isyn is the total
synaptic input current, Cm and Gleak are the membrane
capacitance and leak conductance respectively. When the Vm

reached a fixed threshold Vth~{54mV a spike was emitted and
the membrane potential was reset to Vreset~{70mV: After the
reset, the neuron’s membrane potential remained clamped to
Vreset during a time period tref~2ms, mimicking the period of
absolute refractoriness. All other parameters are detailed in
Table 2.

Synapse model
Synaptic inputs consisted of transient conductance changes:

Isyn(t)~Gsyn(t)½Vm(t){Esyn" ,

where Esyn is the synapse reversal potential. Conductance changes
were modeled using exponential functions with tE~5ms and
tI~10ms.
Synaptic delays were set to dEE~dII~2ms, dEI~dIE~5ms

and dPiPiz1
~dPP~5ms in Figure 4a, Figure 5b–c and Figure

S4a. In the rest of the figures, delays were set to dEE~dII~1ms,
dEI~dIE~2:5ms and dPP~5ms. Longer delays produced a
stronger and more reliable propagation and therefore were chosen
to illustrate the propagation across layers in Figure 4a. The
choice of delays influenced the resonance properties of the
network [20]. However, the general principle remained unaffect-
ed. Other parameters are detailed in Table 3.

External input
Each neuron was driven by 1,000 independent Poisson

excitatory spike trains with an average rate of 1 Hz each (i.e., a
total average input rate of 1 kHz), which mimicked uncorrelated
background inputs coming from other brain areas. In Figure 6, E
neurons received this external drive (referred to as E drive) with
larger rates than 1 kHz as indicated in the figure.
The synchronous stimuli consisted of periodic trains of

synchronous spikes (pulse packets) with different frequencies. Only
P1 neurons received these additional spikes. The individual pulse
packets consisted of a fixed number (a) of spikes per neuron,
distributed randomly around an arrival time tn. The time of each
individual spike was drawn independently from a Gaussian
probability distribution centered around tn and with s.d. (s). In
Figure 2e, Figure 3b–c, Figure 4a, a~30 spikes and s~0ms
(i.e, perfectly synchronous). In the remaining cases a~20 spikes
and s~3ms.

Author Summary

The cortex is a highly modular structure with a large
number of functionally specialized areas that communi-
cate with each other through long-range cortical connec-
tions. It is has been suggested that communication
between spiking neuronal networks (SNNs) requires
synchronization of spiking activity which is either provided
by the flow of neuronal activity across divergent/conver-
gent connections, as suggested by computational models
of SNNs, or by local oscillations in the gamma frequency
band (30–100 Hz). However, such communication requires
unphysiologically dense/strong connectivity, and the
mechanisms required to synchronize separated local
oscillators remain poorly understood. Here, we present a
novel mechanism that alleviates these shortcomings and
enables the propagation synchrony across weakly con-
nected SNNs by locally amplifying feeble synchronization
through resonance that naturally occurs in oscillating
networks of excitatory and inhibitory neurons. We show
that oscillatory stimuli at the network resonance frequen-
cies generate a slowly propagating oscillation that is
synchronized across the distributed networks. Moreover,
communication with such oscillations depends on the
dynamical state of the background activity in the SNN. Our
results suggest that the emergence of synchronized
oscillations can be viewed as a consequence of spiking
activity propagation in weakly connected networks that is
supported by resonance and modulated by the dynamics
of the ongoing activity.

Communication through Resonance
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When the stimulus was a periodic train of pulse packets, we set
the frequency of stimulation by adjusting the period (T ) between
arrival times tn (i.e., the center of the Gaussian p.d.f.). When sw0,
the spikes were spread around tn, as indicated above, and
therefore the time distance between the last spike from a given
pulse packet and the first spike from the next was always variable
for the same input frequency. The smallest interval that was used
between arrival times was 10 ms (100 Hz) and the largest 100 ms
(10 Hz). Additionally, in Figure 3b we used 1 Hz stimulation.
In simulations where the arrival times were jittered, the size of

the jitter was drawn from a uniform distribution centered on the
arrival time tn. The extent of the jitter window was chosen to be a
function of the interval tn+T=f , where f~8, 4 or 2 in order to
make the effect comparable across different frequencies.

Data analysis
To compute the auto-covariance functions A(t) (inset in

Figure 2c and Figure 3c bottom right; only positive time lags
are shown), time was divided into bins of Dt~5ms and the
population spike trains were transformed into spike count vectors
ya(t), where a~E, I , P denotes the population. The auto-
covariance functions were then computed as follows:

Ab
a(t)~

P
t ya(t)ya(tzt)

TsDt
{n2a,

where t~({D, {DzDt, . . . , D), t~(D, DzDt, . . . , Ts{D),
D~150ms, Dt~5ms, na indicates the population mean firing
rate and the superscript b~o, a denotes ongoing (computed from
a single Ts~100 s simulation in absence of pulse packet
stimulation) and activated (computed from Ts~10 s of activity
during stimulation starting 5 s after the stimulus onset and
averaged across 20 trials), respectively.
We used the population Fano factor (pFF) to classify the

population spiking activity states as synchronous or asynchronous
(dashed line in Figure 6a). We used the central value of

Ao
E(t~0)~Vo

E (variance) normalized by the mean population
firing rate:

pFF~
Vo

E

nE

The signal-to-noise ratio (SNR) in Figure 6d was computed as
follows:

SNR~
Va

P10

Vo
P10

,

where Vb
P10

indicates the variance of the spiking activity of P10

neurons as indicated above.
Pairwise correlations were computed using the Pearson

correlation coefficient between the spike count vectors of pairs of
neurons (yi(t) and yj(t)).

rij~
Cov(yi,yj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cov(yi,yi)Cov(yj ,yj)
p ,

where:

Cov(yi,yj)~S(yi(t){ni) (yj(t){nj)T~Syi(t)yj(t)T{ni nj

and S :T indicates time average and vectors yi(t) and yj(t) were
computed using a time window of D t~200ms. We used 10,000
pairs to compute the distributions shown in Figure 2c and
Figure 3d. The correlation coefficients were computed from
simulations with a length of 100 s.
The power spectrum of the population spike train (PS) was

calculated as follows (from [21]):

Figure 1. Architecture and ongoing activity of the diluted FFN model. (a) Scheme of a 3-layer FFN. The color code is preserved across
figures: red/blue/black represent I/E/P neurons. (b) Pulse packet response in an isolated layer. A pulse packet (a~20; s~3) was presented after 1:5 s.
Gray shaded rectangle: ongoing activity region. Subpanels: raster plot of the spiking activity (top); membrane potential traces of two example P
neurons (upper-middle); output rate histogram (lower-middle); and input rate histogram (bottom).
doi:10.1371/journal.pcbi.1003811.g001
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PSba(v)~
1

Ts

ðTs=2

{Ts=2
Sa(t)e

{iv t dt

" #2

,

where, b~a in Figure 4b, Figure S4a and Figure S5a and
b~o in Figure 6b indicating the corresponding value of Ts (cf.
description of the auto-covariance function above).

