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Abstract

Background: Brain-machine interfaces (BMIs) can translate the neuronal activity underlying a user’s movement intention
into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major
problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it
may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present
during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i) errors can be corrected online
after being detected and (ii) adaptive BMI decoding algorithm can be updated to make fewer errors in the future.

Methodology/Principal Findings: Here, we show that error events can be detected from human electrocorticography
(ECoG) during a continuous task with high precision, given a temporal tolerance of 300–400 milliseconds. We quantified the
error detection accuracy and showed that, using only a small subset of 262 ECoG electrodes, 82% of detection information
for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be
retained.

Conclusions/Significance: The error detection method presented here could be used to correct errors made during BMI
operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller
ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and
error detection could significantly reduce the medical risk of implantation.
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Introduction

Even though the control of prosthetic devices using brain-machine
interfaces (BMIs) has highly improved during the last several years
[1–3], such devices are still prone to decoding errors. Decoding
errors can elicit error related neuronal responses (ERNRs). Detecting
these errors can be beneficial for the BMI performance. If detected,
errors can be subsequently corrected, recognizing that a certain
effector movement was not intended. This strategy has already been
implemented in on-line BMI studies [4–7], but only in externally
paced BMIs. However, many powerful BMIs are used to
continuously decode and control the movements of an effector.
Most prominent examples are the BMI control of a prosthetic arm
[1,8–10] and the brain control of a computer cursor [3,9,11].
Error detection can also be used to modify the decoding

algorithm to make fewer decoding errors in the future. This

approach is especially suitable for BMIs decoding continuous
movements, since subjects correct for movement discrepancy by
producing corrective movements, thereby making subsequent error
correction obsolete. However, the feasibility of this strategy has so
far been demonstrated only by computer simulations [12,13].
To apply error detection to continuous BMI control, it is

necessary to show that ERNR are indeed elicited during such
tasks. A number of studies investigated neuroal responses to errors
during continuous movement tasks, identifying neuronal activity
related to three different error types: (i) target error [14,15], event
where the task environment goes through unexpected changes
such as target jumps, (ii) execution error [14,16], event where the
ongoing motor commands result in an unexpected movement, and
(iii) outcome error [16–19], event where the desired goal of a
movement is not achieved. Outcome and execution errors are of
special interest for BMI application, since both error events can
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occur during online BMI control. For example, an execution error
can occur when the decoding algorithm decodes incorrect
movements, thereby moving the cursor or the prosthesis in an
undesirable direction (Figure 1). If the difference of intended and
executed movements is large enough, it can evoke an execution
ERNR. If the incorrectly decoded movement causes the effector to
reach an unintended goal or perform an unintended function, this
can elicit an outcome ERNR (Figure 1).
In recent years, electrocorticography (ECoG) emerged as a

possible alternative to intracortical recordings as a recording
technique that can be used for a continuous BMI [20–22].
Continuous BMI controlling two degrees of freedom has already
been realized using ECoG [23]. Other recent studies showed that

many other movement primitives can be decoded offline from
ECoG signals, such as 7 degrees of freedom of arm movements
[24], individual finger movements [25] and natural grasps [26].
Therefore, ECoG is a suitable platform for implementing a
continuous BMI.
To use error signals in a ECoG based BMI, one needs to show

that ERNRs can be detected from the ECoG signal with sufficient
reliability. A recent study by Milekovic et al. [16] showed that
both outcome and execution ERNR are present in human ECoG
recordings during a continuous task. Here, we showed that the
times of the events that elicited these ERNR can be detected with
high accuracy.

Figure 1. Application of neural activity based error detection for improvement of a continuous BMI control. Subjects intend to move a
cursor towards the top left target (white arrow). If the decoding is correct, the cursor performs the intended movement and no neuronal error signal
is elicited in a subject. If there is a discrepancy between the intended and the decoded movement, an ERNR can be elicited. If the discrepancy is large
enough, it can elicit an execution ERNR. If the execution error is detected by the BMI system, the decoding algorithm can be adapted to reduce the
number of errors in decoding in the future. If the unwanted movement causes the cursor to reach an unwanted target, an outcome ERNR may be
evoked. If the outcome ERNR is detected by the BMI system, it can change the decoding algorithm as well, this time in a different way.
doi:10.1371/journal.pone.0055235.g001
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Methods

Experimental task, recording techniques and properties of the
recoded data are described in detail in Milekovic et al. [16]. Here
we provide only a short description.

Task
Subjects (S1–S4) played a simple video game in which they

controlled a spaceship with a small analogue joystick on a
gamepad (LogitechH RumblepadTM 2, Logitech Europe S.A.,
Morges, Switzerland) in the horizontal dimension (left-right;
Figure 2a; Supplementary movie 1). The task was to evade blocks
dropping from the top of the screen at a constant speed. The game
was challenging enough so that the spaceship occasionally collided
with a block (collision event, Figure 2b). At random moments, the
spaceship moved in the direction opposite to the joystick
movement for the duration of 500 ms (movement mismatch
event, Figure 2c). Points were awarded for moving the spaceship,
and subjects were instructed to gather as many points as possible.
Subjects started the game with 20 ‘‘lives’’. Each time the spaceship
collided with a block, the number of ‘‘lives’’ was reduced by one.
When the number of ‘‘lives’’ reached 0, the game, together with
the recording session, ended. Recording sessions lasted between 5
and 24 minutes. We identified the neuronal responses to collision
and mismatch events that were not mixed with neuronal responses
to other events by defining a subgroup of ‘‘clean’’ outcome and
‘‘clean’’ mismatch events, consisting of events at least 2 seconds
away from any other event of any kind. The total number of
events recorded for each of the subjects is given in Table 1.
To earn more points, subjects had to try to stay in the game as

long as possible. Therefore, collision events presented a clear
disadvantage in reaching the goal of the game. Thus, collision
events reflected outcome errors. During the movement mismatch
event, there was a clear discrepancy between the intended
movement and the movement performed by the spaceship. Thus,
movement mismatch events reflected execution errors.
In our previous study [16] we demonstrated that the ECoG

signals we used for detection in the present study reflect ERNRs
and are not movement related, nor related to visual stimuli or to
surprise effects.

