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Impact of intrinsic biophysical diversity on the activity of spiking neurons
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We study the effect of intrinsic heterogeneity on the activity of a population of leaky integrate-and-fire neurons.
By rescaling the dynamical equation, we derive mathematical relations between multiple neuronal parameters and
a fluctuating input noise. To this end, common input to heterogeneous neurons is conceived as an identical noise
with neuron-specific mean and variance. As a consequence, the neuronal output rates can differ considerably,
and their relative spike timing becomes desynchronized. This theory can quantitatively explain several recent
experimental findings.
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I. INTRODUCTION

In statistical physics, it is often assumed that individuals
are intrinsically identical. In neuroscience also, identical
parameters are typically assumed for all neurons in the study of
neuronal population activity and correlation transmission. Real
neurons, though, even if they are of the same type and located
in the same brain area, exhibit intrinsic differences. Their mor-
phologies and the intracellular concentrations of ions, to name
just two examples, can differ widely, although in principle they
have been generated by the same mechanisms [1]. As a con-
sequence, neuronal spike patterns can differ although neurons
receive identical inputs [2,3]. Recently, in vitro intracellular
recordings of isolated mitral cells in the mouse olfactory bulb
were conducted while they responded to identical input [3]
[Fig. 1(a)]. The neurons displayed diverse output firing rates
and pairwise correlations. Specifically, the spike correlation
coefficient obtained with a 1 ms observation window covaried
with the rate difference of the neuron pairs: small differences
resulted in a wide range of different spike correlations, but
large differences led always to small spike correlation.

In homogeneous network models, additional independent
Gaussian white noises or independent Poisson spikes are very
often added to every constituent identical neuron to account
for their diverse spike timing. In real brain networks, not only
the spike timing but also the spiking rate of neurons differ due
to their intrinsic biophysical diversity. Therefore, it is of great
interest to understand how the biophysical heterogeneity of a
neuronal population contributes to neural coding and informa-
tion processing in neuronal networks. Research work has been
conducted on the coding properties [4,5] and synchronous
responses [6–8] in a network of heterogeneous neurons. In
many cases, neuronal heterogeneity was implemented simply
by replacing one or more fixed neuronal parameters, such as the
offset current [6,7], the spiking threshold [5], or the synaptic
conductance [4], by a Gaussian- or uniformly distributed
random variable.

Here we investigated more fundamental questions, using
both theoretical analysis and simulations: how neuronal
heterogeneity can be represented appropriately in theory and
how it can affect the neuronal dynamics and the spiking
statistics in a population of simple leaky integrate-and-fire
(LIF) neurons. The limitations of the existing approaches are
addressed first. Then we suggest a more general scheme to
implement biophysical diversity when either rate or correlation

is of interest. By rescaling the dynamical equation, we derive
mathematical relations between multiple neuronal parameters
and the input noise. The main impact of common input to
heterogeneous neurons on rate and correlation can be realized
by an identical (frozen) noise current injection with different
values of mean and variance, whereas the complete effect is
captured by additionally drawing distributed values of the
membrane time constant and the refractory period. In this
scheme, the rate difference of heterogeneous LIF neurons
can be treated analytically. As for correlation, we utilize
alternative correlation measures to illustrate that spikes from
heterogeneous neurons may be desynchronized by several
milliseconds, thus escaping detection by a 1 ms observation
window.

II. MODEL

We consider a population of isolated leaky integrate-and-
fire (LIF) neurons, each of which has its membrane potential
V (t) governed by

τmV̇ (t) = −V (t) + RI (t), (1)

where the input synaptic current

RI (t) = τmJE

∑

j

δ(t − tj ) − τmJI

∑

k

δ(t − tk). (2)

τm = RC is the membrane time constant. R and C are the
membrane resistance and capacitance, respectively. JE (JI )
is the amplitude of an excitatory (inhibitory) postsynaptic
potential, whereas tj (tk) represents the time of the j th (kth)
excitatory (inhibitory) input spike. When V (t) passes the
threshold θ , a spike is elicited, V (t) is reset to Vr and a pause
for synaptic integration τr is imposed to mimic the refractory
period. In the high-input regime, the sum of synaptic inputs to a
neuron can be approximated by a fluctuating input noise [9,10]

