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Impact of correlated inputs to neurons: modeling
observations from in vivo intracellular recordings
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Abstract In vivo recordings in rat somatosensory cortex
suggest that excitatory and inhibitory inputs are often cor-
related during spontaneous and sensory-evoked activity.
Using a computational approach, we study how the interplay
of input correlations and timing observed in experiments
controls the spiking probability of single neurons. Sev-
eral correlation-based mechanisms are identified, which can
effectively switch a neuron on and off. In addition, we inves-
tigate the transfer of input correlation to output correlation
in pairs of neurons, at the spike train and the membrane
potential levels, by considering spike-driving and non-
spike-driving inputs separately. In particular, we propose
a plausible explanation for the in vivo finding that mem-
brane potentials in neighboring neurons are correlated, but
the spike-triggered averages of membrane potentials preced-
ing a spike are not: Neighboring neurons possibly receive
an ongoing bombardment of correlated subthreshold back-
ground inputs, and occasionally uncorrelated spike-driving
inputs.
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1 Introduction

Input correlations have been observed in membrane poten-
tials recorded from neurons in various brain regions.
At the single neuron level, the existence of “activity bumps”
(that is, large fluctuations) in the membrane potential
trace indicates the arrival of coordinated inputs within a
narrow time window (Okun and Lampl 2008; DeWeese
and Zador 2006). In dual in vivo intracellular recordings in
rodent barrel cortex, membrane potentials of pairs of simul-
taneously recorded neurons were reported to be correlated
in both quiet and whisking states (Poulet and Petersen 2008;
Gentet et al. 2010). Furthermore, instantaneous correlations
of excitatory and inhibitory inputs have been observed in the
membrane potential of neurons in the rodent barrel cortex
(Okun and Lampl 2008) and the retina (Cafaro and Rieke
2010) in in vivo recordings.

Here, we studied the impact of the temporal structure
of synaptic inputs, both on the response firing rate and
on the response spike correlation of neurons—two quan-
tities that are widely investigated in neuronal dynam-
ics. Previous analytical work has treated various aspects
of input correlations such as higher order statistics of
the input (Bernander et al. 1994; Kuhn et al. 2003; Schultze-
Kraft et al. 2013), the neuronal integration of excitatory
and inhibitory inputs (Kuhn et al. 2004), and the time
constant of input currents (Svirskis and Rinzel 2000;
Moreno et al. 2002) on output firing rates. Gating of signal
representations by correlated inputs has been illustrated in
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network simulations (Kremkow et al. 2010). Modulation of
the activity level of a neuron by background synaptic noise
statistics has been demonstrated in in vitro experiments
(Sceniak and Sabo 2010).

Here, we studied the interplay of multiple potential rate
modulating factors observed in experiments, and identified
several scenarios which lead to a strong effect on firing
rate. In addition, the input-triggered coordination of the out-
puts of pairs of neurons is less well explored, and some
more complex phenomena in this context are not under-
stood at all. For example, it turns out that correlations at
the level of spikes and subthreshold membrane potentials
can both be independently regulated by inputs. Intriguingly,
membrane potentials of neighboring neurons were found to
be highly correlated (Okun and Lampl 2008; Poulet and
Petersen 2008; Gentet et al. 2010), but their spike responses
were not (Gentet et al. 2010). Earlier theoretical work (de la
Rocha et al. 2007; Shea-Brown et al. 2008; Tchumatchenko
et al. 2010; Rosenbaum and Josic 2011) considered a pair
of neurons receiving correlated inputs, leading to membrane
potential correlations. Several important insights into the
mechanisms of output spike correlation and their underly-
ing membrane potential correlations (Kriener et al. 2008;
Krumin and Shoham 2009) are offered by this model, some
of which were verified experimentally (de la Rocha et al.
2007). By contrast, in spike-triggered averaged membrane
potentials of excitatory neuron pairs in a layer 2/3 barrel
column, depolarization in a neuron was found to be exceed-
ingly small when another, nearby neuron was depolarized
strongly towards firing an action potential (cf. Fig 4e in
Poulet and Petersen 2008 and Fig 6G, left, in Gentet et
al. 2010). We will argue that this small depolarization is
much smaller than predicted by the commonly used Poisson
model.

We reconstructed the situation in a more general model
comprising two single neurons, based on observations made
in in vivo intracellular recordings from somatosensory cor-
tex (Okun and Lampl 2008). In this simple input-output
scenario, we identified several factors based on the cor-
relation structure and relative timing of the input spike
trains that can either increase or decrease neuronal firing
rates and correlations at all levels. Specifically, we suggest
an extended perspective to reconcile the above-mentioned
conflicting observations of correlated subthreshold mem-
brane potential and uncorrelated spiking activity, by distin-
guishing between spike-driving (SD) and non-spike-driving
(NSD) inputs. In this scheme, when two neurons receive
independent SD inputs, the depolarization in one neuron can
be small, whereas the other depolarizes strongly and fires
an action potential, as observed in experiments (Poulet and
Petersen 2008; Gentet et al. 2010). Furthermore, SD and
NSD inputs can induce output spike and membrane poten-
tial correlations that are independent of each other. Thus,
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our results provide a more complete understanding of how
the temporal structure of inputs shapes both the response
firing rate and the spike correlation of neurons.