Subjects and Recordings
Four subjects (3 male, 1 female) suffering from intractable

pharmaco-resistant epilepsy voluntarily participated in the study
after having given their informed consent. The study was
approved by the Ethics Committee of the University Medical
Center, Freiburg, Germany.
For pre-neurosurgical epilepsy diagnosis, the subjects were

implanted with an 868 grid of subdural surface electrodes
covering parts of the primary and pre-motor cortex (Figure 3).
Additional subdural surface and deep brain electrodes were
implanted for subjects S1, S2 and S3 [16]. For all subjects, signals
from 22 electrodes of EEG, two to four electrooculogram (EOG)
electrodes, electrocardiogram (ECG) and electromyogram (EMG)
were recorded simultaneously with the recordings made from the
subdural and deep brain electrodes. Here, we analyzed the
recordings from the 868 grid of subdural electrodes only.
Recordings from all electrodes were digitized at 256 Hz

sampling rate for S1 and S2 and at 1024 Hz sampling rate for
S3 and S4. No analogue filters were used during the data
acquisition. Power line frequency was 50 Hz. Data analysis
presented here was performed after the experiment using the
MATLAB software package (MATLAB version 7.4–7.11, Natick,
Massachusetts: The MathWorks Inc., 2007–2011).

Measures of Detection Accuracy
Consider a process where a subject is actively observing a scene

and, when a given stimulus appears, a neuronal response is
elicited. Assume that neuronal activity is continuously recorded
and a detection algorithm is continuously evaluating whether a
stimulus appeared, given the neuronal activity. The efficiency of
the detector can then be measured by comparing two point
processes: the set of time points when the stimulus was presented

Figure 2. Task and error events. A: Screenshot of the paradigm as
seen by the subjects on the computer screen. Subjects played a video
game in which they moved a spaceship in the horizontal direction (left-
right) to evade the blocks dropping from above. Every time the
spaceship collided with a block (collision event; B) one life was lost.
Collision events elicited outcome ERNR. From time to time, the
spaceship moved in the opposite direction of the joystick movement
for 500 ms (movement mismatch event; C). These events elicited
execution errors.
doi:10.1371/journal.pone.0055235.g002

Table 1. Number of recorded sessions and events for each of
the subjects.

Subjects Sessions Collision events Mismatch events

All Clean All Clean

S1 8 160 120 195 155

S2 4 80 38 227 185

S3 4 80 51 121 92

S4 6 120 87 71 38

doi:10.1371/journal.pone.0055235.t001
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and the set of time points when the detector detected the stimulus
from the neuronal recordings.
Due to the internal processes in the brain and other sources of

noise, even a perfect decoder will have a temporal noise in the
detected times of events. On the other hand, detected events will
still be useful, even if the times of detections are not perfectly
aligned to the times of the events. For some applications, high
temporal precision is not necessary. We describe this requirement
on our detector as temporal tolerance.
If we tolerate the detected events within a time Dt from the real

events, then any detection within this time window will be counted
as a true positive detection. Every event window in which there are
no detected events will be counted as false negative detection. For
measuring the detection accuracy, we would also need to know the
ability of the detector at predicting non-events. To obtain a fair
estimate of such ability, the area between the event time windows
has to be divided in windows of the same size, 2Dt. Every non-
event time window in which there are no detected events will be
counted as a true negative detection and every non-event time

window in which there is a detected event will be counted as false
positive detection.

Sensitivity and specificity of a detector. Accuracy of a
detector can be described by measuring how well it performs in
two different tasks: (i) detecting events when events are present and
(ii) not detecting events when events are not present. One way to
describe the first property is by measuring the sensitivity of the
detector by calculating the true positive rate (TPR) [27] as a
number of true positive detections (NTP) divided by the total
number of real events. Since the total number of real events is
given by the sum of true positive detections and false negative
detections (NFN), the true positive rate is given by:

TPR~
NTP

NTPzNFN
ð1:1Þ

The second property can be described by measuring the
specificity of the decoder by calculating the false positive rate (FPR)
[27] as the ratio of false positive detections (NFP) divided by the

Figure 3. Locations of ECoG grid electrodes in relation to the cortex. Electrode positions (red, green and black circles) were reconstructed
from the post-implantation MRI scan and positioned over the pre-implantation MRI scan [88]. For S1, S3 and S4 red (green) circles represent
electrodes that showed motor (somatosensory) responses to electrical stimulation mapping (ESM). For S2, motor and somatosensory electrodes were
determined from sulci reconstruction. Central sulci, Sylvian fissures and, for S2 only, pre and post central sulcus are shown as blue lines. These were
drawn by hand to resemble sulci reconstruction from the post-implantation MRI scan. Each of the subjects was implanted with an 868 ECoG grid. In
S2, no recordings were made from the top row of the ECoG grid. In addition to ECoG grids, the Figure shows two 6 electrode ECoG strips over the
frontal lobe (FLa and FLb) for S1 and two 4 electrode ECoG strips (FBa and FBb) over the frontal lobe for S3. In this study, we analyzed the recording
from the ECoG grids only.
doi:10.1371/journal.pone.0055235.g003

Detection of Errors from Human ECoG Recordings

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55235



number of all detections. Since the total number of all detections is
given by the sum of true positive detections and false positive
detections (NFP), the false positive rate is given by:

FPR~
NFP

NTPzNFP
ð1:2Þ

FPR definition used here should not be confused with the
alternative definition of the false positive rate (FPRALT) [28]:

FPRALT~
NFP

NTNzNFP
ð1:3Þ

A disadvantage of measuring the detection accuracy by TPR
and FPR is that one cannot directly compare two different
detectors when both TPR and FPR of one detector are higher than
the TPR and FPR of the other detector. Therefore, a metric
incorporating both sensitivity and specificity of the detector is
needed. One such metric is the mutual information.

