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Abstract

Various movement parameters of grasping movements, like velocity or type of the grasp, have been successfully decoded
from neural activity. However, the question of movement event detection from brain activity, that is, decoding the time at
which an event occurred (e.g. movement onset), has been addressed less often. Yet, this may be a topic of key importance,
as a brain-machine interface (BMI) that controls a grasping prosthesis could be realized by detecting the time of grasp,
together with an optional decoding of which type of grasp to apply. We, therefore, studied the detection of time of grasps
from human ECoG recordings during a sequence of natural and continuous reach-to-grasp movements. Using signals
recorded from the motor cortex, a detector based on regularized linear discriminant analysis was able to retrieve the time-
point of grasp with high reliability and only few false detections. Best performance was achieved using a combination of
signal components from time and frequency domains. Sensitivity, measured by the amount of correct detections, and
specificity, represented by the amount of false detections, depended strongly on the imposed restrictions on temporal
precision of detection and on the delay between event detection and the time the event occurred. Including neural data
from after the event into the decoding analysis, slightly increased accuracy, however, reasonable performance could also be
obtained when grasping events were detected 125 ms in advance. In summary, our results provide a good basis for using
detection of grasping movements from ECoG to control a grasping prosthesis.
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Introduction

Brain-machine interfaces (BMI) aim to restore movement and
communication abilities of paralysed patients. To this end,
movement intentions are read out from brain activity and
translated into actions of external actuators. For such devices,
movement decoding from neural activity can be carried out
continuously over time, for example by continuously decoding the
intended state of the effector (e.g., position and velocity of hand
and arm joints) at each point in time and translating the decoded
state into corresponding movements of a prosthesis. Such a
decoding scheme was applied e.g., by Velliste and colleagues [1] to
let monkeys continuously control the opening and closing of a
gripper. However, to implement different grasp modes, the
number of involved hand joints increases, requiring simultaneous
and continuous control of a high number of degrees of freedom.
An alternative BMI control scheme is to decode a discrete set of
movement classes, e.g. different kinds of natural grasps. This,
however, requires the additional detection of the time of the
movement event, that is, the time at which the grasp should be
applied.
While classification of different movement types has been

extensively studied in primates and humans [2], the question of

movement event detection from neuronal activity was addressed
less often. Some previous studies on event detection dealt with the
detection of the onset of reaching movements [3,4] or the onset of
hand/wrist extensions [5,6], using a variety of detection methods,
signal features and recording techniques: Hwang and Andersen
[3] detected the onset of monkeys’ reaching movements from the
difference of the temporal derivatives of 20–40 Hz and 0–10 Hz
power of the local-field potential, using a thresholding mechanism.
Studies on humans used different classification algorithms on
spectral features of the EEG to detect hand extensions [5,6]. The
frequency of the used spectral frequencies varied widely: Awwad
Shiekh Hasan and Gan [6] modelled spectral EEG features in the
range of 8–45 Hz with a mixture of Gaussians, whereas Bashashati
and colleagues [5] used spectral power in bands between 1 and
25 Hz for linear discriminant analysis. The latter also tested a
nearest neighbour classifier on low-pass filtered EEG. Another
approach was applied by Levine and colleagues [4] who based
detection of various movements and vocalizations on the cross-
correlation of recordings of the human electrocorticogram (ECoG)
with average evoked potentials for the various events.
Movement events of interest may also be embedded within a

larger sequence of sub-movements, without pronounced pauses,
disqualifying detection of a general onset of movements. For
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example, this is the case when the time of grasping should be
detected during natural, continuous reach-to-grasp movements. So
far, little is known about such detection of grasping movements
from brain activity.
We created a movement paradigm in which grasping move-

ments are occurring during a sequence of self-paced and largely
self-chosen movements. We previously showed that different
modes of grasping can be reliably decoded from human ECoG
under these conditions [7]. Here, we demonstrate that the time of
the grasping movements can also be detected from the same data.
We quantify the precision of detection as a function of various
parameters and show that reasonable precision can be obtained
for real-time applications where movement events need to be
predicted before, or detected while they are produced.

Methods

Subjects
Three subjects, who will be referred to as S1, S2 and S3,

participated in our study. Subjects had a number of ECoG
electrodes subdurally implanted for presurgical epilepsy diagnos-
tics. All three subjects were female and 14 to 16 years of age.
Information about implantation sites and pathology can be found
in table 1. The study was approved by the University Clinic’s
ethics committee and was conducted only after subjects and their
parents (since subjects were under-age) had given their informed
written consent.

Experimental Task
We created a task, in which grasping movements were part of

longer natural reach-to-grasp movements. The movement para-
digm is outlined in figure 1a. Reaching movements were self-
initiated by the subject by reaching from a marked resting position
to a cup, placed at one of four locations, arranged in a semi-circle
around the resting position and drawn on a flat table in front of the
subject. Without explicit halt, the cup was lifted and carried to one
of the other marked positions, where it was released. After that
subjects moved their hand back to the resting position. Several
factors increased the variability of grasping movements:
The starting position of the cup changed in every trial, being the

position it was carried to in the previous trial.
The cup could be grasped in two different ways: with a precision

grip at the handle or a whole-hand grip around the cup. Subjects
were asked to choose either of the two grasp types with equal
probability in each trial.