2 Methods
2.1 Neuron model

The neuron model used in this work is the leaky integrate-
and-fire (LIF) neuron with conductance-based synapses. Its
subthreshold dynamics of the membrane potential V (¢) is
described by the equation

d
CoVO+GLIVE) = Ve]=10) ey

where [ is the total synaptic input current to the neu-
ron and C, G and V, reflect the passive cell properties:
capacitance, leak conductance and resting membrane poten-
tial, respectively. When the membrane potential reaches a
fixed spiking threshold Vi, a spike is emitted. Then the
membrane potential is reset to its resting value and a brief
pause ff for synaptic integration is imposed to mimic the
refractory period in real neurons.

Both excitatory and inhibitory synaptic inputs are mod-
eled by transient conductance changes using conductance
transients that are described by an alpha function
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where g and t; are the rise times for the excitatory and
inhibitory synaptic inputs, respectively. The peak ampli-
tudes Jg and J; of the conductance transients are con-
sidered as the strength of the two types of synapses,
respectively.

By assuming homogeneous couplings, the total excita-
tory conductance G g (¢) in a neuron is given by

Ge(t) =) gr(t—1g). )
k

The sum runs over the sequence of spikes from excitatory
sources (g ) impinging on the neuron. Similarly, the total
inhibitory conductance is

Gr(t)y =Y gi(t—1tr). )
k
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The total synaptic current into a neuron is
I(t) ==Gg@®) [V(®) = VE] = G1(1) [V(©) = V1], (6)

with Vg and V; denoting the reversal potentials of the
excitatory and inhibitory synaptic currents, respectively.
The parameter values were chosen to be consistent with
the experimental literature (McCormick et al. 1985; Troyer
and Miller 1997): C = 500 pF, G = 25nS, V, = —65mV,
Vihn = =50 mV and ftef = 2 ms. We set Vg = 0 mV
and V; = =70 mV (Koch 1999). The rise times of the
excitatory and inhibitory synapses were set to be 0.3 ms
and 2 ms, and the peak conductances were Jg = J; =
15 nS, respectively. All simulations were carried out using a
Python interface to NEST (Gewaltig and Diesmann 2007).
The differential equations were integrated using the GNU
Scientific Library (GSL) implementation of the 4th-order
classical Runge-Kutta algorithm with adaptive step-size
control. The output was generated at intervals of 0.1 ms. In
the study on rate and correlation modulation, the simulation
results were averaged over 5 trials of 20 seconds each.

2.2 Input configurations

We considered different types of structured input to disen-
tangle the different observations made in various in vivo
experiments.

Correlated excitation and inhibition using MIP was the
input structure implemented as shown in Fig. la for
the study of rate modulation of neurons in somatosensory
cortex (Okun and Lampl 2008). First, we constructed two
Poisson processes with correlation coefficient cgy, and then
generated N = 1000 spike trains by copying spikes from
each of the mother processes with copy probability ¢ as
the excitatory and inhibitory inputs, respectively. This
scheme is known as the multiple interaction process (MIP)
(Bernander et al. 1994; Kuhn et al. 2003; Yim et al. 2011).
Hence, cg; characterizes the coupling strength between the
excitatory and inhibitory inputs, while ¢ is the correlation
between excitatory or inhibitory spike trains that is respon-
sible for the amplitude of the compound PSPs and, thereby,
the distribution of membrane potential fluctuations. As a
consequence, the correlation between individual excitatory
and inhibitory spike trains amounts to c cgj.

Fluctuation-driven inputs are a mixture of a Poisson exci-
tatory synaptic input of rate rg = 2000 Hz and a Poisson
inhibitory synaptic input of rate r; = 1647 Hz that are
independent of each other. These values yield an output fir-
ing rate of around 1 Hz. If the degree of overlap between
individual PSPs is high enough, as is the case here, the input
statistics approaches that of a Gaussian white noise under
the diffusion approximation (Rice 1944). In this scenario,

spikes are mainly generated by membrane potential fluctua-
tions (Kuhn et al. 2004). This scheme explains the irregular
spiking throughout the cortex at all rates (Softky and Koch
1993; Shadlen and Newsome 1998; van Vreeswijk and
Sompolinsky 1996).