Simulation tools
Network simulations were performed using the simulator

NEST, interfaced with PyNest [22,23]. The differential equations
were integrated using forth order Runga-Kutta with a time step of
0.1 ms. Simulation data was analyzed using the Python scientific
libraries: SciPy and NumPy. The visualization of the results was
done using the library Matplotlib [24]. The code to reproduce

several results presented in this work (Figure 1b, Figure 3a,
Figure 4a, Figure 5b and Figure S6a) is available at https://
github.com/AlexBujan/ctr. Other results can be reproduced by
modifying that code.

Results

Network model: Diluted FFNs
We studied the propagation of synchronous spiking activity

across diluted FFNs with sparse interlayer connectivity. In this
model, each layer represented a small neocortical network with
2,000 excitatory (E) and 500 inhibitory (I ) neurons. The
connectivity within each layer was sparse and random. The
connections between layers, which modeled long-range projections
between different cortical networks, were strictly feedforward and
excitatory. These interlayer projections were restricted to a

Figure 2. Ongoing dynamics and impulse response of an isolated FFN layer. (a–c) Ongoing activity statistics computed in absence of pulse
packet stimulation (gray region in Figure 1b) from a simulation of 100 s. Color code as in Figure 1. Filled/empty inverted triangles: mean/s.d.. (a) Mean
rate distribution of individual neurons. (b) Distribution of CVISI values. (c) Distribution of pairwise correlation coefficients (inset: auto-covariance
function of the population spike train). (d) Pulse packet amplitude transfer map. Black trace: membrane potential distribution of P neurons in its c.d.f.
form plotted as a function of the distance to spike threshold ({54mV; ‘‘Jump’’). Gray lines: average voltage depolarization (‘‘Jump’’) caused by a
pulse packet of aiz1~kiNPEPP . Dark gray line: depolarization when EPP~0:1 which is the value used in this work. Light gray line: depolarization
when EPP~0:2. Red dots and dotted lines: trajectory of a pulse starting from a fully activated layer (k1~1). (e) Effect of stimulation with a single pulse
packet (a~30; s~0). Subpanels: time evolution of inhibitory and excitatory conductances (Gin and Gex) averaged across P neurons (upper); and
evolution of the membrane potential distribution for P and I neurons (lower). Gray region: optimal time window for the arrival of a hypothetical
second pulse packet. Cyan dot: arrival time of the actual pulse packet. Magenta/green dot: hypothetical arrival of a second pulse outside/inside of the
optimal time window. Dotted lines: mean+ s.d. across neurons. Black dashed line: Same as blue trace in Figure 4b bottom (Va

P1
(T)), resonance curve

plotted as a function of time interval instead of frequency.
doi:10.1371/journal.pcbi.1003811.g002
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Figure 3. Resonance in an isolated FFN layer. (a) Network activity during stimulation with a train of pulse packets (a~20; s~3;
frequency*22Hz). Color code as in Figure 1. Subpanels: raster plot of the spiking activity (top); membrane potential traces of two example P
neurons (upper-middle); output rate histogram (lower-middle); and input (to P neurons) rate histogram (bottom). (b) Increased mean firing rate at
the layer’s resonance frequency within 20 ms after the pulse packet arrival. P neurons were stimulated with trains of periodic pulses packets (a~30;
s~0; frequencies~1=22=28Hz). Error bars: average s.d. across trials (c) Increased activation caused by dis-inhibition. Red/black line: average mean of
the membrane potential distribution of P/I neurons sampled 1ms prior to the arrival of the pulse. Train of pulses as in b with frequency *22Hz.
Inset: average s.d. of the membrane potential distribution across neurons. Light gray bars: P rate response calculated as in (b). Dark gray bars: I firing
rate within 20ms before the pulse packet arrival. (d) Spiking and membrane potential statistics measured during 100 s of stimulation. Stimulus
statistics as in (c). Subpanels: distribution of individual mean firing rates in Hz (E : 3:69+5:11; P : 14:76+2:75; mean + s.d. across population; upper
left); distribution of CVISI (E : 0:95+0:20; P : 0:86+0:20; upper right); distribution of pairwise correlation coefficients (E : 0:06+0:11; P : 0:54+0:07;
lower left); and auto-covariance function of the population spike train (lower right).
doi:10.1371/journal.pcbi.1003811.g003
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sub-population of 300 E neurons which we refer to as projecting
neurons or P neurons throughout the manuscript (Pi refers to all
the projecting neurons in a layer with the subscript i indicating the
position of the layer in the FFN; cf. Figure 1a). Interlayer
connection probability EPP~0:1 and hence, each Pi neuron
received, on average, NP EPP~30 connections from the previous
layer (Pi{1; cf. Table 1).
All layers were driven by external Poisson input spike trains and

the synaptic weights were adjusted (cf. Table 3) to bring the
network into an asynchronous-irregular (AI) activity regime
[25,26], consistent with the statistics of cortical activity in awake
behaving animals [27–30]. The mean firing rate of individual
excitatory neurons showed a heavy tailed distribution with a mean
of *1Hz (+1:1Hz; + s.d. across the population). The mean
coefficient of variation of the inter-spike interval distribution
(CVISI) was *0:95 (+0:19) and the distribution of pairwise

correlations was centered around zero with a mean of *1|10{3

(+0:04) (cf. Figure 1b and Figure 2a–c). The activity of the I
population was also irregular and asynchronous although with
slightly higher mean firing rates (2+1:8Hz). These results were
computed from a single simulation of 100 s duration.
To study the propagation of synchrony, we stimulated all P

neurons in the first layer (P1) with synchronous events or pulse
packets (cf. Methods). The synaptic strength of these input
synapses was equivalent to the other EE synapses in the FFN
(cf. Table 3).
First, we checked that the connectivity between layers was

indeed too weak to support the propagation of single synchronous
events. To this end, we generated an amplitude transfer map which
we used to estimate the change in amplitude undergone by pulse