After each block of 15 to 16 trials, the cup alternated between
an empty, light-weight version (68 g) and a heavier version (340 g),
with some weights fixed to the bottom of the cup.
These factors ensured a large amount of variability of grasping

events, making detection a non-trivial undertaking.
Due to the self-paced nature of the task, the time of the grasping

event in each single trial had to be subsequently identified from the
behavioural data. ‘Time of grasp’ here relates to the moment in
time when the grip was tightened, shortly before lifting the cup.
The transitions between movement components were smooth,
without pronounced separation. The time of grasp could be
defined with a precision estimated to about 60 ms.
For S1 and S3, we used recordings of wrist position, obtained

synchronously to the neural data using an ultrasound tracking
system (Zebris, Isny, Germany). The time of grasp was marked by
a local minimum in hand speed (figure 1b) and by a simultaneous
minimum in hand elevation over the table and a turning point in
the trajectory parallel to the surface. For S2, the recordings of wrist
position could not adequately be synchronized to the neural
recordings. We therefore used video recordings of the subject,
acquired synchronously and routinely in the course of clinical
observation. Similar criteria as for S1 and S3 were applied to
define the time of a grasping event, but based on a frame-by-frame
video analysis. With video frames recorded every 40 ms, and an
ambiguity of about one frame (earlier or later) for the identification
of these events, the imprecision of grasping events was estimated to
be about 60 ms and, therefore, similar to the temporal precision
estimated for event times derived from wrist position recordings.
Table 2 gives an overview over number of grasps and analysed

time for each subject.

Neural Recordings
Subjects were implanted with stainless steel electrodes (Ad-

Tech, Racine, Wisconsin, USA) of 4 mm diameter, covered in
sheets of silicone, arranged in regular grids with 10 mm inter-
electrode distance. Electrode arrays were implanted subdurally
over the lateral convexity of subjects’ cortices, partly covering
precentral motor cortex. The choice of electrode implantation sites
was exclusively based on clinical requirements, unrelated to the
experiment.
The electrocorticogram (ECoG) was recorded using a clinical

EEG-System (IT-Med, Germany), and sampled at a rate of
256 Hz (S1, S2) or 1024 Hz (S3). A digital video recording (25 Hz
frame rate), synchronized to the ECoG, was additionally acquired
for all subjects.

Table 1. Subject information.

S1 S2 S3

age 14 years 16 years 15 years

handedness right right right

pathology right frontal FCD FCD in right superior frontal gyrus/right
cingulated gyrus

right frontal FCD

implanted electrodes fronto-parietal 868 grid; 3 lateral prefrontal
stripes (166); 1 anterior cingulated depth
electrode (10 contacts); 1 medial fronto-polar
depth electrode (10 contacts); all electrodes
on the right

fronto-parietal 668 grid; 3 interhemispheric
stripes (164); all electrodes on the left

right fronto-parietal 868 grid

seizure onset zone right medial and lateral prefrontal left interhemispheric right premotor

All subjects were female and had ECoG electrodes subdurally implanted for pre-neurosurgical diagnosis. FCD: focal cortical dysplasia.
doi:10.1371/journal.pone.0054658.t001
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Figure 1. Experimental paradigm. A: Task layout. The subject’s hand was resting palm down (1) on a central spot, marked by the grey hand
pictograph. A reaching movement (2) was initiated by the subject (self-paced) and a cup was grasped (3) at one of four marked positions (circles) and
carried (4) to one of the remaining three positions (self-chosen). There, the cup was released (5) and the hand returned (6) to the central resting
position. Grasps of the object varied with respect to the applied grasp type (precision or whole-hand grip, self-chosen in every trial) and object
weight (switched between two cups every 15–16 trials), pictured in the upper right inset. B: Sample profile of hand velocity during one trial. Actions
labeled by numbers in (a) are marked at their respective times. C: Electrode implantations in all three subjects. The position of the central sulcus and
the lateral sulcus (S3 only) relative to the electrodes are shown by black lines. Electrode contacts of hand-arm motor cortex are marked by a black
circle with a black dot in the center.
doi:10.1371/journal.pone.0054658.g001

Table 2. Amount of analysed data.

number of grasps median inter-grasp time total time analysed non-movement time

S1 303 in 20 blocks 5.2 s 1919 s ( = 32.0 min) 657 s

S2 338 in 21 blocks 5.3 s 2119 s ( = 35.3 min) 989 s

S3 320 in 20 blocks 4.6 s 1522 s ( = 25.4 min) 401 s

Compound movements, including gripping and carrying a cup, were self-paced, with short resting periods between trials, and between blocks of trials to allow
alternating between a light-weight and a heavier cup. Subjects decided for either a precision or a whole-hand grip on a trial-to-trial basis. The total time analysed also
included non-movement time between trials.
doi:10.1371/journal.pone.0054658.t002
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Electrical stimulation was performed through the electrode grid.
All sites with arm or hand motor responses were, in all subjects,
located outside the ictal onset zone.
In each subject, a structural MRI data set with full head

coverage was acquired, both before and after electrode implan-
tation. Motor cortices were identified according to anatomical
landmarks [8–10]. The positions of the central and lateral sulci
relative to the electrode positions were determined from the post-
implant MRI.
Electrode contacts residing over hand-arm motor cortex were

identified by two conditions, which both needed to be met: (i) their
precentral anatomical location, and (ii) by hand or arm
movements evoked upon electrical stimulation through these
electrodes. Figure 1c highlights these locations by a black outline
and a dot. As a likely target area for BMI applications, all analyses
presented here were performed exclusively on signals recorded
from this cortical area.