Mutual information of a detector. One way to measure the
performance of a detector is to calculate the mutual information
[29] between a dataset containing times of real events and a
dataset containing times of detected events. The mutual informa-
tion is given by:

I X ,Yð Þ~
X

X

X

Y

p x,yð Þlog2
p x,yð Þ

p xð Þp yð Þ

! "
ð1:4Þ

where X and Y are the sets of all possible states of the real and
detected event datasets and x and y are specific states from those
sets, p(x) and p(y) are the probabilities of specific states and p(x,y) is
the joint probability that states x and y occur jointly. In our case,
the set of real event states consists of ‘‘real event’’ (re) and ‘‘real
non-event’’ (rne), while the set of detected events consists of
‘‘detected event’’ (de) and ‘‘detected non-event’’ (dne). Joint and
marginal probabilities used to calculate the mutual information are
given by:

p re,deð Þ~NTP

N
p re,dneð Þ~NFN

N
p(re)~

NTPzNFN

N

p rne,deð Þ~NFP

N
p rne,dneð Þ~NTN

N
p(rne)~

NFPzNTN

N

p(de)~
NTPzNFP

N
p(dne)~

NFNzNTN

N
ð1:5Þ

Given a certain dataset of real event times and certain tolerance,
the maximum value of the mutual information is obtained when
detected event times perfectly match real event times. This value is
identical to the entropy of real event times H(X):

H Xð Þ~{
X

X

p xð Þlog2 p xð Þð Þ ð1:6Þ

To compare the mutual information over different tolerances,
we calculated the normalized mutual information, CYX [30]:

CYX~
I X ,Yð Þ
H Xð Þ

ð1:7Þ

Calculating mutual information and entropy from a recorded
dataset will give a good estimate of their true values, as long as the
calculated probabilities are good estimates of the real probabilities.
However, recorded datasets have a finite length, which will make
the estimated probabilities fluctuate around their real values.
Using the estimated probabilities to calculate the mutual
information and entropy leads to a bias in the estimation [31].
To remove the bias of the mutual information, we used first and
second order terms of the mutual information bias expansion
derived in the study by Treves and Panzeri [31]:

I(X ,Y )~IN (X ,Y ){IC1 {IC2 ð1:8Þ

IC1 ~
1

2N ln 2
ð1:9Þ

IC2 ~
1

12N2 ln 2

X

X

X

Y

1

p(x,y)
{

1

p(x)

! "
{
X

Y

1

p(y)
z1

" #
ð1:10Þ

where IN(X,Y) is the mutual information estimated from a dataset
of length N. Here, the values of joint and marginal distributions
have also been estimated from the same dataset. To remove the
bias of the entropy, we used first and second order terms of the
entropy bias expansion derived in the study by Victor [32]:

H(X )~HN (X )zHC
1 zHC

2 ð1:11Þ

HC
1 ~

1

2N ln 2
ð1:12Þ

HC
2 ~

1

12N Nz1ð Þ ln 2
X

X

1

p(x)
{1

 !
ð1:13Þ

Thus, the bias corrected value of the normalized mutual
information was calculated as:

CYX~
IN X ,Yð Þ{IC1 {IC2
HN Xð ÞzHC

1 zHC
2

ð1:14Þ

Experimental Data Analysis
Preprocessing. Common-average referencing for grid elec-

trodes was performed using all grid electrodes that showed no
artefacts (one electrode for both S3 and S4 had to be excluded). To
correct for changes in electrode recording offsets between sessions,
the mean voltage over the entire session was subtracted for every
session and for every electrode after re-referencing.

Signal components. We analyzed the low and high
frequency components of the recorded ECoG signals (Figure 4).
The low frequency component was extracted by smoothing the
preprocessed ECoG signals using a symmetric 2nd order Savitzky-
Golay filter [33,34] with a time window of 250 ms (nominal 3 dB
cut off frequency: 7.85 Hz for S1 and S2, 7.59 Hz for S3 and S4;
estimated using table from [35]; for justification on using this filter
see [16], section 1 of the supplementary material). We defined a
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window around each event of any kind, starting 3 seconds before
the event and lasting until 3 seconds after it. The signals outside all
of these windows were used as baseline activity. To enable a clear
comparison to baseline, the average baseline activity was
subtracted from the filtered recordings in each session for each
electrode. The resulting signal was defined as the low frequency
component of the signal (LFC).
To analyze the high frequency component of the signal, time-

resolved Fourier transformation using a Hamming window
(333 ms window width, shifted in steps of 31 ms) was applied to
the preprocessed signals, and the amplitudes were used for further
analysis. To account for the general decrease in amplitude with
increasing frequency, the amplitudes of every frequency bin were
normalized by dividing them by the average baseline amplitude of
the same frequency bin in the respective session. We then
extracted the average amplitude across a frequency band from
60 Hz to 128 Hz for S1 and S2 and from 60 Hz to 200 Hz for S3
and S4. Since recordings for subjects S1 and S2 were sampled at
256 Hz, spectral amplitudes could be calculated only for
frequencies up to 128 Hz (Nyquist frequency). Therefore, the
frequency band used to calculate high frequency component could
only comprise frequencies up to 128 Hz for subjects S1 and S2.
Amplitudes calculated from ECoG signals recorded at least 3
seconds away from any event were used as baseline. To enable a
clear comparison to baseline, the average baseline activity was
subtracted from the extracted amplitudes in each session for each
electrode. The resulting signal was defined as the high frequency
component of the signal (HFC).
When LFC and HFC were used together for detection, we

normalized every electrode and signal component to zero mean
and unit variance, to accommodate for their different scaling.