packets as they travel across the FFN. This map, shown in
Figure 2d, was generated using the ongoing membrane potential
distribution (black trace) and depolarization transfer function (dark
gray solid trace) of the P population. The measured membrane
potential distribution (computed from 100 s of ongoing activity) is
shown as the cumulative density function (c.d.f.) of the distance to
threshold ({54mV). When represented as such, the probability of
being at a certain distance from threshold can be interpreted as the
fraction of cells (here named ki, where i indicates layer index) that
will spike if a depolarization (‘‘jump’’) equivalent to such distance
is applied to all P cells. The membrane potential transfer function
was calculated by measuring the averaged maximum depolariza-
tion across P neurons induced by a pulse of perfectly synchronous
spikes (s~0) with different amplitudes a. The mapping between
the two curves can be done by knowing the relationship between
the activation level of the ith layer ki and the amplitude of the
pulse packet received by the subsequent layer aiz1 which in this
case is as follows: aiz1~ki NP EPP. Knowing this relationship, it is
then possible to project a point from one curve to the other,
thereby drawing an estimated trajectory of the pulse packet’s
amplitude across the chain. In the figure, an example of such a
trajectory is illustrated with red dots and dotted lines. To make a
convincing case, we started the trajectory with a fully activated
first layer (k1~1; upper red dot) and followed the pulse packet
until it reached a stable point (intersection between the two
curves). Such trajectories will always end at an intersection
between the curves which in this case (EPP~0:1) is found only at
zero. This shows that any single pulse traveling across this FFN
will eventually vanish, regardless of the initial value of a.
Similarly, it can be shown that if the connectivity is raised to

Table 1. Network parameters.

Name Value Description

NE 1,000 Size of excitatory population

NI 500 Size of inhibitory population

NP 300 Size of the group of projecting neurons

EEE 0:05 Connection probability from excitatory to excitatory

EEI 0:1 Connection probability from excitatory to inhibitory

EIE 0:1 Connection probability from inhibitory to excitatory

EII 0:1 Connection probability from inhibitory to inhibitory

EPP 0:1 Connection between projecting neurons from different layers

doi:10.1371/journal.pcbi.1003811.t001

Table 2. Neuron parameters.

Name Value Description

gleak 10 nS Membrane leak conductance

Cm 200 pF Membrane capacitance

tm 20ms Resting membrane time constant

H {54mV Fixed firing threshold

Vreset {70mV Reset potential

tref 2ms Absolute refractory period

doi:10.1371/journal.pcbi.1003811.t002
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EPP~0:2 (dashed light gray line) a single pulse can undergo a
stable propagation for some initial values.

Resonance in recurrent EI networks
After a perturbation caused by a synchronous pulse, the

network’s activity relaxed back to ongoing levels while displaying
a stereotypical damped oscillation (Figure 2e). This dynamics,
which was observed both at the spiking level (shown as
conductances in P neurons in Figure 2e top) and the level of
the membrane potential (Figure 2e bottom), indicated that the
network had resonance frequencies. The presence of such

resonance frequencies suggested that stimulating the network with
a periodic train of pulse packets, within a specific frequency range,
could induce a large response even for weak stimuli (e.g., pulse
packets consisting of a few weakly synchronized spikes).
The existence of resonance behavior in EI networks has already

been shown elsewhere [20]. Here, we analyzed the network
response to a pulse packet stimulation in order to understand in
more detail how resonant dynamics can emerge in these networks.
During the transient damped oscillatory response, there was a brief
time period of a few milliseconds (indicated approximately as a
gray region in Figure 2e) during which P neurons were slightly

Figure 4. Communication through resonance in diluted FFNs. (a) Example simulations illustrate the transmission of synchrony in 5-layer
diluted FFNs for three different stimulus frequencies: 1 Hz (top),* 28 Hz (middle) and*18Hz (bottom; resonance frequency for this network). Pulse
packets: a~30 and s~0. In all three subpanels: stimulus time histogram in kHz (bottom) and raster plot of spiking activity (top). Gray/white stripes:
different layers. Color code as in Figure 1. (b) Propagation of synchronous activity in 10-layer FFNs as a function of the stimulus frequency (v). Activity
of the first layer (blue trace in bottom subpanel and top subpanel) and the last layer (red trace in bottom subpanel and middle subpanel) during
periodic stimulation at different frequencies (pulses: a~20 and s~3). Top/middle subpanels: PSaE1

(v)/PSaE10
(v). Bottom subpanel: Va

P1
(v) (blue

trace) and Va
P10

(v) (red trace). White circles: Va
P10

(v) significantly larger than Vo
P10

(v). Note that Va
P1
(v) was previously depicted in Figure 2e as a

function of the inter-pulse interval T for comparison with the average network response to an isolated synchronous pulse.
doi:10.1371/journal.pcbi.1003811.g004
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Figure 5. Robustness of CTR against deviations from periodicity. (a) Effect of jittered arrival times on CTR. Resonance curves (Va
P(v)) of P1/

P10 (blue/red) as a function of the amount of jitter. Pulse packets: a~20 and s~3. Jitter is expressed as a fraction of the input’s interval T . White
circles: Va

P10
(v) significantly larger than Vo

P10
(v). (b) Non-periodic Poisson input to E1 neurons in a 5-layer FFN triggers CTR. Subpanels: Raster plot of

the spiking activity (top); and input (to E1 only) rate histogram in kHz (bottom). Color code as in Figure 1. (c) Last layer reached by the propagating
synchronous activity as a function of the additional input rate to E1 . Solid circle: stimulus as in b.
doi:10.1371/journal.pcbi.1003811.g005

Table 3. Synapse parameters.