Data Processing
General treatment of data. Prior to any further processing,

data recorded by the clinical EEG system was re-referenced to a
common average reference. For each recorded channel, the
average voltage over the entire recording time was subtracted to
eliminate any possible offset of the signals. To account for
systematic differences in amplitudes across channels, which would
prevent direct comparison between channels, signals of each
channel were also divided by their respective standard deviation
over time.
Our main analysis was aimed to detect events within continuous

stretches of ECoG data. Some longer pauses between trial blocks
were introduced when subjects needed to rest or readjust their
position or some other interruption to the experiment occurred.
During this time subject behaviour, which may or may not have
included instances of grasping movements, could not be accurately
controlled or protocolled, precluding evaluation of potential
detections. Therefore, we restricted analysis to continuous periods
within blocks of trials and some shorter breaks in-between. Periods
of data that were temporally separated from grasping events
further than 4 times the median inter-grasp interval (about 20
seconds) were excluded from analysis. This procedure further
ensured that the proportion of movement to non-movement times
was comparable between subjects. The length of data analysed
from each subject can be found in table 2, part of which was spent
without overt hand movement, in-between trials (last column of
table 2).

Low-pass filtering. We used a causal version of a 2nd order
Savitzky-Golay-filter of 250 ms length to smooth recorded ECoG
signals. This corresponds to a low-pass filter with an approximate
3-dB-cutoff frequency at 6.7-Hz. We termed the resulting signal
the low-pass filtered component (LFC). Two examples of trial-
averaged LFC from each subject, aligned on the time of grasp, are
shown in the bottom row of figure 2. Example channels were
chosen from the hand-arm motor area, marked in figure 1c.
Low-pass filtered EEG, MEG, ECoG and LFPs have already

been used successfully to determine movement directions [11–14]
and trajectories of continuous hand-arm movements [11,15,16].

Frequency band amplitudes. In addition to low-pass
filtering, we also extracted modulations of amplitudes within
consecutive bands of 4 Hz width, from 0 to 128 Hz. This was
done by band-pass filtering, rectification of the filtered signal and
subsequent low-pass filtering, using the same low-pass filter,
described above. We chose this method because it can easily be
implemented in a causal way and accurately synchronized to the
LFC. For band-pass filtering, we chose a 4th order elliptic digital

filter design [17] for its steep roll-off characteristics and because it
introduces only small temporal shifts due to phase distortions in
the filtering process. The amplitudes of each 4 Hz band were
normalized by the average amplitude of this band over the whole
recording time. This normalization prevents frequency bands with
overall weaker signal power, especially high-frequency bands, from
being under-represented when averaging amplitudes over broad
frequency ranges [12]. Trial-averaged amplitudes, in time and
frequency, are shown in the upper row of figure 2, presenting two
exemplary hand-arm motor channels per subject.
Amplitudes of different frequency bands are often used to infer

motor behaviour from neural activity recordings, such as LFP,
ECoG or EEG e.g., [12–15,18]. If amplitudes are consistently
modulated over broader frequency bands, averaging over these
bands can significantly improve signal-to-noise ratio, compared to
that of narrower frequency bands.

Event Detection
We distinguished between two classes: ‘event’ (occurrence of a

grasp) and ‘non-event’ (no grasp). The feature vector x contained
signal features extracted from the neural recordings, that is,
voltage values or amplitude envelope values of different frequency
bands obtained from different ECoG recording sites at a given
time, attributed to either event or non-event class (see paragraph
‘Construction of feature vectors’ below for details).

Regularized linear discriminant analysis. We employed
regularized linear discriminant analysis [19] to decide whether or
not an event occurred at a specific time. Starting from Bayes’
theorem, the posterior probability P(Ci|x) for class Ci, given
observation x, is given by

P Ci Dxð Þ~P xDCið ÞP Cið Þ
P xð Þ

where P(x|Ci), called the likelihood, is the conditional probability
of x, given class Ci, P(Ci) the prior probability of class Ci, and P(x)
the prior probability of observation x. Prior probabilities P(Ci) of all
occurring classes can be estimated from training data with known
class assignments. Estimation of the conditional probabilities
P(x|Ci) is based on an approximation of the distribution of
observations x for each class Ci by a (multi-variate) N-dimensional
Gaussian distribution. In linear discriminant analysis (LDA), it is,
additionally, assumed that all class distributions have the same
covariance matrix S and only differ in their means. Class-
dependent means and the common covariance matrix were also
estimated from training data. Finally, P(x) can be computed asP
i
P xDCið ÞP Cið Þ.