Detection algorithm. To detect error events from the neural
activity, we trained a set of classifiers that captured the neuronal
features which are specific to error events (Figure 5). To be sure
that the training data did not include neuronal responses to non-
error events which were erroneously identified as ERNRs, we used
ERNRs elicited by ‘‘clean’’ events only. Given a signal component
W, the peri-error feature vector was defined as:

Wel1 tEzt1ð Þ

..

.

Wel1 tEztnð Þ
Wel2 tEzt1ð Þ

..

.

Wel2 tEztnð Þ

..

.

Welm tEztnð Þ

2

666666666666666664

3

777777777777777775

ð1:15Þ

where tE is the time of an error event, el1, …, elm are the selected
electrodes and t1, …, tn are the selected time points relative to the
time of the error event. Therefore, the feature vector contains nNm
features for one signal component. If more than one signal

component was used, the feature vectors of the signal component
were concatenated, yielding an lNnNm dimensional feature vector,
where l is the number of signal components used (l=1 or 2 in this
study). The time points t1, …, tn were always equidistant and
defined by a set of parameters: (i) the time of the first feature in
relation to the time of the error event, t1, (ii) the number of time
points, n and (iii) the temporal distance between the first and the
last feature, tn-t1.
Each classifier was build using two classes of feature vectors, the

error class containing peri-error feature vectors (Eclass) and the
baseline class containing feature vectors when no errors were
present (Bclass).

Eclass~

Wel1 tEizt1
# $

..

.

Wel1 tEiztn
# $

Wel2 tEizt1
# $

..

.

Wel2 tEiztn
# $

..

.

Welm tEiztn
# $

2

6666666666666666666664

3

7777777777777777777775

,i[ 1,:::,Nf g

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;
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.
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..

.

Wel2 k:dtztnð Þ
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.

Welm k:dtztnð Þ

2

666666666666666666664

3

777777777777777777775
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Vi,kj
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%% %%w1s

8
>>>>>>>>>>>>>>>>>>>><
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9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

ð1:16Þ

where dt is the time resolution of the signal component (LFC: 4 ms
for S1 and S2, 1 ms for S3 and S4; 31 ms when HFC or both
components were used). ’’
These classes were used to build either a regularized linear

discriminant analysis (rLDA) classifier or a regularized quadratic
discriminant analysis (rQDA) classifier [36]. A QDA classifier is
built by fitting a Gaussian distribution to each of the classes and
gives the probability to belong to one of the classes for any
arbitrary point in the feature space. Each Gaussian is represented
by a class mean and a covariance matrix. LDA is a simplification
of QDA, where fitted Gaussian distributions share a common

Figure 4. Extraction of low and high frequency components (LFC and HFC) from the ECoG recordings. Recordings in every channel were
first re-referenced using the common average over all recording channels that do not show epileptic activity. To get the LFC, the re-referenced signal
was low-pass filtered using a Savitzky-Golay filter (symmetric, 2nd order, 250 ms window length). To get the HFC, the re-referenced signal is
transformed to the time-frequency space using short-time Fourier transform. The amplitudes of the transformed signal were then divided by the
average baseline amplitude for every frequency bin separately. The HFC was defined as the average normalized amplitudes across all bins within the
HFC frequency range (see Methods for a definition of the frequency ranges).To correct for movement related neuronal activity, MRNRs were
subtracted.
doi:10.1371/journal.pone.0055235.g004
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Figure 5. Classifier selection and performance evaluation of the error detection algorithm. (A) The dataset was divided into three parts of
equal length: training, validation and testing. The training data set was used to build the detection algorithm. To optimize the parameters of the
detection algorithm (see Methods), the detection performance was evaluated on the validation data set for different values of the parameters. The
parameter values yielding the highest performance were used to build the detection classifier which was then applied on the testing data to evaluate
its performance. (B) Classifier building: The classifier was built using signal features from error (green) and baseline epochs (white). Signal features
were taken from LFC and HFC (Figure 4) at multiple time points and from multiple electrodes. (C) Performance evaluation: The classifier used to
calculate probability of an error event in a sliding window fashion, across the continuous signals, in order to detect error events. Finally, performance
was calculated by comparing the times of detected error events to the times of the real error events.
doi:10.1371/journal.pone.0055235.g005
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covariance matrix. Regularization is implemented by modifying
the covariance matrix of the fitted Gaussian distributions and has
the purpose to improve the accuracy of the discriminant analyses
on a new, independent set of data. We used the regularization of
the form:

CR~ 1{cð ÞCzc:Sdiag Cð ÞT:I ð1:17Þ

where C is the covariance matrix of the fitted Gaussian
distribution, CR is the regularized covariance matrix, c is the
regularization coefficient and I is the identity matrix of the same
size as C. In the case of rQDA, the number of vectors in the
baseline class is much higher than the number of vectors in the
error class. Therefore, we regularized the covariance matrix of the
Gaussian fitted to the error class only. The classifier was then used
to calculate the probability of every feature vector F in the test
dataset to belong to the error class.