I (t) ≡ τm[µ + ση(t)], (3)

where

µ = JEνE − JIνI , (4)

σ =
√

J 2
EνE + J 2

I νI . (5)

η(t) is a white noise random process such that 〈η(t)η(t ′)〉 =
δ(t − t ′). νE (νI ) is the firing rate of the excitatory (inhibitory)
input.
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FIG. 1. (Color online) (a) Correlation coefficient (1 ms window)
of 589 spike trains from mitral cells in vitro receiving an identical
input as a function of rate difference, adapted with permission from
[3]. (b) The same measure for 100 simulated heterogeneous LIF
neurons using uniformly distributed τm, τr , C, and θ with different
distribution widths (cf. inset legend).

The numerical integration of Eq. (1) in our simulations was
performed using the fourth-order Runge-Kutta method with a
time step of 0.01 ms.

III. HETEROGENEITY

Intrinsic diversity of a population of neurons can be directly
imposed by drawing neuronal parameters from a distribution.
Here, we tested the response of 100 isolated heterogeneous LIF
neurons to an identical fluctuating input current in the form of
Eq. (3). Neuronal heterogeneity is implemented by drawing
four uniformly distributed parameters: τm, τr , C (or R), and
θ , which, together with Vr , represent all the independent
parameters of a LIF neuron in response to a current input.
The mean values of the uniform distribution are 20 ms, 2 ms,
1, and 1 (in arbitrary units), respectively, and Vr is fixed to 0.
These values are used throughout this work. We maintain the
temporal scale of the dynamics of a typical neuron and rescale
the potential by setting the mean reset to zero and the mean
threshold to 1. The correlation coefficient as a function of the

output firing rate difference of all possible pairs with different
distribution widths (percentage with respect to the mean) from
100 s of simulations [an example with µ = 0.03 and σ = 0.3
shown in Fig. 1(b)] highly resemble the experimental findings
in [3] [Fig. 1(a)].

Diverse neuronal spike timing in a network has very
often been achieved by adding independent random inputs to
individual neurons. We provide every identical neuron with
a common input as the input signal, plus an independent
input with the same statistics among neurons, in the form
of µ + σ [

√
cη(t) +

√
1 − cξi(t)] where η(t) and ξi(t) are

independent Gaussian white noises. Figure 2(a) displays the
raster and the correlation coefficient as functions of the rate
difference for µ = 0.06, σ = 0.2, and c = 0.9. The rate
difference is close to zero and the correlation coefficient
between any pair is nearly the same [11]. Decreasing c leads
to a drop in spike correlation but has no effect on the rate
difference. These observations are very distinct from both the
experimental [Fig. 1(a)] and simulation [Fig. 1(b)] results. In
view of some previous work on the reliability of single neurons
in response to a repeated input [2,3,12], this implementation
may be adopted to account for trial-to-trial variability of a
neuron.

It is common practice to implement heterogeneity of
neurons by drawing random variables for a single neuronal
parameter. To test its validity, we provide every identical
neuron with a common input plus a random value of the spiking
threshold drawn from a uniform distribution θ ∈ [0.5,1.5].
Figure 2(b) displays the raster and the correlation coefficient
as functions of the rate difference. Another example with
distributed values of the input offset current µ instead of θ
is shown in Fig. 3(a). In either case, neurons exhibit dispersive
firing rates. However, the spike correlation distribution at
different values of rate difference is too narrow compared
with Figs. 1(a) and 1(b), and the region of small rate
difference and small spike correlation cannot be reached.
Thus, the impact of neuronal heterogeneity is only partially

(c)(a) (b)

FIG. 2. Raster plot, peri-stimulus time histogram (PSTH), and correlation coefficient as functions of rate difference for the following
inputs into 100 LIF neurons: (a) µ + σ [

√
cη(t) +

√
1 − cξi(t)] (c = 0.9); (b) identical input µ + ση(t) but distributed θi ; (c) our scheme using

µi + σiη(t) together with distributed τm and τr , consistent with both the experimental findings [3] and the mathematical analysis. The subscript
i denotes “independent.”
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(b)

FIG. 3. (Color online) Correlation coefficient as a function of
rate difference when neurons receive identical noise with uniformly
distributed (a) µ, (b) σ , (c) τm, and (d) τr separately.

accounted for. We describe our alternative approach in the next
section.