Since a maximum likelihood estimate of the covariance S based
on a limited amount of training data can easily lead to overfitting
in a high-dimensional feature space, we used regularized LDA.
This imposes additional restrictions on the covariance matrix, by
interpolating between the maximum likelihood estimate of the
covariance matrix S and the scalar covariance [19]:

ŜS(l)~(1{l)Sz
l

N
tr(S)I

Here, I denotes the identity matrix and tr(S) the trace of S. The
degree of interpolation is specified by the regularization parameter

l, used to obtain the regularized covariance ŜS(l). A value of l=0
corresponds to a non-regularized linear discriminant analysis,
whereas l=1 assumes spherical Gaussian distributions. We used

Grasp Detection from Human ECoG

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e54658



values of l from a set of [0.0001, 0.001, 0.01, 0.1, 0.5, 1],
optimized on the respective training sets (see section ‘Evaluation of
detections’).

Construction of feature vectors. Decoding is based on a
neuronal feature vector. The selection of neuronal features can
be tailored in several ways. One important choice is which
signal components to use. Another question is, at which time
related to the decoded property, in our case the grasping event
time, features should be extracted from the neuronal signals.
Here, we call this latter property the delay, which is a free
parameter in our analysis. A negative delay corresponds to a
time prior to the event, a positive delay to a time after the event.
The choice of the delay is constrained by the time at which the
detection should be available: If it is sufficient to learn about
detection after the actual event, signals occurring after the event
might still be taken into account. Post-event signals can be
informative, since post-event neural processing and behaviour
could still be related to the initial event (e.g., holding a cup is
related to previous grasping). If, however, the detection should
be known before the event i.e., if a prediction of a future event
is required, only negative delays should be allowed.
It can also be beneficial to enlarge the feature space by using

neuronal features from multiple time points. For simplification,
features can be collected at fixed intervals throughout an epoch of
exploited signal history, sampled such that most information from
the signals is retained. Since all signal components, used here, were
low-pass filtered (see above) and, therefore, had most of their
power below 8 Hz, we restricted ourselves to 16 time points per
second of signal history. For example, when using a signal history
of one second, the feature vector for time t included 17 samples of
each channel, including a sample from t - delay and 16 samples
from earlier times, with the earliest sample recorded at t - delay -
1 s. To use the signals from multiple channels, the feature vectors
of all channels were concatenated. The length of a feature vector,
using one signal component, thus depends on the length of the
signal history Thist and the number of included ECoG channels,

and can be calculated as Thist|16s{1z1
! "

|nch. We created

such a vector for each analysed time step.
To fit the mean and covariance of the event class to a subset of

the available recordings (training set), feature vectors were
extracted from the training data at every event time contained
therein. For the non-event class training set, however, we did not
simply use all remaining time points, as this could lead to several
problems: First, the batch of non-event training data would grow
exceedingly large, making it computationally costly. Moreover,
due to autocorrelations in the signals, neighbouring samples are
mutually dependent. This would introduce redundancy and, in
addition, make non-event samples close to grasp times very similar
to event samples, leading to weaker separation of the two classes,
that is, a greater overlap of class distributions. To avoid these
issues, we excluded times closer than 300 ms to the next event
from the training set and restricted the number of non-event
samples to 16 times the number of event samples in the
corresponding subset of data. These non-event-samples were
gathered from times evenly distributed over the remaining part of
the training data. In the test data, used for subsequent event
detection, however, no such selection was made.

Determination of detected times. We calculated the
posterior probability P(event|x) to observe an event, given the
measured signals, every 15.625 ms i.e., 64 times per second.
P(event|x) larger than 0.5 signified that an event should be
considered more probable than no event. However, since the
signal components used in the feature vector x were autocorrelated
on short time scales, a whole set of time points around the actual
time of the event yielded high posterior probabilities (figure 3). The
threshold required to trigger a detection was set to P(event|x).0.95.
Peaks in the posterior probability of the event class were usually
quite distinct from periods with no event, and quite broad in time,
as exemplified in figure 3. In theory, the most likely one in a set of
consecutive time points with high P(event|x) i.e., the peak time of
the posterior probability, could be used. However, such maxima
can only be registered retrospectively, when data after the peak

Figure 2. Event-related signals. Signal components of the ECoG recorded from two example electrodes over hand-arm motor cortex of each
subject. Top row: Average spectrograms, aligned on the time of grasp. Spectrograms were computed by (causal) band-pass filtering in successive
bands of 4 Hz width and subsequent rectification and smoothing with a (causal) Savitzky-Golay filter. Estimated amplitude modulations were
normalized by the average amplitude, per frequency bin and channel, over the entire recording. Bottom row: Trial-averaged low-pass filtered ECoG
signals (causal Savitzky-Golay filter), aligned on the time of grasp. Gray bands around the black traces of average potentials depict three times
standard error of the mean (SEM) in positive and negative direction.
doi:10.1371/journal.pone.0054658.g002
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have already been recorded and analysed. To develop an
approximation of this strategy which is still compatible with real-
time usage, we considered the following:

1) Two grasping events are not likely to take place in rapid
succession. From the training data, we could infer an estimate
of the minimal interval between consecutive grasping events.
In our analysis we, therefore, introduced a refractory period
by assuming that the time between two successive grasps is
always larger than 1.5 seconds. This is a conservative
estimate, since the shortest intervals encountered between
any two grasps were 3.6, 4.1 and 2.1 seconds for subjects S1,
S2 and S3, respectively. Therefore, once an event was
detected, we could safely discard potential detection times
within the following 1.5 second interval.