Spike-driving (SD) inputs are modeled as a set of N = 1000
correlated excitatory spike trains using MIP with big enough
¢ (in our case, ¢ = 0.05) projecting onto a neuron, such that
most input spike clusters reliably evoke an output spike. A
pair of correlated SD inputs are two correlated excitatory
MIPs, generated in the same way as correlated excitation
and inhibition using MIP as described above. Jittered input
spikes were implemented by adding a uniformly distributed
random number to the MIP inputs. The amount of jitter
to individual spikes was chosen identical for common SD
inputs to the neuron pair, in view of our model of two neigh-
boring neurons sharing some common inputs. The support
of the distribution is 30 ms, roughly fitting the observations
made in the barrel cortex (Gentet et al. 2010). The SD input
rate was tuned such that the output firing rate was around
1 Hz.

Non-spike-driving (NSD) inputs are similar to the
fluctuation-driven inputs as described above, but with a
reduced excitatory drive rg = 1400 Hz. Such an input pro-
vides a fluctuating background, but is in itself not sufficient
to evoke a spike. We used this scenario in both rate and
correlation modulation study.

In the following, we adopt the word “correlation” to
describe the between-pool correlation, i.e. the correlation
between different input pools projecting to individual neu-
rons (Rosenbaum et al. 2010; Yim et al. 2011), unless
specified otherwise. Among MIP inputs, correlation can
be defined between the constituting spike trains, which
we refer to as “within-pool correlation” (Rosenbaum et al.
2010; Yim et al. 2011).

2.3 Data analysis

Throughout this work, we characterized the correlation of
our measured quantities, which were either two membrane
potential traces or two mildly low-pass filtered spike trains,
using standard Pearson correlation coefficients. In addition,
we tested our results for a range of parameters of the neuron
model and its inputs, ascertaining ourselves that they were
qualitatively robust to parameter changes.

2.3.1 Output spike correlation
Given two spike trains, we first lowpass filtered them with

a triangular kernel of support (base length) 5 ms, and then
computed the correlation coefficient.
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2.3.2 Membrane potential correlation

Although there is no explicit spike waveform in the LIF
model, the reset after the threshold crossing does induce
a dramatic drop in the membrane potential. Inclusion of
membrane potential reset will influence the estimate of
the membrane potential correlation. Moreover, membrane
potential correlation in real neurons is often computed after
removing spikes, which is achieved either experimentally by
hyperpolarizing the recorded neuron with a direct current to
prevent it from spiking or, afterwards in the data analysis, by
cutting out the spikes and their after-effects before the cor-
relation analysis. Therefore, here, if one of the two neurons
fired a spike, the membrane potential traces of both neurons
were “cleaned” by removing 50 ms of the signal after the
positive-going threshold crossing.

3 Results

3.1 Correlated MIP inputs can describe experimental
observations

Figure 1b shows a sample membrane potential trace of the
model neuron receiving correlated excitatory and inhibitory
inputs as shown in Fig. la. Using this correlation model as
the input source, we injected a depolarizing and a hyper-
polarizing current into the model neuron, as described
in in vivo intracellular recordings in the barrel cortex of
lightly anesthetized rats (Okun and Lampl 2008; Atallah
and Scanziani 2009). IPSPs and EPSPs were revealed by
applying depolarizing and hyperpolarizing currents, respec-
tively, as illustrated in Fig. 1c. This simulation result closely
resembles the experimental observations.

Fig. 1 Scheme of the neuron model receiving correlated inputs. a A
scheme of the correlation model. Two Poisson processes with cor-
relation cg; were used as the mother processes for excitatory and
inhibitory inputs, respectively. Two ensembles of N Poisson spike
trains, each with pairwise correlation ¢, generated by the MIP (multi-
ple interacting process; see Kuhn et al. 2003) scenario, represent the
source of input to a LIF neuron with conductance-based synapses. Red,
blue and purple colors indicate excitation, inhibition and a mixture of
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3.2 Rate modulation by temporal structure of inputs

Based on our interpretations of the in vivo intracellular
recordings from somatosensory cortex (Okun and Lampl
2008), we identified the interplay of several factors which
might be employed in the neocortex or other brain regions
to modulate output firing rates. In view of the fact that
the amplitudes of compound PSPs can vary and the simul-
taneously measured EPSP and IPSP sizes exhibit a linear
relation (Okun and Lampl 2008), we assume that excitatory
and inhibitory inputs have the same degree of correlation c.
Here we studied the effect of this parameter on the output
firing rate. In our study, the spiking probability was higher
for larger c, but too high values of ¢ resulted in a “wasting”
of input spikes and, therefore, reduced firing rates. Thus, as
shown in Fig. 2a, an increase in c first leads to an increase
and then to a decrease in the output firing rate, assuming a
fixed total input strength (Bernander et al. 1994; Feng and
Brown 2000; Kuhn et al. 2003; DeWeese and Zador 2006).