Name Value Description

tE 5ms Rise time of excitatory conductance

tI 10ms Rise time of inhibitory conductance

RE 0mV Reversal potential of excitatory synapses

RI {80mV Reversal potential of inhibitory synapses

JEE 0:73mV At a holding potential of {70mV

JEI 1:45mV At a holding potential of {70mV

JII {9:16mV At a holding potential of {55mV

JIE {9:16mV At a holding potential of {55mV

dEE 1,2ms delay of excitatory to excitatory synapses

dII 1,2ms delay of inhibitory to inhibitory synapses

dEI 2:5,5ms delay of excitatory to inhibitory synapses

dIE 2:5,5ms delay of inhibitory to excitatory synapses

dPP 5ms delay of interlayer synapses

doi:10.1371/journal.pcbi.1003811.t003
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more depolarized (higher mean), more synchronous (decreased
s.d.) and their inhibitory conductance was reduced. This suggested
that the arrival of a second pulse packet inside this brief time
window (e.g., around 45ms after the arrival of the first pulse
packet; shown as a green dot in Figure 2e) should result in a
larger activation as compared to the first pulse. Conversely, the
arrival of a second pulse outside of this window (magenta dot in
Figure 2e) would only lead to a similar or even weaker activation.
To confirm this, we stimulated P neurons in an isolated layer

with a sequence of 100 periodic pulse packets (identical to the ones
described in the previous section; a~30 and s~0) and computed
the mean firing rate within 20 ms after the arrival of each
synchronous event (which was found to be an appropriate time
window to capture the pulse packet induced modulation of the
firing rate). We repeated the experiment using three different time
intervals T : 35, 45 and 1,000 ms (Figure 3b) and in each case the
results were averaged across 100 trials. Pulse packets separated by
T~45ms, which matched the optimal window described above,
resulted in an average spiking activity of 48 Hz (+1:7Hz, + s.d.
across trials; green bar in Figure 3b). By contrast, stimulation
with pulse packets separated by T~35ms could only induce a
mean network response of 33:7Hz (+14:8Hz). This response was
comparable to a stimulation in which pulse packets arrived at an

interval of one second, long after the transient response to each
individual event had died out (compare magenta and blue bars in
Figure 3b). This result confirmed that a train of periodic pulses,
with a period adjusted to match the optimal time window, was
able to elicit a stronger response as opposed to a single pulse
packet. Additionally, the fact that a higher input frequency
resulted in a lesser activation suggested that this effect was not
merely due to the temporal integration of the individual pulse
packets.
To further understand the emergence of resonance in these

networks, we analyzed the temporal evolution of the membrane
potential distribution (mean and s.d. sampled 1 ms prior to the
arrival of each pulse packet) during stimulation with a train of 100
pulse packets separated by 45 ms (Figure 3c). The results were
averaged across 100 trials. A brief initial depolarization, caused by
the first two pulse packets, was followed by a sustained hyper-
polarization in both P and I neurons as more pulse packets were
presented. The hyper-polarization reflected that a larger fraction
of neurons was refractory (or close to the spike reset potential) due
to the increase in firing rate (light gray bars in Figure 3c) and
recurrent inhibition. The fact that most neurons were more hyper-
polarized seemed to be at odds with the observation that the pulse
packets were more effective in driving P neurons. Furthermore, a

Figure 6. Effect of the dynamical network state on CTR. (a) Population spiking statistics as a function of E drive. Blue line: mean CVISI ; red
line: population Fano factor (pFF); and green line: mean firing rate. Dashed red line: separation between synchronous and asynchronous state based
on the pFF. (b) Effect of E drive on PSE . (c) PSE10

with E drive~1:5kHz. Blue/Red trace: average PSoE10
/PSaE10

; dotted traces: maximum (upper) and
minimum (lower) power values computed across input frequencies for each case. (d) SNR measured in P10 as a function of E drive.
doi:10.1371/journal.pcbi.1003811.g006
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decrease of the s.d. (Figure 3c inset) indicated that P neurons
were overall more synchronized, namely, that the hyper-polariza-
tion was shared across the entire population. Essentially, the
increased responsiveness was a consequence of the fact that I
neurons were effectively refractory at the time of the arrival of
pulse packets, as indicated by the progressive reduction in their
firing rates (Figure 3c dark gray bars). That is, although P
neurons moved farther away from the spiking threshold, they
received less inhibition at the time of the arrival of the pulse
packets which resulted in stronger activation. This observation
hinted to an important role of II connections in the emergence of
resonance in these networks.
We investigated the contribution of the II loop to the

generation of resonance by conducting simulations in which we
progressively reduced the strength of the recurrent inhibitory
connections (Figure S1). We compensated the reduction in II
input by adding an additional source of external inhibitory
conductance in order to keep the firing rate of the I neurons
(measured during the ongoing state) constant across conditions.
Our results showed that although the II loop had a substantial
effect on the resonance peak’s amplitude and frequency, the
network still had resonant properties in the absence of an II loop.
This indicates that while EI connections are sufficient to create
resonance, II dynamics play a facilitating role. In addition to the
hyperpolarizing inhibition used in our model, other biologically
plausible mechanisms, such as shunting inhibition or gap
junctions, could also enhance resonance [31–33].
Although the overall activity of an isolated layer became more

synchronized, with network oscillations that were locked to the
stimulus, the overall activity of E neurons remained fairly irregular
(CVISI*0:95+0:20), and mean pairwise correlations were still
relatively low (*0:06+0:11; compare (Figure 3d and Fig-
ure 2c). Hence, the activity of E neurons during stimulation was
still consistent with biological data, which shows that cortical firing
is highly irregular despite the presence of oscillations at the
population level as measured by local field potentials [34,35]. Note
however that the activity of the P neurons was more regular (they
skipped fewer cycles) than the other E neurons. Such a level of
regularity in the P population was needed in order to induce
oscillations in the post-synaptic layer and was a consequence of the
small number of P neurons together with the sparse inter-layer
connectivity. Thus, the choice of a larger P population size and/or
a higher connection probability could make propagation compat-
ible with a more irregular firing in the projecting population (cf.
below).
Additionally, we explored whether our network model operated

in a linear regime in which case the tools of linear systems analysis
could be applied to further understand the resonance [20]. To this
end, we calculated the amplitude of the network’s response when
stimulated with synchronous pulses for different values of a. Our
results indicated that the behavior of the simulated network was
generally non-linear showing a saturation of the response
amplitude with high a and a progressive shift in the resonance
frequency (Figure S2). However, we also found that within a
restricted range of input amplitudes the network’s response
approached linearity (cf. straight lines in Figure S2e).

Communication of synchrony through network
resonance
Next, we addressed the question whether the network

resonance-induced amplification of stimulus responses, observed
in isolated layers, could be sufficient to enable the transmission of
synchrony in diluted FFNs, which did not support the propagation
of individual pulse packets.