2) If detections are delivered tadvance before the time they are
required (determined by the delay), the output of the detection
algorithm can be delayed over this time. This time interval
can be used to wait for even more likely detections i.e., data
frames yielding a higher posterior probability for an event. If
a higher posterior probability is found within this interval
tadvance, the detection can be shifted forward accordingly. This
rule can be applied recursively until no higher values are
found within tadvance. We therefore always based detections on
signals, picked from times at 3 evaluation steps before the
given delay (tadvance=3/64 s).

By following the reasoning in (2), detection times were advanced
towards a maximum in posterior probability. This drastically
reduced – but, on average, not completely eliminated – a bias of
detections being made too early. Applying a refractory period of
1.5 s, for reasons described in (1), ensured that only one detection
was delivered during a period of likely detection.

Evaluation of Detections
Sensitivity, specificity and precision measures. The

quality of event detection is determined by the numbers of true
positives NTP – events that were correctly detected – and the
numbers of false positives NFP – detections that occurred despite
the absence of an event. The number of false negatives – events
missed by the detector – can simply be calculated as the difference
between the total number of events Nevents and the number of true
positives NTP. To compare these measures across different data
sets, we defined the true positive ratio (TPR) as the fraction of true

positives among all real events Nevents. This measure reflects the
sensitivity of detection. Additionally, we defined a measure of
specificity, the false positive ratio (FPR), as the fraction of false
positives among all detections Ndet. This should not be confused
with the false positive rate, which gives an estimate of how many
false responses should be expected per unit time. Both measures,
TPR and FPR, are bounded between 0 and 1 and have previously
been used in this form to evaluate movement detections [4].

TPR~
NTP

Nevents

FPR~
NFP

Ndet

To decide, whether an event was correctly detected, a certain
tolerance t of how much the time of the detection was allowed to
deviate from the correct time, has to be defined. TPR and FPR are
therefore a function of this tolerance t. Fixing t to a defined
interval, thus, introduces an implicit measure of temporal
precision.
In addition to the above analysis, using a pre-specified

tolerance, we determined the temporal error of (potentially)
correct detections, by considering for each single event the
respective closest detection and measuring its temporal distance to
the event. If more than one event referenced one specific
detection, only the distance to the closest event was considered
(leaving some events undetected). Thereby, we obtained an
overview over achievable precision. We summarized this temporal
precision into a single variable, termed temporal deviation (TD) by
means of the root mean squared error:

TD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
DE2

i

n

s

Here, DEi denotes the detection error, defined as the difference
between the time of the ith detection and that of the corresponding
event. If the average detection error were zero, TD would be
identical to the standard deviation, but is larger in the presence of
a systematic temporal bias of detections.

Figure 3. Illustration of the detection process. Example trace of the posterior probability P(grasp|LFC(t)) for a grasping event, given the LFC of
the ECoG at time t. Vertical dashed lines mark the actual event times. Times with a posterior probability .0.95 (horizontal, dotted line) are potential
detections. The corresponding time interval around one detection is shown as a grey shaded area in the enlarged section on the right. Final detection
time is marked by a grey arrow. See Methods, section ‘Event detection’, for details of the detection algorithm.
doi:10.1371/journal.pone.0054658.g003
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Baseline detection performance: random predictor. We
contrasted the yielded detection accuracy against the null
hypothesis that no specific information was extracted from ECoG
recordings. To this end we compared results to a random
predictor that does not take any information from neural data.
We considered a renewal process that triggers detections at a rate
equal to that of the true events in the original data and with a
minimal inter-occurrence interval of 1.5 s. This provides a suitable
comparison to our detection algorithm, because both, the estimate
of the rate of events (prior probability) and the minimal inter-event
time (refractory period), are part of our detection scheme and
independent of neural recordings. TPR and FPR, assuming
tolerances smaller than half the refractory period (0.75 s), can
easily be calculated for this process. For decisions on ‘detection’ or
‘no detection’, made in steps of Dt, with a tolerance t in a session
of length T containing Nevents events, we obtain:

TPRrand tð Þ~Nevents

T
2tzDtð Þ, for tv0:5|refractory period

FPRrand tð Þ~1{TPRrand tð Þ

Thus, TPR and FPR, expected from a random detector, are
linear functions of t (for non-overlapping tolerance windows
around events, which in our case holds for t ,0.75 s) and depends
on the temporal density of events. For the derivation, we refer to
Appendix S1.
For a detection method based on neuronal recordings to be

useful, it should, at the very least, be superior to a random
predictor with regard to both, TPR and FPR.
For a sensitive but unspecific detection method, that is, one that

detects multiple time points, besides the desired events, a large
number of false detections and hence FPR .1-TPR would be
predicted. On the other hand, a method with high specificity but
low sensitivity i.e., one that detects the right kinds of events but
only part of them, would be marked by FPR ,1-TPR. On the
extreme end of those cases are trivial predictors, producing either
a TPR of 1 or an FPR of 0, by triggering a detection either in every
single time bin (TPR=1) or never (FPR=0). Trivial predictors of
this kind would, at the same time, produce a FPR of almost 1 (for
the over-sensitive method, with TPR=1) or a TPR of 0 (for the
insensitive method, with FPR=0). Superiority over these trivial
methods should be documented by a combination of favourable
TPR and FPR with FPR < 1-TPR, as would be predicted if all
events were detected, but with a random temporal jitter. Further
criteria may be imposed, for instance that the number of true
positives should exceed that of false positives. Besides these
considerations, the ultimate requirements for TPR and FPR will
depend on the intended application.

Cross-validation. To test detection performance, we applied
a ten-fold cross-validation to the available data. Recordings from
each subject were sub-divided into ten periods of equal length.
Nine of these periods were combined to form the training set,
providing the basis for estimating the detector parameters. The
remaining subset was then used as a test set, to determine the
detection performance, based on the trained model. This
procedure was repeated for each combination, with one part
being used as a test set and the remaining nine parts being
combined into a training set. Thus, detection was run once on the
complete stretch of available data, with test and training sets being
mutually exclusive at any given time.

To choose the regularization parameter l (see section ‘Event
detection’) during training, we tested the detection performance as
a function of l by evaluating a selection of l-values in a separate
ten-fold cross-validation on the current training set (but excluding
the test set). The value of l which yielded the best discrimination
between events and non-events was then used to retrain the RLDA
on the complete training set.

Results

Detection from Time-frequency Amplitudes
Commonly used signal components for decoding of movement

parameters include amplitudes or power in frequency bands that
are modulated during movement or movement planning. To
investigate which frequency bands were informative for the
detection of grasping event times, we employed our detection
strategy (cf. Methods) on the basis of any possible contiguous
frequency band between 0 and 128 Hz that could be constructed
by averaging over normalized amplitudes in consecutive bands of
4 Hz width. This was repeated for several possible delays and the
performance was evaluated in each case for a number of different
tolerances. Figure 4 shows detection performance as a function of
the lower and upper frequency bounds, averaged over different
delays (2250 ms, 0 and +250 ms) and tolerances t (125 ms,
250 ms, 375 ms, …, 750 ms), and averaged across subjects. The
length of the signal history in this evaluation was fixed to 1.25
seconds. As a measure of performance we used TPR(t)-FPR(t),
which weighs sensitivity against specificity and has previously been
used in related studies in this [4] or similar form [6,20]. Figure 4
shows average TPR-FPR values for different frequency bands,
sorted for lower and upper frequency limits on the vertical and
horizontal axes, respectively.
We found that amplitude values recorded from hand-arm motor

channels allowed for best performance in a broad high-gamma
band, and a bit weaker but still notable performance in a
frequency band spanning the beta-range (cf. figure 4). We assured
that these findings did not vary substantially over delays, tolerances
or subjects (figures S1 and S2). Local maxima in performance were
found for a 56–128 Hz band in the high-gamma range and for a
16–28 Hz band in the beta range (locations indicated in figure 4).
For a closer inspection of the detection performance, we restricted
ourselves in the sequel to amplitudes from these two bands (along
with the LFC), which for brevity, we termed b for the 16–28 Hz
band and c for the 56–128 Hz band.

LFC and Combination with Frequency Band Modulations
Detections from the LFC were generally more accurate than

those from either b- or c-band. A combination of the LFC,
together with either b- or c-amplitudes or both could further
improve the accuracy of prediction. Figure 5 shows the
performance for a combination of all three signal components,
using a signal history of 1.25 s and a delay of 0 s. The curves for
TPR(t) and FPR(t) (figure 5, top row) show almost symmetric
behaviour with respect to a horizontal line at 0.5 on the TPR and
FPR axis, since an increase in tolerance will classify additional
detections as true positives, formerly interpreted as false positives.
This indicates that the difference TPR-FPR might be a valid
summary of these two parameters, as long as the number of real
events does not differ too much from the number of detected
events, by which the numbers of true and false positives,
respectively, were normalized. Also, note that the detection
performance was always better than that of a random process,
denoted by dashed lines in the top panels of figure 5. In order to
reach high levels of correct detections, higher tolerances had to be
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allowed (see table 3). For S2, more than for S1 and S3, detections
lacked in temporal precision, as illustrated by its broader
distribution of detection errors in figure 5 (bottom row). Detection
errors in S2 were also more biased towards a negative temporal
error (predicting too early), and less so in S1 and S3. An overview
of numerical values of TPR, FPR, and FP-rate (false positive rate)
for this detection scheme is given in table 3. It should be noted that
false positive rates given in table 3 (false detections per minute)
were calculated for time periods consisting of a sequence of
grasping trials and short resting periods in between and warrant no
statement about false positive rates of grasp detection during
periods of different behaviour.
A comparison of the performance of different signal compo-

nents (figure 6) revealed that the lower detection accuracy for S2

can largely be attributed to the low performance obtained, when
using the LFC, which for the other subjects provided most of the
information.