IV. MATHEMATICAL RELATIONS

In addition to the five parameters mentioned above, two
additional parameters correspond to synaptic inputs: JE and
JI . We analyze the contribution of the heterogeneity in the
seven independent neuronal parameters in a population of LIF
neurons in the high-input regime.

Regarding synaptic inputs, heterogeneity in the parameters
JE and JI can be captured by heterogeneity in µ and σ ,
according to Eqs. (4) and (5). For example, if JE is uniformly
distributed, µ is also uniformly distributed, whereas σ 2 is
distributed as the square of a uniformly distributed variable.

The other five parameters are present in the neuronal
dynamics irrespective of the type of inputs (current or spikes).
First, R (or C, depending on the form of writing) can be ab-
sorbed into I (t) as shown in Eq. (1) so any distribution of R can
be accounted for by a corresponding distribution of µ and σ .

The difference between θ and Vr , which is the potential
difference a neuron has to traverse to spike, is a quantity
relative to the synaptic strengths JE and JI . For instance,
lifting θ , or lowering Vr , is equivalent to reducing JE and
JI together by the same ratio. Thus, heterogeneity in θ and Vr

can be included in µ and σ by means of rescaling.
Unlike the above five parameters related to the potential, the

remaining two parameters shaping the neuronal response in the

temporal scale, τm and τr , cannot be rescaled or captured by µ
and σ . Their distributions among neurons have to be accounted
for separately. Therefore, in the high-input regime when the
approximation of a fluctuating input noise is valid, the seven
independent neuronal parameters (and their distributions) can
be reduced to four: µ, σ , τm, and τr . Based on this analysis,
we suggest using distributed values of these four parameters
together with an identical noise η(t) to account for the effects
of all the parameters in a population of LIF neurons receiving
identical inputs. This is in contrast to the common practice of
using independent noises as shown in Fig. 2(a). We draw the
parameters from uniform distributions µ ∈ [0.015,0.105], σ ∈
[0.1,0.3], τm ∈ [16,24] ms, and τr ∈ [1.5,2.5] ms. In Fig. 2(c),
both the rate difference and the correlation coefficient, as well
as their relation, are consistent with the experimental and our
simulation results.

The respective contributions of the four parameters are
investigated. Figure 3 shows the correlation as a function of
rate difference for µ, σ , τm, and τr separately. Each realization
is drawn from a uniform distribution of 10%, 20%, and 50%
around their mean values, which are 0.06, 0.2, 20 ms, and
2 ms, respectively. The firing rate of a neuron is largely shaped
by µ, whereas the distributed values of the variance give
rise to different degrees of imprecise spiking. The wider the
distribution of τm and τr , the larger the rate difference and the
lower the correlation. When τr ( 1/ν, the effect of τr is small.

V. RATE DIFFERENCE

The firing rate of a LIF neuron receiving a Gaussian-
distributed noise is known analytically [13,14]:

1
ν

= τr + τm

√
π

∫ θ−µτm
σ
√
τm

Vr −µτm
σ
√
τm

du eu2
[1 + erf(u)] when σ > 0

(6)
1
ν

= τr − τm ln
(

1 − θ

µτm

)
when σ = 0.

Only the six parameters µ, σ , τm, τr , θ , and Vr influence
the firing rates, of which only the first four are independent.
Changing any of them can result in a rate difference as shown
in Fig. 4, and this explains the wide distribution of firing rates
in a heterogeneous neuronal population.