To this end, we stimulated a 5-layer FFN with three different
frequencies, that were analogous to the ones introduced in the
previous section (cf. Methods). The amplification, observed when
the input frequency matched the resonance frequency of P1,
proved to be sufficient to induce a successful transmission across
the entire FFN (Figure 4a bottom). As expected, when the
stimulus had a different frequency from the resonance frequency,
or it consisted of a single pulse packet, the synchronous activity did
not reach the last layer (Figure 4a top and middle). Since the
transmission relies on the network resonance, we refer to this mode
of synchronous activity propagation as ‘‘communication through
resonance’’ (CTR).
After receiving a few input cycles at the resonance frequency,

nearly all P1 neurons started to fire near synchronously every time
a new pulse was presented. At this point, even though a large
number of synchronous spikes were produced in the first layer, the
sparse interlayer connectivity (10%) reduced this increased
activation to a train of weak pulse packets with an average of
a~28:21 spikes (+2:65 spikes) and s~6:32ms (+0:5ms), which
prevented the propagation of synchronous volleys immediately
after amplification had taken place in P1. Therefore, amplification
through resonance was needed at every layer to propagate the
activity across the FFN due to the diluted interlayer connectivity.
Next we investigated how the frequency of stimulation affected

the propagation of synchrony across a 10-layer diluted FFN.
Expectedly, we found a correlation between resonance-induced
increase in synchrony in P1 and the successful communication of
synchronous events across the entire FFN (Figure 4b). To
quantify the synchrony we calculated the variance of the P
population spike train (Va

P(v) where v indicates the stimulus
frequency; cf. Methods). We then used Va

P(v) to construct
resonance curves as shown in Figure 4b bottom. A propagation
was labeled as successful when Va

P10
was significantly increased

(wmeanz2|s:d:; white dots in Figure 4b bottom) with respect
to the baseline value Vo

P10
. The spectral analysis of the spiking

activity revealed that the increase in power in the last layer was
always more pronounced at *20Hz, which was approximately
the resonance frequency of the network (cf. Figure 4b lower-
middle subpanel). Furthermore, CTR was not restricted to the
FFN architecture discussed thus far. Our results showed that at
least two alternative interlayer connectivity patterns also supported
CTR: when receiving neurons were restricted to a specific sub-
population of E neurons but any E neuron could project to the
next layer (Figure S3a); when any E neuron could receive and
send projections (Figure S3b).
However, even when neuronal activity propagated to the last

layer (white dots in Figure 4b), Va
P10

was significantly lower than

in Va
P1

(compare red and blue curves in Figure 4b bottom). This

result indicated that propagation was occasionally characterized
by failures of synchronization of the last layers. Thus, the ratio
Va

P10
=Va

P1
could be used as a proxy for the propagation reliability

when activity was observed during long time periods (10 s).
Generally, networks that produce a moderate amplification of the
signal at the resonance frequencies would be more sensitive to
noise fluctuations, which can transiently reduce the degree of
synchrony and lead to frequent propagation failures. A larger
amplification, which in our model was achieved by introducing
longer delays within each layer, lead to a perfectly reliable
propagation at the resonance frequencies (Figure S4a).
For the parameters used here, the range of frequencies that led

to a successful propagation approximately spanned from 22 to
26 Hz. The extent of this frequency range can be varied by an
appropriate choice of network parameters (cf. Figure S4a; see
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[20] for a more detailed study on the effect of different parameters
on resonance). The effect of different parameters on the resonance
profile of the network can be estimated using the network’s
average response to a single pulse packet stimulation (cf.
Figure 2e). When the input frequency is expressed as the time
interval between pulse packets Va

P1
(T) (dashed black trace in

Figure 2e top), the resonance profile can be related to the
average network response. Note that Va

P1
(T) is again represented

as a function of the input frequency Va
P1
(v) in Figure 4b (blue

trace). As can be seen in Figure 2e, the dominant peak in Va
P1
(T)

closely matches the trough of the average inhibitory conductance
response (Gin; red curve). This suggests that the network’s response
to a single pulse packet stimulation can predict its resonance curve
and thus can be used to understand how different changes in the
network parameters may affect the resonance properties of the
network. While different network parameters can alter its
resonance curve, the activity propagation based on network
resonance would remain essentially the same.
For this specific choice of parameters, PSaE1

(v) (Figure 4b top;

cf. Methods) revealed that the resonance occurred mainly around
two main stimulus frequencies: 23 Hz and 58 Hz (see also Figure
S5b bottom row). Note that similar resonance frequencies were
found when neurons were stimulated with a sinusoidally modu-
lated Poisson input, which indicates that the faster resonance
frequency can not be explained by the existence of harmonics of
the base frequency present in the periodic input pulse train
(Figure S6). Naturally, the smaller resonance frequency precisely
matched the time window described in the previous section. The
frequency of the second resonance peak can be explained using the
network’s average response as indicated earlier. To understand
this effect, we can consider a simpler stimulus consisting of three
pulses the frequency of which is systematically increased with
respect to the main resonance frequency (23 Hz). Initially, the rise
in frequency will cause the second and third pulses to arrive
outside the optimal time window. However, as the frequency is
further increased, a frequency will be reached for which the third
pulse will fall inside the optimal window giving rise to an increase
of the spiking response. Intuitively, this latter frequency should be
approximately twice as large as the main resonance frequency,
which is inconsistent with our results. This discrepancy can be
understood when we notice that the second pulse, although not
strong enough to activate P neurons, does accelerate their re-
polarization, thereby advancing the optimal time window within
which the third pulse should arrive. That is, the subthreshold effect
of these incommensurate pulses will speed up the network response
resulting in the second resonance peak being faster than twice the
main resonance frequency.

Deviations from periodicity and sustained input signals
Experimental evidence suggests that brain oscillations in the

gamma range are not perfect periodic oscillators with a consistent
phase [36–39]. Consequently, to be a biologically plausible mode
of communication, CTR should be robust enough to facilitate the
transmission of oscillatory spiking activity when the constraint of a
constant phase has been relaxed.
To quantify the extent to which CTR could afford unstable

phases within an oscillation, we probed 10-layer diluted FFNs with
periodic trains of pulse packets whose arrival times were jittered.
The jitter was drawn from a uniform distribution centered on the
arrival time (tn) of the pulse packet. The extent of the jittering
window was chosen to be a function of the interval tn+T=f where
f~8, 4 or 2. The results showed that CTR could still enable the
transmission in the presence of moderate amounts of jitter