Dependence of Performance on Detection Parameters
Early predictions – detections with negative delays – could allow

BMI applications time for preparation of an appropriate action.
This time could be used, for instance, to prepare the grasping
movement of a prosthesis. However, in applications in which
timing is not crucial, or which have a high tolerance in terms of
temporal precision, detection at positive delays i.e., detection after
the actual event, could be allowed, if this improves overall
performance. To test this idea, we carried out detection over a
wide range of possible delays, from 21 s to +1 s. Dependency of
the detection accuracy on delay in terms of the TPR-FPR measure
for an intermediate tolerance of 0.5 s and in terms of TD is shown
in figure 6. In the prediction phase (delay ,0, white area), accuracy
increased strongly when delays got closer to zero. Delayed detection
(delay .0, grey area), only slightly increased the detection accuracy
further.
Detection performance showed only a weak dependence on the

duration of the signal history gathered in the feature vector (figure
S3). Here, we only presented examples with a fixed history length
of 1.25 s.

Discussion

Using the presented detection method, we were able to detect
grasping of a cup against a background of other movement events,
such as start of reach, cup release and end of reach. Event
detection, using ECoG recordings from motor cortex, worked
without information on the temporal structure of the trials. This
demonstrates that our method, based on linear discriminant
analysis, works reliably and is specific to one class of events, even
though the grasps themselves varied in the applied grasp type,
weight of the lifted object and position in the workspace. Grasping
events could also be predicted 125–250 ms before their occur-
rence, without substantial loss in accuracy, allowing for an early
preparation signal in potential future applications.

Detection Algorithm
Distinguishing between two classes, with one class representing

a specific event and the other class everything else, might be taken
to imply that distributions of neural features of both classes are
probably quite different and therefore not well described by a
common class covariance, as it is assumed and used in linear
discriminant analysis. Therefore, we tested our detection algo-
rithm also using RDA (regularized discriminant analysis [19])

Figure 4. Detection from band-limited ECoG amplitudes.
Detection accuracy, obtained using amplitudes from different frequen-
cy bands of the ECoG. Every continuous frequency band between 0 and
128 Hz, constructed by averaging over normalized amplitudes of
successive frequency bands of 4 Hz width, was used as input to the
detection algorithm. The figure shows colour-coded average values of
TPR-FPR, for frequency bands stretching from a lower limit (vertical axis)
to an upper limit (horizontal axis). TPR-FPR values were averaged over
delays of 20.25 s, 0 s and +0.25 s and tolerances of 125 ms, 250 ms,
375 ms, …, 750 ms as well as over all three subjects (pictures for
individual delays and tolerances, as well as individual subjects provided
as supporting information, figures S1 and S2). Detections from each
frequency band were based on a history of one second, sampled every
62.5 ms (16 times per second), recorded from all available hand-arm
motor channels in each subject. Pink lines point to two local maxima in
detection performance, representing frequency bands that were used
for further analysis.
doi:10.1371/journal.pone.0054658.g004

Table 3. Detection accuracy using combined LFC, 16–28 Hz and 56–128 Hz amplitudes.

t=0.25 s t=0.5 s t=0.75 s Ndet
detection errors

TPR FPR
FP-rate
(min21) TPR FPR

FP-rate
(min21) TPR FPR

FP-rate
(min21) Bias (ms) TD (ms)

S1 0.75 0.26 2.5 0.92 0.10 0.9 0.97 0.05 0.4 309 247 265

S2 0.50 0.36 2.7 0.69 0.12 0.9 0.74 0.05 0.4 264 2117 362

S3 0.75 0.25 3.1 0.91 0.08 1.0 0.96 0.03 0.4 318 263 271

True positive ratio (TPR), false positive ratio (FPR) and false positive rate (FP-rate) are given for three different tolerance values t, 1.5 s of signal history and a delay of 0 s
(cf. figure 5). bias: median detection error over all potentially correct detections (negative values indicate detections are positioned before real events). Ndet: number of
detections; TD: temporal deviation, measured as the root mean squared error of (potentially) correct detections (see section ‘Evaluation of detections’).
doi:10.1371/journal.pone.0054658.t003
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which, unlike RLDA, allows for class specific covariances. This,
however, did not yield better predictions than RLDA (data not
shown), as long as samples, very close to events were excluded
from the training set of non-events (see Methods, section ‘Event
detection’). For this reason, we here only presented detailed results
of the RLDA approach.