In vivo intracellular recordings have revealed strong cor-
relation between excitatory and inhibitory inputs, while the
temporal order of excitatory and inhibitory synaptic events
could vary (Okun and Lampl 2008; Atallah and Scanziani
2009). Therefore, we considered in our model the effects of
relative timing for fully coupled excitation and inhibition,
that is, cg; = 1. We found that when excitation preceded
inhibition (t,x < Ttiy) by 2 ms, the neuron could fire a
spike before being inhibited. By contrast, when inhibition
preceded excitation (7., > T7;,) by 2 ms, the neuron was
suppressed and became less likely to spike upon excitation,
resulting in a lower output rate (Fig. 2b) (Sceniak and Sabo
2010; Zhou et al. 2010; Kremkow et al. 2010). Therefore,
the relative timing between the excitatory and inhibitory
synaptic events was crucial for the output rate of a neuron,
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both, respectively. b Sample membrane potential trace of the model
neuron receiving correlated excitatory and inhibitory inputs. The dot-
ted line indicates the spike threshold. The spike waveforms above
threshold were manually inserted for aesthetic reasons. ¢ Depolarizing
and hyperpolarizing currents were injected into the neuron to isolate
IPSPs (blue, upper) and EPSPs (red, lower), respectively. The response
of the simulated neurons closely resemble the in vivo recordings in
Okun and Lampl (2008)
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Fig. 2 Rate modulation by
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cgy reduced the output activity when inhibition preceded
excitation (Fig. 2d), but had only a small effect when
excitation arrived first (Okun and Lampl 2008; Kremkow
et al. 2010). This latter absence of an effect as shown in
Fig. 2c¢ is a consequence of inhibition arriving too late
to suppress the output activity when it is preceded by
correlated excitation.

The incoming compound PSPs revealed in the membrane
potential recordings had different shapes and sizes (Okun
and Lampl 2008). A temporally less sharp compound PSP
reflects loose spike timing in the presynaptic pool of neu-
rons (DeWeese and Zador 2006; Tiesinga et al. 2008). To
mimic this, we jittered the spike times of all incoming inputs
by a random value drawn from a zero-centered, uniform dis-
tribution of range w ms. When the excitation and inhibition
were not coupled, the jitter only slightly reduced the out-
put rate at small ¢ (¢ < 0.1 here), as shown in Fig. 2e.
However, if the jitter was larger than the neuron’s refractory
period, the neuron could spike more than once with strong
enough excitation, leading to a second peak for higher

(Fig. 2f). In general, the more jittered the input spikes were,
the more the evoked PSPs spread over a longer time win-
dow, rendering the neuron less likely to spike, irrespective
of the coupling strength of the two types of inputs.

3.3 Correlation modulation by temporal structure of inputs

The output correlation of a pair of neurons receiving
correlated inputs has been studied with regard to out-
put spikes (Moreno-Bote and Parga 2006; de la Rocha
et al. 2007; Shea-Brown et al. 2008; Tchumatchenko et al.
2010; Rosenbaum and Josic 2011) and membrane poten-
tials (Kriener et al. 2008; Krumin and Shoham 2009). The
typical theoretical treatment is to consider a pair of identi-
cal neurons receiving correlated Poisson inputs, as shown
in Fig. 3a. The response is illustrated in Fig. 3b. The out-
put spike correlation as measured by the Pearson correlation
coefficient is found to be strictly lower than the input cor-
relation, except for zero or full input correlation, where it
is equal (Moreno-Bote and Parga 2006; de la Rocha et al.
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Fig. 3 Output correlation of a neuron pair receiving correlated Pois-
son inputs. a Scheme of correlated Poisson inputs (both excitatory and
inhibitory) to a pair of identical neurons. b Membrane potential traces
of a pair of identical neurons receiving correlated Poisson inputs, with
correlation coefficient 0.72. ¢ Membrane potential correlation and out-
put spike correlation as a function of input correlation. The membrane

2007; Shea-Brown et al. 2008), as shown in Fig. 3c. On
the other hand, the membrane potential is simply the linear
summation of its inputs and, thus, the membrane potential
correlation is approximately equal to the input correlation.
High membrane potential correlation (Okun and Lampl
2008; Poulet and Petersen 2008; Gentet et al. 2010) but
low output spike correlation (Gentet et al. 2010) have been
observed in intracellular recordings from the somatosensory
cortex in vivo, both in awake and in lightly anesthetized
animals. This combination of properties can be accounted
for by the typical two-neuron model using correlated Pois-
son input spike trains (Fig. 3c). However, recent experi-
ments revealed that the spike-triggered average (STA) of
membrane potentials preceding spike events recorded from
neighboring excitatory neurons exhibits only a surprisingly
small deflection (see Fig. 4e in Poulet and Petersen 2008
and Fig. 6G, left, in Gentet et al. 2010). This is inconsis-
tent with the correlated Poisson input scenario: When a pair
of neurons receives correlated Poisson input, the STA of the
spiking neuron exhibits a rising phase just before the spike,
whereas the membrane potential trace of the other neuron
is also likely to display an upward deflection in the mem-
brane potential, even though it may not necessarily spike
itself. The deflection magnitude increases with increasing
input correlation (data not shown). An illustration is given
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potential correlation is always higher than the output spike correla-
tion, except at zero or full input correlation. d Spike-triggered average
membrane potential for all spikes of one neuron in the pair (black) and
the coincident membrane potential trace of the other neuron in the pair
(gray), for an input correlation of strength 0.72