(Figure 5a). For this particular selection of network parameters,
a jitter of T=8ms did not alter the main characteristics of the
amplification process and the activity propagated to the last layer
(Figure 5a top right).
However, if the jitter was further increased the activity

propagated to fewer layers and the propagation was more
unreliable. Interestingly, for a jitter of T=2, which corresponds
to completely aperiodic pulse packet train, we observed that
activity propagation increased with increasing the stimulus
frequency. However, in this case also the pulse packets propagated
with a frequency of *20Hz, close to that of the network
resonance frequency (Figure S4b). That is, each FFN layer acted
like a bandpass filter, which suggested that a broad-band noise
stimulus could also trigger the transmission since it can generate
oscillations close to the resonance frequency.
Indeed, it is well known that the dynamics of EI networks can

display oscillations at the population level when they are
stimulated with strong unstructured external drive [26,40]. We
hypothesized that in the FNN a constant rate Poisson input could
bring the activity of the first layer into an oscillatory regime,
thereby generating a train of weak pulse packets that provide
rhythmic input to the subsequent layers.
We tested this hypothesis by replacing the oscillatory input to P1

by an additional source of constant Poisson input to all E neurons
in the first layer. When in the network shown in Figure 5b-c the
E drive was increased from 1 to 1.8 kHz the activity became
oscillatory with enough power to ignite the resonance in the
second layer. Interestingly, the frequency of the oscillations in P1

was comparable to the resonance frequency of the network. This is
not surprising as both resonance and oscillations at higher input
regimes are shaped by the same network time constants, e.g.,
synaptic delays and membrane time constants [20].
Thus, we show that both slightly phase-jittered oscillatory inputs

at the resonance frequency and broad-band stimulation are
compatible with CTR in diluted FFNs.

Effect of the network state
Thus far, we have assumed that ongoing activity in each

individual layer of the FFN was AI with low firing rates. However,
there is ample experimental evidence suggesting that cortical
networks in vivo can display more synchronized ongoing activity
regimes depending on the behavioral state of the animal [30,41].
We therefore explored how the propagation of pulse packets via
CTR is influenced by the dynamical state of the spontaneous
network activity.
The level of synchrony in recurrent EI networks can be

modulated by adjusting the firing rate of the external excitatory
input [9,26,42]. Here, we changed the dynamical state by
increasing the E drive from 1 to 1.6 Hz. Lower rate E drive
gave rise to very sparse and asynchronous firing patterns, which
progressively became more synchronous as the E drive was
increased (synchrony measured as population Fano factor; red line
in Figure 6a). The spiking activity of individual neurons
remained irregular (CVISI&1) for the parameter space explored
here (cf. blue line in Figure 6a). PSoE increased in the range
between 10 and 100Hz for larger values of E drive. This increase
was more pronounced around the peaks, which progressively
shifted towards faster frequencies as the external input became
stronger (Figure 6b).
To study the effect of network synchrony on CTR, we

stimulated P1 in 10-layer FFNs with periodic trains of pulse
packets for the different levels of E drive and computed the signal-
to-noise ratio (SNR) in P10 (cf. Methods). Generally, more
synchronized activity states enabled CTR within a broader range
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of input frequencies, however the largest SNR values in P10 were
found at the low input regimes (Figure 6d). Independent of the
synchrony level, resonance frequency and subsequently CTR were
always confined within a range of input frequencies that closely
matched the frequency around the peaks of PSoE (compare
Figure 6d and Figure 6b). Hence, the resonance frequencies
also became faster at higher levels of E drive. This shift reflected
the reduction of the time that neurons needed to recover from the
effective refractory state (absolute refractory period and hyper-
polarization time) due to the presence of larger amounts of
excitation as E drive was increased. The main peak in PSaE10

when

activity reached P10 was invariably found at * 20 Hz. This value
was slower than the mean peak measured in PSoE10

which was *
28 Hz (Figure 6c). The values of PSaE10

were larger than those of

PSoE10
for all the frequencies analyzed here. Notably, this difference

was more pronounced in the gamma range (30{100Hz) as
compared to lower frequencies (v20Hz; cf. Figure 6c).
Interestingly, network synchrony improved the propagation for

faster input oscillatory regimes (*50{60Hz, Figure 6d). In
summary, our results showed that the ongoing state had opposite
effects on CTR depending on the input frequency range. For
lower input frequencies, AI activity increased SNR, while for
larger input frequencies SI could enable the propagation which
was absent during AI.

Model validation and implications for population coding
A direct validation of the model will involve the induction of

coherent oscillations between distant brain areas by stimulating
excitatory neurons in the presynaptic area at the resonance
frequency. The resonance profile of a neuronal population can be
obtained by recording its activity during periodic stimulation of
the neurons with different frequencies. Similar experiments, which
made use of optogenetic tools, have already been performed to
study the role of specific cell types in the generation of gamma
oscillations [43]. According to our model, even weakly connected
distant networks (verified, e.g., by anatomical or electrophysiolog-
ical studies) with a similar resonance profile can engage in a
coherent oscillation by stimulating the presynaptic population at
the resonance frequency. In contrast, a stimulation protocol,
which does not induce a strong oscillation in the stimulated area,
will fail to form such a coherent activity with the distant
population. Our model also predicts a progressive entrainment
characterized by a gradual increase in the measured power over
multiple stimulation cycles in the stimulated presynaptic network.
A similar entrainment should be found in the postsynaptic network
with a certain delay which should be a function of the connectivity
strength (see discussion). Moreover, in CTR mode of propagation
the oscillations emerge only after a delay and not directly at the
onset of the stimulus. This feature of the model is consistent with
the observation that c - band oscillations appear after 100 ms of
the stimulus onset (e.g. [44]).
This would confirm that CTR is by definition a slow mode of

communication and therefore it is not suited for the communi-
cation of signals which have to propagate across multiple areas
within a short period of time. Note that, e.g., in the FFN shown in
Figure 4a, synchronous activity reached the fifth layer only after
approximately 10 stimulation cycles (*200ms at 40 Hz). We
further quantified this result by testing the number of cycles
required in a given layer until a significant synchronization level
was found in the subsequent layer. A significant degree of
synchrony was reached when the instantaneous rate of P neurons,
computed using 5 ms time bins, hit a threshold value equal to noP
plus five times its s.d.. The results, computed using 100 trials, are

shown in Figure 7 as a function of stimulus frequency (repre-
sented as the inter-pulse interval). Our results showed that when
stimulated within the main resonance frequency range (39–42 ms
intervals) the average speed of propagation was approximately two
cycles/layer with small variability. Small deviations from that
resonance frequency range resulted in higher trial-to-trial
variability of the propagation speed and increased mean while
larger deviations resulted in propagation failure.
The results obtained with our example FFN are indicative of

how much time it will take to encode a stimulus using CTR at
each stage of a processing chain. Naturally, the amount of time
will be proportional to the number stages that the activity has to
traverse. However, synchrony-based coding using FFNs seems to
be suited only for communicating binary signals, i.e., the
asynchronous/synchronous activity of a given layer indicates the
absence/presence of a particular stimulus (e.g., a specific
orientation of a bar of light). By contrast, the encoding of graded
signals would require a monotonic relationship between the input
and the output of the FFN. We tested the capacity of a diluted
FFN to communicate continuous signals using CTR. To this end,
we applied periodic stimuli with different amplitude a and
computed the amplitude response of the network. Our results
showed that for these network parameters it was possible to find an
input range within which the system’s response changed mono-
tonically. Moreover the response remained linear for a restricted
range of inputs strength a (cf. gray lines in Figure S2e). Such a
linear operating regime including even a modest degree of
saturation, could allow for the communication of graded signals.
We note that our model supports communication of activity

between areas that have similar resonance profiles. This automat-
ically ensures selective communication and gives possibility of
gating the propagation by small change in the resonance
frequency of a network. The experiments proposed above could
demonstrate, whether CTR is in principle compatible with the
neuronal hardware and physiology, even though they will not
necessarily rule out other proposed mechanisms like CTC [17].