Precision
While predictions were quite reliable at sub-second precision,

the observed temporal deviations might still be too large for
applications of very precisely timed movement control, such as
catching a ball or interaction with fast moving objects. An
explanation for these temporal deviations may be found in the
time course of the posterior probability, which was the basis for
our event detection: within intervals of several hundred millisec-
onds duration around grasping events, the posterior probability for
an event was higher than the used threshold of 0.95. While these
peaks in the posterior probability featured a steeply rising flank,
the maximum was often located on a plateau-like episode (cf.
figure 3, inset). Simply raising the detection threshold further than
0.95 might slightly narrow this interval, but at the expense of
decreased sensitivity, that is, the danger of more events being
missed by the detection. Optimizing the final detection time, by
climbing the gradient in the posterior towards a maximum

brought detections closer to the correct event times as exemplified
in figure 3 (grey arrow), but still left considerable temporal
ambiguity.
The temporal profile of the posterior probability can most likely

be attributed to autocorrelations in the signal components used for
detection. Using signal components with more transient event-
specific potentials could potentially improve the temporal preci-
sion of detections. But even if these existed in the motor-cortical
ECoG, they might be difficult to detect since events of the training
set, marked on the basis of movement behaviour, had only limited
temporal precision and, therefore, cannot reveal transient signals
which are locked to the event on very short time-scales. This, in
fact, might be a general difficulty for self-paced movements and
smooth transitions between movement components, like reach and
grasp.

Specificity
For all three subjects, FPRs converged towards a value close to

zero, for large tolerances (Fig. 5). This suggests that most false
detections were due to a temporal scattering around the actual
event times, indicating limited precision, rather than unspecific
triggering of detections. This is all the more remarkable as the
analysed data not only included two kinds of grasps and periods of
rest (see Table 2), but also a large variety of movement

Figure 5. Sensitivity, specificity and temporal precision of detection. Top row: true positive ratio (TPR, green solid trace) and false positive
ratio (FPR, red solid trace) as a function of tolerance (required temporal precision) for each of the three subjects (different panels). Dashed lines show
TPR and FPR (green and red, respectively) of a random predictor (see Methods, section ‘Evaluation of detections’). Bottom row: distributions of
temporal errors of detections. Red vertical lines indicate median temporal error; grey horizontal lines indicate the (flat) distribution for the random
predictor (in the same binning). Detection results, summarized here, were calculated for a delay of 0 s, using 1.25 s of signal history (sampled every
62.5 ms within this period) from LFC, 16–28 Hz (b) amplitudes and 56–128 Hz (c) amplitudes from all hand-arm motor electrodes. TPR indicates
sensitivity of detections, whereas FPR quantifies specificity (with high FPR meaning unspecific detections).
doi:10.1371/journal.pone.0054658.g005
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components, like reaching to and from different positions and
carrying cups of two different weights. However, any analysis of
specificity within the limits of such an experiment will not allow for
a very general statement of how many false detections are to be
expected during every-day activities, as this would require
monitoring of movement and ECoG over a much broader range
of behaviour.

Comparison to Previous Studies on Movement Detection
So far, only few studies reported on the detection of movement

events in time from neural signals. Rather than looking for specific
events within a continuous movement, most of these previous
studies were concerned with detection of movement onset of
reaching movements (from LFP: [3]) or short, simple movements
(from ECoG [4]; from EEG [5,6]) or other movement related
states (e.g., detection of a planning phase from spiking activity in
monkey pre-motor cortex [21]; detection of periods of event-
related desynchronization and synchronization from human EEG
[20]). In this respect, our study extends and complements previous
investigations.
Moreover, earlier studies did not emphasize the aspect of

temporal acuity, even though this aspect substantially influences
sensitivity and specificity of detection and is crucial to determine
the range of possible applications.
We specifically targeted hand and arm areas of the human

motor cortex, a site likely to be targeted in future BMI
applications. This not only reduces the impact of post-central
sensory sources, but also allows for a more specific statement about

potential capabilities of epi-cortical BMIs than permitted by
previous studies based on EEG [5,6].

Conclusion
Augmented with additional classification of the applied grasp

type [7], our findings introduce a possible approach for the
development of an ECoG-based brain-machine interface for
grasping. Moreover, our detection methods are of interest for
detecting other events (e.g. movement onset, error signals) from
neuronal data.

Supporting Information

Figure S1 Detection accuracy, using different frequency bands
(see manuscript, figure 4), for different delays and tolerances (t).
Average over 3 subjects.
(EPS)

Figure S2 Detection accuracy, using different frequency bands
(see manuscript, figure 4), for single subjects. Average over delays
and tolerances, displayed in figure S1. White spaces below the
diagonal appear, if no detections were made for the according
frequency band.
(EPS)

Figure S3 Detection accuracy as a function of signal history. 0.5
to 1.5 s of signal history before the time given by the delay (here:
delay = 0) included into the feature space. Different signal
components or combination of components are marked by colour

Figure 6. Detection accuracy as a function of delay for different signal components. Detections were inferred from a signal history of
1.25 s at and before the indicated delay of either LFC, b-amplitudes, c-amplitudes or a combination of these, as indicated in the colour code.
Accuracy is represented by TPR-FPR for a tolerance of 0.5 s (top row) and the temporal deviation (TD) of detections (bottom row) as a measure of
overall temporal imprecision. The left half of each plot (white background) comprises delays ,0, indicating prediction i.e., event detections ahead of
time. In the case of missing data points (b-amplitudes, S1/S2), no events were detected.
doi:10.1371/journal.pone.0054658.g006
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(see legend). Missing data points (b) indicate that no detections
were made.
(EPS)

Appendix S1 Calculation of TPR and FPR for a random
process (cf. section ‘Baseline detection performance: random
predictor’).
(DOCX)
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