in Fig. 3d where the input correlation to a pair of excita-
tory neurons is 0.72 (Poulet and Petersen 2008) during quiet
awake state. At such high input correlation, the deflection
magnitude cannot be arbitrarily small in the shared Poisson
input model. Observe that the upward deflection predicted
by the theoretical treatment based on correlated Poisson pro-
cesses is much stronger than that observed in experiments
(Poulet and Petersen 2008; Gentet et al. 2010), indicat-
ing that the commonly used correlated Poisson model fails
to describe this subtle feature in the physiological record-
ings. This experimental observation suggests that spikes are
driven by strong, cell-specific (and, hence, uncorrelated)
synaptic inputs, whereas the membrane potential fluctua-
tions are caused by common or correlated inputs.
Therefore, we argue for the separation of spike-driving
(SD) and non-spike-driving (NSD) inputs to account for
the above phenomenon. The SD inputs represent coinci-
dent synaptic events (or, alternatively, strong synapses) that
can effectively evoke a spike. These two inputs are mod-
eled here by a MIP process with big enough within-pool
correlation ¢ to evoke a spike reliably, and a low-intensity
Poisson process which mainly contributes to the membrane
potential fluctuations, respectively. A combination of shared
NSD inputs and uncorrelated SD inputs together (Fig. 4a)
gives rise to correlated subthreshold membrane potential
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Fig. 4 Output correlation of a
neuron pair receiving common
non-spike-driving (NSD) inputs.
a Scheme of common NSD
inputs (that is, NSD input
correlation is 1) and correlated
SD inputs to an identical neuron
pair. b Membrane potential
traces of the identical neuron
pair receiving the inputs shown
in (a). ¢ Membrane potential
correlation and output spike
correlation as a function of
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correlation of SD inputs.

d Spike-triggered average
membrane potential for all
spikes of one neuron in the pair
(black) and the coincident
membrane potential trace of the
other neuron in the pair (gray),
for SD input correlation 0 and
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and uncorrelated output spiking. An example with common
NSD inputs is shown in Fig. 4b. Figure 4c displays the out-
put spike and membrane potential correlations, as a function
of SD input correlation. Observe that the output spike corre-
lation increased linearly with SD input correlation, whereas
the membrane potential correlation stayed almost the same
as the NSD input correlation, which is 1. In addition, with
such an input configuration, STA membrane potentials pre-
ceding spikes (Fig. 4d) in neighboring excitatory neurons
showed a very small deflection.

The results in Fig. 4 are based on precisely timed input
spikes. Figure 5a shows the corresponding output spike cor-
relations and membrane potential correlations for uniformly
jittered input spikes of both NSD and SD inputs, using
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Fig. 5 Output correlation of a neuron pair receiving common non-
spike-driving (NSD) inputs. Similar to Fig. 4, except that the temporal
displacements of input spikes are drawn from a uniform distribution
of width 30 ms to resemble excitatory neurons in the barrel cor-
tex. a Membrane potential correlation and output spike correlation
as a function of correlation of SD inputs. The membrane potential

0.5 1 -40 =20 0

Time (ms)

a jitter window size of 30 ms. The output spike correla-
tion scaled linearly with the SD input correlation, whereas
the membrane potential correlation was generally smaller
compared to Fig. 4c, due to the jitter. At zero SD input cor-
relation, a membrane potential correlation of 0.72 could be
achieved, which is approximately the value observed during
the state of quiet wakefulness in mice (Poulet and Petersen
2008). Furthermore, the membrane potential preceding a
spike in the model neuron, shown in Fig. 5b, was consistent
with the experimental findings: the membrane potentials
preceding a spike in neighboring excitatory neurons in the
barrel cortex (Poulet and Petersen 2008; Gentet et al. 2010)
exhibited a smaller deflection of the STA than the stan-
dard Poisson model with otherwise identical parameters

T

=50

STA (mV)