F tF~k:dtð Þ~

signalch(1) k:dtzt1ð Þ,:::,signalch(m) k:dtztnð Þ
# $

,k[N : k:dtƒtend{tn
& '

ð1:18Þ

where tF is the time point corresponding to the calculated
probability and tend is the duration of the tested dataset. We then
extracted all local maxima of the probabilities and assigned a
‘detected as non-error’ (dne) state to remaining points. A threshold
value l was then selected and we assigned a dne state to all time
points for which the value of the maxima remained below the
threshold. Finally, we assigned a dne state to all remaining
maxima for which there was a higher maximum less than 1 second
away. We assigned a ‘detected as error’ (de) state to all remaining
maxima. Since the classifier should be able to detect error events
for which ERNRs were only slightly mixed with neuronal
responses to other events, we calculated the detection measures
between the times of detected events and the times of all real
events within the test dataset, instead of just using the ‘‘clean’’
events.
To properly validate the classifiers, we divided the recorded

data into three similarly long parts by splitting each session into
three parts, each containing one third of the ‘‘clean’’ events. First,
we chose a set of parameter values consisting of: (i) a time of the
first feature in relation to the error event, t1, (ii) a number of
features, n and (iii) a time distance between the first and the last
feature, tn-t1, (iv) regularization coefficient, c, and (v) probability
threshold l. An rLDA or rQDA classifier was then built using the
first part of the dataset. Using the built classifier, we detected the
events on the second part of the data and calculated the CYX.
Values of the parameters were then changed and the process was
repeated, until all parameter values from the parameter grid were
tested. We used the following grid of parameter values: (i) t1: from
2667 ms to 667 ms in steps of 56 ms; (ii) n: 1, 3, 4, 5 and 8 when
using single electrodes and electrode quartets for detection and 1,
2 and 3 when using anatomical electrode subsets or all grid
electrodes for detection; (iii) tn-t1:100 ms, 125 ms, 250 ms, 500 ms,
750 ms and 1000 ms; (iv) c: 0, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 and
1; and (v) probability threshold: from 0.5 to 1 in steps of 0.017.
The classifier that gave the maximum CYX on the second part of
the dataset was then used to detect the events on the third part of
the dataset and TPR, FPR and CYX were then calculated from this
detection result. The same process was repeated, now using the
third part of the dataset for testing the grid of parameter values
and the second part of the dataset for classifier testing. The

average values of the two sets of TPR, FPR and CYX measures were
then reported as the measured detection accuracy.
Different tolerance values were used to bin the experiment time

into non-overlapping time bins, as described in section ‘‘Measures
of detection accuracy’’. The tolerance value directly determines
the length of the dataset. Table 2 gives the dataset lengths for the
tolerance values used.

MRNR subtraction. To remove the movement related
neuronal responses (MRNRs) following a mismatch or a collision
event, we used the MRNR subtraction method successfully
applied in our previous study [16]. MRNR were identified by
deriving and testing a set of classifiers relating the signals from one
electrode to the movements using only non-event data (i.e. all data
which was at least 1 s before and 3 s after any event). The most
predictive classifier was selected and used to predict the MRNR
for the whole recording, this time including the event data.
MRNR signals were then subtracted from the initial signal, and
the result was termed MRNR-free signals. All reported results
were achieved by using MRNR-free signal for detection, unless
specified otherwise.

Neuroanatomical Analysis
To determine whether the motor or the somatosensory cortex

played a more distinctive role in generating ERNR, we classified
electrodes as motor cortex electrodes, somatosensory cortex
electrodes, and other electrodes (Figure 3) in the same way as
done in the previous study by Milekovic et al. [16].

Statistical Analysis
All results are reported as mean 695% confidence interval. To

calculate confidence intervals, we used a bootstrap method with 10
000 re-samples [37]. Every reported statistics was bootstrapped
separately for each of the subjects. For instance, if the difference
between CYX was reported, we bootstrapped the difference
directly. Subject-wise values of the statistics were considered as
independent measurements and reported values were calculated
using the error weighted mean [38].
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si
2

ð1:19Þ

s~
1ffiffiffiffiffiffiffiffiffiffiffiP
i

1
si
2
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where mi and si are the subject-wise value of the statistics and its
corresponding standard deviation estimated by bootstrapping, and
m and s are the reported values of the statistics over subjects. We
assumed that the measurements of the statistic were normally
distributed and used the t-distribution to calculate the 95%
confidence intervals [38].

Results

Detection of Error Related Neuronal Responses
To quantify how well outcome and execution events can be

detected, we used signals from all ECoG grid electrodes and in
both signal components as an input for our detection algorithm
(Figure 6, 7, see Figure 8 for topographical distribution of signals
informative for error detection). When detecting outcome error
with a tolerance of 366 ms and across all four subjects, average
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CYX was 0.6960.04 with average TPR of 0.8760.03 and average
FPR of 0.2460.04 (for individual subject values see Table 3). For
detection of execution errors with the same tolerance, average CYX

was 0.3360.03 with average TPR of 0.6460.04 and average FPR
of 0.6160.03 (for individual subject values see Table 3). Over all
tolerance values, outcome error CYX values were higher than
execution error CYX when both frequency components were used
(CYX difference for tolerance of 366 ms: 0.3660.05; for individual
subjects: S1:0.5860.08, S2:0.1760.11, S3:0.1560.12,
S4:0.3060.13).
Over all subjects, using both signal components gave signifi-

cantly higher CYX then when using either one of the components
alone for all tolerance values (CYX difference for tolerance of
366 ms over all subjects: outcome error: LFC & HFC vs. LFC:
0.2360.05; LFC & HFC vs. HFC: 0.1660.05; execution error:
LFC & HFC vs. LFC: 0.1560.04; LFC & HFC vs. HFC:
0.0560.04). Using HCF gave significantly higher CYX than using
LFC for tolerances of 366 ms and higher (CYX difference for
tolerance of 366 ms: outcome error: 0.0760.05; execution error:
0.0960.03).

Topographical Distribution of Informative Signals for
Error Detection
To determine the topographical distribution of signals that were

informative for the error detection, we performed detection using
signals recorded from electrode quartets (Figure 5). For most of the
subjects, several isolated, often spatially quite distant peaks of CYX

could be found over the cortical regions we recorded from.
Locations of these peaks often differed for different error types and
different signal components. Thus, we did not notice any
topographical location that was systematically beneficial for
detecting either outcome or execution errors.