Discussion

Here we propose a novel mechanism for propagation of
synchronous spiking activity within weakly coupled FFNs based on
the presence of resonance in EI networks. In our model,
resonance is a network property that emerges due to the
interactions between excitatory and inhibitory neurons in each
FFN layer. Using numerical simulations of spiking neuronal
networks, we show that a weak and sustained stimulus can be
gradually amplified in every layer, thereby overcoming the
limitations of synchrony transmission imposed by the diluted
interlayer connectivity. We refer to this mode of synchronous
activity propagation as ‘‘communication through resonance’’
(CTR).
Until recently, resonance was considered mostly at the level of

single cells in both experimental [45–47] and theoretical studies
[48,49]. Now, there is increasing experimental evidence showing
that resonance also exists at the network level in inhibitory [43] as
well as excitatory neuronal populations [50], and may play a
crucial role in the generation of cortical rhythms. Theoretical
studies have shown that resonance is a fundamental property of EI
networks [20] and could be used to gate neuronal signals [51].
In our model, such EI network resonance is used to enable the

propagation of synchronous spiking activity in diluted FFNs. In
previous theoretical studies, propagation of neuronal activity was
restricted to either densely and weakly connected FFNs, which
promote the propagation of synchronous activity [7,9,42,52,53],
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or sparsely and strongly connected FFNs, which are capable of
propagating asynchronous firing ([54,55]; see [14] for a review).
However, biological neuronal networks are typically neither
densely connected nor have strong synapses [11] and therefore
the mechanisms that govern the propagation of neuronal activity
in dense/strong FFNs are not always applicable. Our results
indicate that propagation is possible in diluted FFNs, when aided
by network resonance, but is restricted to synchronous activity.
Oscillations in the gamma range (30{70Hz), which are a key

feature of task-related population activity in several brain areas
[56,57], have emerged as a prominent mechanism that may
facilitate propagation of synchronous spiking activity in weakly
connected networks [15]. These oscillations can synchronize
neuronal activity and provide appropriate temporal windows of
excitability, which enable communication between different brain
areas. Within these temporal windows, effective functional
connections are generated where otherwise only weak structural
links may exist [17,58]. This mode of propagation, however,
requires communicating brain areas to oscillate with matched
phase and frequency (i.e., their oscillations are coherent) such that
synchronous activity from the sender can reach the receiver during
its excitable phase and maximize its spiking response. It is
commonly believed that coherent oscillations are generated by two
independent mechanisms, one responsible for the local generation
of oscillations [59] and another mechanism that can flexibly
modulate the coherence between spatially distant oscillators [19].
However, the precise nature of the process responsible for
achieving such long-range coherence still remains elusive.
Here, we argue that coherent oscillations arise due to the

propagation of periodic synchronous spiking activity. In our
model, weak rhythmic synchronization provided by the input
initially fails to propagate further down the FFN due to the diluted
connectivity. The crucial role of the oscillations is to amplify this

weak synchronous stimulus by promoting resonance dynamics of
the receiving network and enable its propagation across the FFN.
This is in contrast to the idea that oscillations are generated
independently at every layer and locally synchronize unstructured
background input. Our results show that oscillations arise in the
network as a consequence of the stimulus propagation, and at the
same time the stimulus exploits these oscillations to propagate.
Due to this propagation, oscillations in each layer are driven by the
previous layer and are hence naturally coherent with a phase that
is determined by the conduction delay between the layers [17].
From this perspective coherence becomes a side effect of the
propagation dynamics. Thus, a separation of distinct mechanisms
that create oscillations and provide coherence is not necessary, as
both arise naturally as consequence of CTR. Indeed, recent
experimental studies suggest that there is an unidirectional
entrainment of coherent oscillations between areas [60–62],
making the feedforward spread of coherent oscillatory activity,
as explained by our model, biologically plausible.
We show that while CTR still works for moderate deviations

from periodicity, it is most efficient for propagating periodic
stimuli. Notably, the same FFN architecture can transform a
sustained firing rate signal into a weak rhythmic stimulus that can
then be propagated. Even though it can be argued that
environmental stimuli are often not periodic, it has been recently
suggested that sensory information could be actively converted
into periodic signals by sensing organisms [63,64].
CTR requires amplification of activity in each layer and, as a

consequence, the propagation is slow requiring several cycles to
reach the target network. The numbers of cycles needed to
transmit synchronous activity across the entire FFN is a function of
the connectivity strength between the layers. As the synaptic
weights become stronger, the number of cycles required to spread
synchrony to the final layer of the FFN decreases and transmission
becomes more reliable. Once the weights are sufficiently strong,
synchrony flows through the network in one oscillation cycle,
which is equivalent to the propagation of synchronous activity in
dense/strong connected FFNs investigated by previous studies (cf.
[14] for a review). Thus, CTR could generate FFNs with strong
connections capable of propagating isolated synchronous events,
when certain types of synaptic plasticity are recruited to strengthen
the synapses between the different FFN layers. Indeed, coherent
oscillations, like those generated by CTR, can provide an ideal
dynamical environment to promote synaptic potentiation [65]. In
this way, CTR could be regarded as an initial means to propagate
activity before strong connections have been formed, while
providing the ideal substrate for the generation of fast and reliable
communication channels.
In the present study, we describe activity propagation in single

FFNs. However, other more complicated network architectures in
which multiple FFNs interact may also be possible. In such a
scenario, the input could create a stronger response in one such
FFN, while partially and weakly activating other FFNs with
unmatched resonance frequencies, thereby generating a broad-
band increase in power around the resonance frequency of the
activated FFN. Thus, such a scheme could indeed explain the
increase in broadband gamma power of the LFP signal observed
during behavioral tasks [66].
Signal gating is an intrinsic property of CTR, since in a given