-60

-40 =20 0

Time (ms)

correlation generally decreases for SD input correlation compared to
Fig. 4c because of the jitter. The membrane potential correlation is 0.72
at SD input correlation 0. b Spike-triggered average membrane poten-
tial for all spikes of one neuron in the pair (black), and the coincident
membrane potential trace of the other neuron in the pair (gray), for SD
input correlation O and NSD input correlation 1
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(Fig. 3c). Jittering the coincident input spikes contributed to
the properties of the subthreshold membrane potential pre-
ceding a spike, as well as to the increased uncertainty in
output spike timing. The superposition of common NSD and
uncorrelated SD inputs between the two neurons gave rise to
the small deflection. The amplitude of the STA at the spike
trigger (time 0) is at the threshold of the model neuron. Prior
to the trigger, the STA without jitter displays the average
membrane potential due to background inputs, whereas the
STA with jitter is additionally affected by the contribution of
the jittered spikes from SD inputs. The total amount of input
is the same in both cases. We obtained similar results as
those described above at a membrane potential correlation
of 0.33, which is approximately what is observed during the
whisking state in experiments (Poulet and Petersen 2008),
except that the upward deflection of the STA was smaller
(data not shown).

Figure 6a shows the scheme of an input configuration
commonly adopted in computational models, in which the
same SD input arrives at multiple neurons, while individual
neurons receive independent NSD inputs. In this case, the
membrane potential is weakly correlated, but the informa-
tion carried by the spikes is transmitted reliably (Fig. 6b).
One typical example of this scenario is the feedforward net-
work operating in the synfire mode (Diesmann et al. 1999;
Kumar et al. 2010). While the embedding of feedforward
networks within a recurrent network can render the back-
ground activity to be synchronous (Kumar et al. 2008),
their pairwise correlations are captured by Fig. 4c when the
output spike correlation approaches unity.

Spike and membrane potential correlations can be tuned
separately, provided the inputs comprise both SD and
NSD inputs. Such segregation of SD and NSD inputs may
well explain the correlations of excitatory neurons in the
barrel column, as presented here. SD and NSD inputs
mainly contribute to spike and membrane potential cor-
relations, respectively, if SD inputs are likely to evoke a
spike while NSD inputs are not. Figures 4c and 6¢ showed

that the membrane potential correlation depends mainly
on the NSD input correlation, but is insensitive to SD
input correlation. By contrast, spike correlation increases
linearly with SD input correlation, irrespective of whether
NSD input correlation is small (close to 0) or large
(close to 1).

4 Discussion

Response rate and correlation are fundamental descriptors
of neuronal activity widely investigated in neuronal dynam-
ics. Here, we explored the effect of input correlations on the
output firing rate of single neurons, and on the output cor-
relation of pairs of neurons, both at the level of membrane
potentials and of output spike trains.

4.1 Factors that potentially modulate firing rates

Based on the in vivo intracellular recordings in the
somatosensory cortex, we set up a minimal neuron model
and an input configuration that can capture key features of
subthreshold and suprathreshold neuronal dynamics (Okun
and Lampl 2008). Our simple point neuron model employs
its excitatory and inhibitory inputs upon current injection
in a way similar to what has been shown in experiments
(Fig. 1c). We further examined several rate modulating
factors deduced from experimental findings: the strength
of E-I coupling (Salinas and Sejnowski 2000; Wilent and
Contreras 2005; Okun and Lampl 2008), the relative tim-
ing between the E-I (Okun and Lampl 2008; Atallah and
Scanziani 2009; Cafaro and Rieke 2010), and the degree
of jitter of input spikes (Svirskis and Rinzel 2000; Moreno
et al. 2002; Okun and Lampl 2008). E-I correlation can
change in different cognitive states (Okun and Lampl 2008;
Gentet et al. 2010). The lag between excitation and inhi-
bition shows a range of values from positive to negative
(Okun and Lampl 2008; Atallah and Scanziani 2009; Cafaro
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Fig. 6 Output correlation of a neuron pair receiving independent NSD
inputs. a Scheme of independent NSD inputs and correlated SD inputs
to an identical neuron pair. b Membrane potential traces of the identical
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and Rieke 2010). Moreover, the shapes and sizes of indi-
vidual compound EPSPs and IPSPs differ, indicating that
input spikes are subject to temporal jitter. With computa-
tional modeling based on numerical simulations, we found
that the interplay of multiple potential rate modulating fac-
tors as illustrated in our study can lead to marked changes in
the firing rate of the receiving neuron. Yet, any single factor,
e.g. the relative timing of E-I inputs or the coincidence of E-
E or I-I inputs alone may be ineffective to alter the spiking
activity of a neuron.