Error Detection Using Signals from Motor or
Somatosensory Areas
We compared the performance of error detection based on

recordings from different anatomical subareas (motor, somatosen-
sory and other areas) to the error detection performance based on
recordings from all channels (Figure 9). For all 4 participants, the
detection performance was highest when all electrodes were used;
with subarea electrode sets reaching in some cases an equivalent
performance.
Next, we tested if recordings from motor or somatosensory areas

provided enough information for high accuracy of error detection.
To this end, we calculated the percentage of CYX achieved when
using signals from these areas compared to the CYX values
achieved when using all ECoG grid electrodes. These percentages
were first averaged over all tolerance values and then over
subjects. For S2, motor and somatosensory cortex was not well
covered with electrodes as only 3 or 2 electrodes recorded from
these areas (Table 4). We, therefore, excluded S2 from this
analysis. Detection performance from motor cortex signals was

7562% and 7764% of the total detection performance for
outcome and execution error respectively. Performance from
somatosensory cortex signals reached 6362% (outcome error) and
5063% (execution error) of the total performance.

Detection from Smaller Electrode Sets
We investigated whether one can detect error events with

smaller electrode subsets with accuracy similar to detection when
all ECoG grid electrodes were used (Figure 10). When both
frequency components were used for the tolerance of 366 ms,
maximum CYX from single electrodes was 6066% for outcome
error and 6669% for execution error of the CYX when all
electrodes were used. For electrode quartets and both frequency
components, maximum CYX was 8766% for outcome error and
78610% for execution error of CYX when all electrodes were used.

Effect of MRNR Subtraction on the Normalized Mutual
Information
We also investigated whether MRNR subtraction affected the

detection of the error events (Figure 11). Over all subjects and
tolerance values, the difference in CYX when MRNR subtraction
was and was not used was not significant when both LFC and
HFC were used for detection, except for tolerances of 472 ms and
1 s for execution error for which the signals without MRNR
subtraction gave higher CYX values (CYX difference for tolerance of
366 ms: outcome: 20.0160.05; execution: 0.0060.04). When
only LFC was used for detection, using MRNR subtraction lead to
a slight, but significant improvement, except for execution error
for tolerances of 155 ms and 261 ms (CYX difference for tolerance
of 366 ms: outcome error: 20.1460.04; execution error:
20.0760.03). For the high frequency component, using MRNR
subtraction did not change the CYX values, except for outcome
error for tolerances of 155 ms and 894 ms, for which the CYX

values were slightly significantly worse (CYX difference for tolerance
of 366 ms: outcome error: 0.0360.05; execution error:
0.0060.04).

Selection of the Classifier Type for Detection: rLDA vs.
rQDA
We compared the detection performance between rLDA and

rQDA (Figure 12). rQDA is more flexible, but has the drawback
that more free parameters need to be estimated from the training
dataset. The number of free parameters is a quadratic function of
the number of signal features, which, in turn, is the product of the
number of electrodes and the number of features taken from each
single electrode. Therefore, if the dataset is quite large and the
total number of features used to build the classifier is quite small,
rQDA might outperform rLDA. On the other hand, if the data is
limited and the total number of features is high, rLDA might
outperform rQDA. We wanted to determine in which one of these
two regimes our dataset was.

Table 2. Total dataset length for different temporal tolerances.

Tolerance 50 ms 155 ms 261 ms 366 ms 472 ms 577 ms 683 ms 788 ms 894 ms 1 s

Dataset length LFC 34 253 10 898 6 233 4 347 3 326 2 724 2 274 1 947 1 701 1 503

HFC 31 041 9 892 5 665 3 953 3 030 2 482 2 076 1 780 1 557 1 381

LCF &
HFC

31 041 9 892 5 665 3 953 3 030 2 482 2 076 1 780 1 557 1 381

doi:10.1371/journal.pone.0055235.t002
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If signals from single electrodes were used for detection, rLDA
and rQDA yielded essentially the same performance, with
differences being small compared to the performance of any of
the classifiers and, in many cases, insignificant (Figure 12). If
signals from electrode quartets were used, rLDA performance was
in most cases significantly higher than rQDA, but always at least as
high as rQDA. For all electrodes, rLDA always significantly
outperformed rQDA.

Discussion

In our previous study [16] we demonstrated that the ECoG
signals used here for error detection indeed reflect outcome and
execution ERNRs and are not related to movements or caused by
visual stimuli or surprise effects. Here, we showed that both
outcome and execution error events can be reliably detected from
continuous neuronal activity measured with ECoG electrode

Table 3. Detection accuracy.

Outcome error Execution error

S1 S2 S3 S4 S1 S2 S3 S4

CYX 0.8260.06 0.5060.09 0.7260.09 0.5560.09 0.2460.05 0.3360.05 0.5760.08 0.2560.10

TPR 0.9260.04 0.7960.09 0.8760.08 0.7360.08 0.5260.07 0.6660.06 0.8160.07 0.4360.12

FPR 0.1360.05 0.5860.08 0.2360.09 0.2460.08 0.7360.05 0.6260.05 0.4660.07 0.5660.12

Detection accuracy when both LFC and HCF signals from all ECoG electrodes are used for detection using rLDA.
doi:10.1371/journal.pone.0055235.t003

Figure 6. Examples of detector output time courses for each of the subjects. Probabilities of a detected error are shown together with the
times of the detected events (red dots). The interval considered as correctly decoded error event using the tolerance of 366 ms is shown by green
lines and the detection threshold by a dashed red line. Ticks on the time axis mark the borders of each of the time bins used to calculate the
detection performance measures.
doi:10.1371/journal.pone.0055235.g006
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implants. These results suggest that, for both error types, it is
possible to detect more than half of the errors and that the number
of false positive detections is comparable to the number of true
positive detections. In our experiment, error events were extremely
rare. Therefore, these results suggest that error events can be
detected with high reliability. This notion is supported by the
relatively high values of the normalized mutual information.