FFN only the stimuli that match its resonance frequency are able
to propagate. Selective gating of signals through network
resonance has been suggested by previous theoretical studies
[51,67]. Interestingly, the resonance frequency of the network can
be dynamically modulated offering the possibility to gate signals
differently in time. In our study, we show that modifying the level

Figure 7. Propagation speed within the resonance frequency
range. Simulations were conducted in 5-layer FFNs. Propagation speed
measured in cycles per layer as a function of the inter-pulse interval.
Bottom/center/top box lines: first/second/third quartiles of the speed
distributions. Top/bottom whiskers: largest/smallest value within 1.5
IQR of the upper/lower quartile. Crosses: values observed outside the
1.5 IQR.
doi:10.1371/journal.pcbi.1003811.g007
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of external excitation shifts the resonance frequency of the FFN.
Additionally, other mechanisms such as neuromodulator mediated
changes of the effective connectivity within each layer can have
similar effects on the resonance properties of the network. Another
alternative gating mechanism is the use of gating signals [14].
Gating activity in dense/strong FFNs requires highly precise and
strong gating signals [53]. However, the fact that in CTR the
initial phase of the propagation in a given layer is characterized by
low amplitude synchrony, which is still insufficient to elicit
responses in the next layer, makes CTR suited for a gating
mechanism that utilizes relatively imprecise and weak gating
signals. Thus, overall CTR constitutes a flexible process that could
implement complex spatio-temporal routing of neuronal signals.
As we show here, the dynamical properties of the background

activity affect the quality (SNR) of the neuronal signals that are
communicated using CTR. More specifically, SNR at low
frequency stimulation (*20{30Hz) was maximized when
background activity state was asynchronous-irregular. This result
is in line with experimental evidence which found oscillations in
the gamma range to be associated with cortical desynchronization
[68,69]. In contrast, the propagation of *50Hz stimuli was
successful only when ongoing activity was in a synchronous-
irregular state. These findings hint at a hypothetical scenario in
which slow periodic modulations of the background dynamics
could rhythmically improve or even gate signals that propagate
using fast oscillations. The fact that the nesting of slow and fast
cortical oscillations (e.g., beta-gamma) is commonly found in
experiments (see [70] for a review) could be indicative of such a
collaborative effort between different cortical rhythms. These
findings open up the possibility that top-down signals may provide
the change of background activity state required for coherent
feedforward oscillations to be generated.
Importantly, CTR is not restricted to the specific neuron and

network model used in this work. The resonance mechanism,
which is the essence of the model, is a general property of
recurrently connected populations of excitatory and inhibitory
neurons [20] and therefore it is widely applicable. Notably, a
specific range of propagating frequencies can be achieved by a
proper selection of network parameters. In summary, we have
shown that communication of neuronal signals across weakly
connected networks can be achieved by combining oscillatory
activity with resonance dynamics.

Supporting Information

Figure S1 Response of isolated layers with different
values of JII . (a-d) The reduction of recurrent inhibitory
conductance was compensated with an additional external
inhibitory Poisson input (next,I ) with rate as indicated in the
legend. (a) Resonance curves for different JII values. Activity is
expressed using Va

P normalized by the mean of the spike count
vectors calculated with a time bin of 5 ms (nP). (b) Changes in size
and frequency of the two main resonance peaks in (a). Blue and
red circle indicate first (10–30 Hz) and second (30–80 Hz) main
resonance peaks, respectively. (c) Pulse triggered average modu-
lation of the inhibitory conductance of P neurons for different JII
values. (d) Pulse triggered average modulation of the membrane
potential of P neurons for different JII values.
(EPS)

Figure S2 Response of an isolated layer to pulse packets
with different a values. (a) Resonance curves for different a
values. Activity is expressed using Va

P normalized by the mean of
the spike count vectors calculated with a time bin of 5 ms (nP). (b)

Frequency change of the two main resonance peaks in (a). Blue
and red circle indicate first (20–30 Hz) and second (50–80 Hz)
main resonance peaks, respectively. (c) Pulse triggered average
modulation of the inhibitory conductance of P neurons for
different a values. (d) Pulse triggered average modulation of the
membrane potential of P neurons for different a values. (e)
Amplitude transfer function. Amplitude change of the two main
resonance peaks in (a). Colors are same as in (b). Gray lines show a
linear approximation to the amplitude change within a range of
input values corresponding to a between 15 and 25 spikes.
(EPS)

Figure S3 Alternative FFN architectures that support
CTR. (a) All Ei{1 neurons were equally likely to establish long-
range connections with the next layer but only Pi neurons were
allowed to receive projections from the previous layer. EPP~0:1
which implied effectively increasing the total number of connec-
tions with respect to the architecture used in the main text from
9,000 to 30,000 synapses. The plots bellow the schematic drawing
of the FFN are analogous to the ones used in Figure 4b in the
main text. (b) In contrast to (a), all Ei neurons were allowed to
receive afferents from the downstream layer and project to the
next layer. The total number of connections was kept as in (a)
which implied a low EPP~0:03.
(EPS)

Figure S4 Effect of longer intra-layer delays and
aperiodic input trains on CTR. (a) Effect of longer intra-
layer delays on CTR. Delays: dEE~dII~2ms and
dEI~dIE~5ms. Other parameters as in Figure 4b. Plot structure
as in Figure 4b. (b) CTR observed during stimulation with
strongly jittered pulse packets. Pulse packets: a~20 spikes,
s~0ms and jitter~T=2ms, where T is the interval between
pulses. Structure of the panel as in (a).
(EPS)

Figure S5 CTR during synchronous states. (a) Propaga-
tion of activity across a 10-layer FFN for different values of E
drive. Color code: last layer for which a significant increase in V a

P10

was detected. (b) Propagation of synchronous activity in a 10-layer
FFN for different stimulus frequencies with E drive~1:5kHz.
Plot structure as in Figure 4b.
(EPS)

Figure S6 Effect of sinusoidally modulated Poisson
inputs in an isolated layer. (a) Layer’s spiking and sub-
threshold activity as a function of time. Stimulus is a sinusoidally
modulated Poisson spike train with parameters: DC~1kHz;
AC~1kHz; frequency*15 Hz. Subpanels as in Figure 3b (b)
Resonance curves for different AC input values. Activity is
measured as in Figure S1.
(EPS)
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