The LIF neuron model serves as a minimal model for
many theoretical studies. Although this model cannot cap-
ture all the details of a neuron such as dendrite topology
and active conductance dynamics, our implementation of
input structure provides extended interpretations to the usual
LIF neuron model in response to correlated inputs. For
instance, when synapses are distributed over long dendritic
branches, synaptic inputs due to coincident spikes appear as
jittered inputs at the soma. The extent of jitter depends on
how widely the synapses are distributed, on dendritic mor-
phology and on the distribution of voltage-dependent ion
channels. Another example is that a neuron with differential
localization of excitatory and inhibitory synapses may inte-
grate excitatory and inhibitory inputs in different temporal
order at the soma, compared to a neuron with identical (or
largely overlapping) distributions of both synapse types, in
response to coincident inputs. The relative timing between
the E-I inputs can account for this effect.

4.2 Inference of input structure from spike and membrane
potential correlations

It has been shown with in vivo recordings in the rat
barrel cortex that the membrane potentials of excitatory
and inhibitory neurons are highly correlated (Poulet and
Petersen 2008; Gentet et al. 2010). The membrane potential
distribution in the auditory cortex is largely non-Gaussian
and inputs arrive in the form of “activity bumps” (DeWeese
and Zador 2006). These findings imply that neurons are
confronted with correlated inputs, which can be due to com-
mon sources of inputs, or to coincident inputs from different
sources. By contrast, the output spike correlation between
excitatory neurons is quite small compared to the membrane
potential correlation. Earlier studies have addressed this sce-
nario by providing correlated inputs to pairs of neurons
(Fig. 3a) (Moreno-Bote and Parga 2006; de la Rocha et al.
2007; Shea-Brown et al. 2008; Krumin and Shoham 2009;
Tchumatchenko et al. 2010). The output spike correlation
is then a specific function of the input spike correlation, as
shown in Fig. 3c. These results may apply to the correlation
between inhibitory neurons, as well as between excitatory
and inhibitory neurons, but not between excitatory neu-
rons. The reason is that in experimental recordings the STA

traces of membrane potentials preceding spike events for
neighboring excitatory neurons show a very small deflection
(Poulet and Petersen 2008; Gentet et al. 2010), in contrast
to the prediction from a shared Poisson model, as shown in
Fig. 3d.

Here we introduced the notion of spike driving (SD), and
non-spike driving (NSD) inputs. The latter only contribute
to the subthreshold membrane potential at low firing rates
(around 1 Hz) and in the absence of spike jitter, whereas
the SD input correlation transfers to the output spike corre-
lation. In the presence of spike jitter, we expect that these
relations are slightly off, for example, Fig. 5a shows that the
output membrane potential correlation drops to around 0.72
at full NSD input correlation for a spike jitter window size
of 30 ms.

We found that output spike correlation and membrane
potential correlation can be manipulated separately by SD
and NSD inputs. In response to uncorrelated SD inputs and
correlated NSD inputs, a neuron pair may display correlated
membrane potentials, but uncorrelated action potentials. In
addition, when one neuron exhibits a strong depolarization
leading to a spike, the membrane trace of another neuron is
still independent of such depolarization (Fig. 4d). A stronger
deflection is expected when the input leading to a spike is
correlated with the input to the non-spiking neuron. Our
suggestion that the SD inputs to individual excitatory neu-
rons are (nearly) independent fits the observations made in
recordings of nearby excitatory neurons in the barrel cor-
tex, and is consistent with the proposal that such spikes
are driven by large, rapid and cell-specific synaptic inputs
(Gentet et al. 2010).

Spike and membrane potential correlation can shed light
on the temporal structure of the inputs to pairs of neu-
rons. Regarding layer 2/3 of the barrel cortex, all neurons
are likely to receive relatively weak synaptic inputs from
the local network, which can be modeled as correlated
NSD inputs, resulting in correlated membrane potentials.
Inhibitory neurons are more excitable than excitatory neu-
rons, so they may spike more often in response to the local
inputs, also reflected in their spike correlation. By contrast,
excitatory neurons are driven to spike by infrequent, but
strong, cell-specific synaptic inputs, which can be modeled
as uncorrelated SD inputs. Then the next question is: where
do such SD inputs come from?

In fact, L2/3 of the barrel cortex receives feedfor-
ward inputs from L4, the thalamus, motor cortex M1 and
other higher order cortical regions (Petreanu et al. 2009).
It is conceivable that the projections could be topograph-
ically mapped such that individual L2/3 neurons receive
distinct feedforward inputs. Given that the cortical connec-
tivity is sparse (Braitenberg and Schiiz 1991; Binzegger
et al. 2004) and the spike correlation is low (Gentet et al.
2010; Ecker et al. 2010; Renart et al. 2010), it would
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seem that cortical neurons are not likely to receive
strongly correlated inputs. However, in view of the massive
number of neurons in the cortex, a connection probability
and/or spike correlation in the range of 0.01 may never-
theless result in a significant amount of coincident spikes
(Binzegger et al. 2004; Boucsein et al. 2011). Thus, low
spike correlation may be compensated by a huge pool of
presynaptic neurons.