Signals informative about the times of error events were not
found in one isolated cortical area only, but rather in multiple
different areas (Figure 8). Often, it was possible to find several,
mutually isolated CYX peaks in one subject for the same error type
and the same frequency component. In addition, CYX peaks often
had different locations for different error types and different
location for different frequency components. This suggests that

Figure 7. Overview of detection results. Detection accuracy was measured when signals from all ECoG electrodes were used for detecting
outcome (top half) and execution (bottom half) errors. For detection, we used the low frequency component (dashed line), the high frequency
component (dotted line) or both frequency components together (full line). Top rows of panels show the TPR (blue lines) and FPR (red lines), while
the bottom rows of panels show the normalized mutual information CYX (black lines). Error bars show 95% confidence intervals. Different columns
show results for different subjects. Detection was made using rLDA.
doi:10.1371/journal.pone.0055235.g007
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neuronal responses coding for outcome errors might be indepen-
dent from the neuronal responses coding for execution errors. In
addition, it suggests that low and high frequency component of the
neuronal responses coding for the same error might also be
independent. This is consistent with results in the previous study
by Milekovic et al. [16], where it was shown that the topographical
distribution of ERNR’s signal to noise ratio had similar,
distributed properties.

We also tested whether signals from a particular anatomical
area gave more or less informative signals for detection. To this
end, we divided the ECoG electrodes for each of the subjects into
three subsets: motor set, somatosensory set and the ‘other’ set. In
S2, the ECoG grid was implanted more ventrally than in other
subjects, thereby covering only the ventral motor and somatosen-
sory areas. In addition, ESM was not performed on S2. Therefore,
for S2, we had to use anatomical reconstruction of major cortical

Figure 8. Spatial distribution of CYX for detection of outcome and execution errors. Detection was performed by using either low or high
frequency components of the signals recorded from electrode quartets (262 neighboring electrodes). Purple lines depict the central sulcus, the
Sylvian fissure and, for S2 only, the pre and post central sulci. Letters in the squares mark the functional subarea (A – arm, H – hand, L – leg, E – ocular,
O – oro-facial) in motor (purple) and somatosensory (black) cortex as determined by ESM. Every coloured square represents one quartet of electrodes
with the electrodes at the corners of the square. Colours of the squares depict the normalized mutual information according to the colour bar. Since
no recordings were made from the top row of grid electrodes for S2, we show the top row of quartets as white. The top left square in the ECoG grids
correspond to the electrode closest to the red star in Figure 3. Detection was made using rLDA.
doi:10.1371/journal.pone.0055235.g008
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sulci locations from the patients’ MRI scans to determine which
electrodes belonged to motor and somatosensory subsets. This
resulted in a motor set of only 3 electrodes and a somatosensory set
of only 2 electrodes (Table 4). Due to the low number of electrodes
in these subsets, and due to the more ventral location of the ECoG
implant, we decided that detection results of motor and
somatosensory sets for S2 were not representative as these areas
were not sufficiently covered and, therefore, excluded S2 from the
anatomical area specific analysis. For the remaining three subjects,
none of the anatomical subsets provide better signals for detecting
outcome errors. In the case of execution error, detection using
motor and other electrode subsets was similar and only a bit better
then detection from the somatosensory subset.
A complete 868 electrode ECoG grid covers a surface of

around 64 cm2. To implant such grids, a craniotomy of similar
size is required. Studies on risk factors of subchronic implantations
for pre-neurosurgical epilepsy diagnostics indicate that the size of
the implant is a risk factor for complications of subdural ECoG
implantations [39]. Therefore, we investigated whether similar

detection accuracy could be obtained using signals from smaller
parts of the grid only. Signals from single electrodes gave much
lower detection accuracy in comparison to using all ECoG
electrodes but, nevertheless, more than 60% of the CYX value when
using all grid electrodes could be obtained for any of the error
types. Detection based on signals from electrode quartets (262
neighbouring electrodes) almost reached the level of detection
obtained by using signals from all electrodes, obtaining more than
78% of the CYX value when using all grid electrodes for any of the
error types. These results suggest that, if the optimal location for
an implant is known in advance, one could safely reduce the size of
the electrode by 16 fold, with only a small loss in detection
accuracy.
Besides reducing medical risks, there are additional benefits

when reducing the number of electrodes used for error detection.
The numerical complexity of the detection algorithm is a
quadratic function of the number of used electrodes. Therefore,
reducing the number of electrodes by 16 fold could reduce the
numerical complexity of the detection algorithm by up to 256
times, which would drastically reduce the computational require-
ments of the detection process, allowing the process to be run on
less powerful computers, or freeing computational resources for
other tasks. To determine which electrodes or electrode quartets
would be best for detection, one could run the entire detection
process on a set of data recorded for such calibration purposes. On
the other hand, such an optimization process might take a
considerable amount of computation time.
A high proportion of our electrodes were located above the

motor and somatosensory cortical areas. Therefore, it should be
expected that some fraction of our signals contained movement
related neuronal signals. In Milekovic et al. [16], analysis revealed
that large amounts of the variance on some of the electrodes could

Figure 9. Detection results when using signals from anatomical electrode subsets. CYX for detecting outcome (top) or execution (bottom)
errors using signals recorded from electrode subsets containing all electrodes over motor cortical areas (blue lines), somatosensory cortical areas (red
lines), all other remaining electrodes (green lines) and all electrodes together (black lines). Error bars show 95% confidence intervals. Detection was
made using rLDA classifier.
doi:10.1371/journal.pone.0055235.g009

Table 4. Number of electrodes belonging to different
anatomical subsets.