VI. IMPRECISE SPIKING

The raster plot in Fig. 2(c) shows population synchrony
with spike-time jitter. Low average correlation coefficients
in a population of neurons do not necessarily imply an

(c)(a) (b)

FIG. 4. (Color online) Output rate as a function of (a) µ, (b) σ , and (c) τm from theory (black) and simulation (colored).
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(a) (b) (c)

FIG. 5. (Color online) (a) Correlation coefficient as a function of window size (colored lines indicate five examples; the black thick line
indicates the average over all pairs). (b) Cross correlation. Positive correlation at negative τ indicates that the higher-rate neuron is leading.
(c) κ , which takes jittered spikes into account, as a function of rate difference.

asynchronous state of the population. Removing spikes from
one of the two identical spike trains can also reduce the
correlation coefficient significantly. When we compute the
correlation coefficient in our data with a larger bin size, larger
values for the correlation coefficient are obtained, as shown in
Fig. 5(a). This is because some spikes become “coincident”
only for larger bin sizes. The output spike trains behave like
jittered spikes as discussed in earlier theoretical studies [15].
Whether the decorrelation due to neuronal heterogeneity is
significant depends critically on the bin size, or the integration
window of the neurons receiving such inputs.

In view of a significant number of spikes jittering outside a
1 ms bin, we look into the cross-correlation function

rxy(τ ) = cxy(τ )
σxσy

= 〈x(t)y(t + τ )〉 − 〈x(t)〉〈y(t)〉
σxσy

, (7)

where x(t) and y(t) denote two output spike trains in discrete
time, consisting of 0 and 1 with bin size of 0.1 ms. x(t)
is assigned to be the spike train with lower spike count.
cxy(τ ) is the covariance function and σx and σy denote the
standard deviation of the two spike trains, considered as
discrete signals. Figure 5(b) shows that the mean rxy(τ ) over
all pairs is positive in a small neighborhood of τ , indicating a
higher than chance level to observe spikes. Spikes are jittered,
instead of asynchronous. In addition, rxy(τ ) is asymmetric,
and its area is skewed towards negative τ , indicating that the
higher-firing-rate neuron is more likely to lead in terms of
spiking [16,17].

We further look at the normalized total cross covariance
κ [15,18]

κ =
∫ ∞
−∞ dτcxy(τ )

√∫ ∞
−∞ dτcxx(τ )

∫ ∞
−∞ dτ ′cyy(τ ′)

, (8)

which is an overall measure for the fraction of the spikes that
are correlated above chance level. Figure 5(c) shows that κ
is quite close to unity and has a weak dependence on the
rate difference. This indicates that spikes would not be judged
decorrelated when a larger time window is considered.

VII. DISCUSSION

We remark that the plots of the correlation coefficient as
a function of rate difference from our simulations [such as
Figs. 1(b) and 2(c)] can fit the experimental results in [3]
more satisfactorily by introducing a random delay of up to

1 ms to every incoming input spike. The spike correlation
distribution then becomes broader, and the regime of low
correlated output at small rate differences can also be reached
(data not shown). This effect could be due to some (unknown)
biological mechanism not captured in a simple LIF neuron
model.

We emphasize that common input into heterogeneous
neurons is better realized by a shared noise with distributed
mean and variance and, more completely, with additionally
distributed values of the membrane time constant and the
refractory period. This insight is based on both the mathe-
matical analysis presented here and the in vitro experimental
findings [3]. As far as firing rates and spike correlations are
concerned, the distributions of mean and variance of the input
account for most of the experimental observations. Diversity
of τm and τr has a smaller effect on the quantities in question;
nevertheless, including them can account for the full degree of
heterogeneity.

In the raster plot of a neuronal population with similar
rate differences and spike correlations, synchrony is obvious,
although spike times are not precise. Spikes, if present, are
jittered in the millisecond range, which cannot be captured
by the 1 ms temporal window used for analysis. This is why
using larger bins leads to larger values for spike correlation.
We emphasize that neuronal heterogeneity alone does impose
an appreciable decorrelation effect on the population activity.
However, whether decorrelation is functionally significant
depends on the readout of the downstream neurons. On top
of that, a network of heterogeneous neurons may give rise to
richer network dynamics. It remains to be explored whether
such intrinsic heterogeneity can facilitate other decorrelation
mechanisms to increase the amount of information flow
[3,19,20]. Given the significant reduction in spike correlation
among heterogeneous neurons, research concerning corre-
lation transmission must take neuronal heterogeneities into
account.
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