Moreover, correlated inputs in our model can also be
interpreted as strong synapses (Song et al. 2005) or as highly
synchronized clusters of input spikes (Léger et al. 2005), as
in the synfire mode in feedforward networks (Kumar et al.
2010). That is, a few strong synapses or, alternatively, a
highly synchronous spike volley can make a receiving neu-
ron spike reliably. In fact, thalamic input that drives spiking
in the barrel cortex is likely to arise from weak but numerous
correlated inputs (Bruno and Sakmann 2006). Hence, such
strong synapses and inputs similar to synfire volleys can
both act as the SD inputs, whereas all weak synapses and
asynchronous inputs are more likely to constitute the NSD
inputs. In such a scenario, our model suggests that strong
synapses (or, alternatively, synfire volleys) in the rodent bar-
rel cortex arise from independent sources. Therefore, as we
have demonstrated, spike and membrane potential correla-
tions can provide crucial hints about the organization of the
local network when interpreted according to our scheme of
SD and NSD inputs.

Recently, Schultze-Kraft et al. (2013) examined the cor-
relation transfer when a neuron pair receives independent
Poisson inputs and shared MIP input. By contrast, we
studied two scenarios: in Fig. 4, the neuron pair received
common NSD (Poisson) inputs, with the SD (MIP) input
correlation varying between 0 and 1; in Fig. 6, the neuron
pair received independent NSD (Poisson) inputs, with the
SD (MIP) input correlation varying between 0 and 1. In par-
ticular, the setting when NSD (Poisson) input is common but
the SD (MIP) inputs are independent, as shown in Fig. 5, can
explain the STA membrane potentials of excitatory neuron
pairs observed in experiments (Poulet and Petersen 2008;
Gentet et al. 2010).

4.3 Implications of distinguishing between SD and NSD
inputs

When the input (which could be coincident spikes on mul-
tiple synapses or, alternatively, single input spikes on very
strong synapses) triggers an output spike with high probabil-
ity, we refer to it as a SD input. Otherwise, the input is called
NSD. Such classification can explain the output correla-
tion of excitatory neurons in the barrel cortex (Poulet and
Petersen 2008; Gentet et al. 2010). In this context, inhibitory
inputs are clearly NSD. Excitatory inputs which do not lead
to spiking, including those preceded by inhibitory inputs,
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preventing the neurons from responding to excitation, are
considered NSD inputs. Correlated excitatory inputs are
natural candidates for being SD input. However, we have
shown in Fig. 2 that the interaction between correlated exci-
tation and inhibition can render even correlated excitatory
inputs insufficient to elicit spikes in the postsynaptic neu-
ron. Thus, a change in the balance or the relative timing
between excitatory and inhibitory inputs can dynamically
change inputs from SD to NSD type. Interestingly, knowing
the correlations between membrane potentials and spikes
can help us delineate the nature of SD and NSD.

In addition to the possibility of explaining the difference
in STA profiles prior to spiking in neighboring excita-
tory neurons in L2/3 rodent barrel cortex, the separation
between SD and NSD inputs creates further possible sce-
narios regarding spike and membrane potential correlations,
schematically summarized in Fig. 7. The correlated Poisson
input model can only provide a limited range of these two
correlations, shaded in red. Here, spike correlation is always
smaller than or equal to membrane potential correlation,
with equality only holding for “parrot neurons” which trans-
mit every input spike into an output spike (portrayed as the
gray line along the diagonal). By contrast, the area bounded
by the dashed lines represents the regime of combinations
of spike and membrane correlations accessible by the sepa-
ration of SD and NSD inputs. Note that its spike-generating
mechanism is different from the correlated Poisson model,
therefore the correlated Poisson model is not a special case.
In particular, the scenario in which SD inputs are corre-
lated but NSD is not, is similar to the propagation of spiking
activity in feedforward networks operating in the so-called
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Fig.7 Summary of spike and membrane potential correlations for dif-
ferent input scenarios. The area bounded by the dashed lines represents
the correlation regimes accessible by the separation of SD and NSD
inputs. Further explanation in the main text (cf. Section 4)
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“synfire mode” (Kumar et al. 2008, 2010), shaded in blue in
Fig. 7.

In the context of our study, we specifically distin-
guished between SD and NSD inputs. As can be con-
cluded from Figs. 4c and 6c, the correlation of SD
inputs determines the output spike correlation, whereas
the correlation of subthreshold inputs determines the
membrane potential correlation. In reality, the distinction
between SD and NSD inputs may not be so clear-cut.
For example, coincident inputs may cause one neuron
to spike, but not the other one, and a neuron can spike
after temporal integration of sufficient NSD inputs.
Nonetheless, our approach provides new important insights
into the relation between spike correlations and membrane
potential correlations in experimental and computational
studies. To conclude, our work establishes insightful rela-
tions between the temporal structure of neuronal input and
output activity.
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