S1 S2 S3 S4

Motor 22 3 18 11

Somatosensory 18 2 11 14

Other 20 51 35 39

Number of electrodes belonging to motor, somatosensory and other
anatomical subsets for each of the subjects.
doi:10.1371/journal.pone.0055235.t004
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be explained by a classifier predicting neuronal signals from eye
and hand movements. This study than removed this proportion of
the signals by subtracting the movement related signals predicted
by such classifiers. Here, we performed error detection using the
same MRNR subtraction procedure and compared it to the
detection accuracy when error detection was performed without
MRNR subtraction. We found that, on average, MRNR
subtraction did not significantly change the detection accuracy,
demonstrating that our error detection was really based on error
related and not on any movement related neuronal signals.
We also compared detection accuracy between detection using

rLDA and rQDA. In our experiment, subjects performed during
about one hour of recordings, which left about 20 minutes of
recordings for training the detector. In these experimental

conditions, the detector using rLDA clearly outperformed the
detector using rQDA when signals from all ECoG electrodes were
used. In this case, the number of possible features used for
detection greatly outnumbered the number of ERNR examples
used for building the classifier. Since rQDA classifiers need to
estimate a higher number of parameters than rLDA classifiers, it is
no surprise that detection based on rLDA showed better results.
On the other hand, when signals from only a single electrodes and
a single signal component were used for detection, using rQDA
was as accurate or better than using rLDA. In this case of low
numbers of features, the detection benefited from the higher
flexibility of rQDA classifiers. But, when using signals from only 4
electrodes, detection accuracy was significantly higher when using
rLDA. For larger datasets containing more ERNR examples that

Figure 10. Detection results when using signals from electrode sets of different sizes. CYX for detection of outcome (left) or execution
(right) errors for different sizes of the electrode sets, maximized over all possible electrode subsets and averaged over subjects. We compared single
electrodes (blue lines), electrode quartets (red lines) and the set of all grid electrodes (black lines) when using low frequency component (bottom),
high frequency component (middle) or both frequency components (top) of the recorded signals. Detection was made using rLDA. Error bars show
95% confidence intervals.
doi:10.1371/journal.pone.0055235.g010
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could be used for detection classifier building, rQDA might further
outperform rLDA classifiers although, based on our studies, one
would rather include larger number of channels since, by doing so,
the gain of detection accuracy becomes higher.

Characteristics of Signal Components Used for Detection
Here, we used both low (0–8 Hz) and high (60–128 Hz for S1

and S2 and 60–200 Hz for S3 and S4) frequency components of
the neuronal signals to detect the error events. According to the
study of Milekovic et al. [16], these signal components gave two
different, possibly independent, sources of information about
errors. Other studies showed that neuronal responses with similar
spectro-temporal characteristics can be evoked by non-error
events, such as different movements [40–46], somatosensory and
auditory stimuli [47–49], word recognition [50], face recognition
[51] and attention and short term memory [52]. One could argue
that detecting ERNR in a more natural environment compared to
our, highly controlled task will be more challenging as the ERNRs
might not be differentiable from neural responses to non-error
events. This should, however, not necessarily hinder the applica-
bility of our error detection appoach. If subjects are focused on the
task at hand, they are expected to perform only minimal amounts
of additional movements, receive minimal amounts of additional
tactile stimuli and will probably not perform additional cognitive
tasks. In our task, subjects were merely asked not to move too
much and to try to remain focused on the task. We argue that they
would show similar behavior if they were motivated to perform the
task for their personal benefit, such as navigating the cursor or

artificial hand towards the target. Therefore, we think that the
ECoG signal can also be applied for online continuous error
detection under more natural conditions.
Detection of error events could still be possible, even in

environments with more somatosensory stimuli and more different
tasks at once. ERNRs used in this study were evoked on multiple,
often quite distant, electrodes and these evoked responses
exhibited quite different time courses. This makes the ERNR
responses highly redundant and likely differentiable to other, non-
error neuronal responses. Some of the earlier mentioned studies
already used these signal properties to differentiate between
neuronal responses to different non-error events [40,41,49] and
the same principle could work for ERNRs as well. Further studies
are required to test the accuracy of error detection in such more
complex environments.

Comparison to Previous Detection Studies
Several studies investigated the detection of epileptic seizures

from neuronal recordings [53,54]. Since epileptic seizures occur
very rarely and cause hospital staff alarms during the epileptic
assessment periods, there is a strong requirement to keep the
number of false positive detections at a minimum. Therefore,
when measuring the accuracy of seizure detections, TPR is usually
combined with the number of false positives per hour [55]. Since
the frequency of decoding errors during continuous control with
current BMI approaches is much higher than the typical number
of epileptic seizures, using the number of false positives per hour as
a measure of performance does not apply well to error detection. A

Figure 11. Detection results when using signals with or without MRNR subtraction. CYX for detection of outcome (top) or execution
(bottom) errors when using signals with (red) and without (blue) MRNR subtraction from all electrodes. Different columns show CYX when low
frequency component (left), high frequency component (center) or both signal components (right) of the recorded signals were used for detection.
Error bars show 95% confidence intervals. Detection was made using rLDA.
doi:10.1371/journal.pone.0055235.g011
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number of other studies used neuronal signals to detect movement
related events, such as movement onset [56–59], movement
planning phase [60] and periods of movement related synchro-
nization and desynchronization [27]. These studies mainly used
TPR and FPR to visualize the detection results, while some of them
used the Youden index i=TPR-FPR [61] as a single measure of
detection performance [56,59]. Solis-Escalante et al. [27] used
mutual information to report their final results, but still used the
Youden index to calibrate their detector. Here, due to its strong

theoretical foundations, we used normalized mutual information
to both calibrate the detector and measure its accuracy.
The afore mentioned studies used a wide variety of algorithms

for detection: expectation maximization Gaussian mixture classi-
fier [59], k nearest neighbors [57], linear discriminant analysis
[57], local field potential b-band power threshold crossing [58],
cross-correlation threshold crossing [56], support vector machines
[27], recursive Bayesian classifier [60] and phase slope index
threshold crossing [54]. Here, we used regularized versions of

Figure 12. Detection results when using rLDA or rQDA classifiers. CYX for detection of outcome (top) or execution (bottom) errors for
different electrode set sizes, using LFC (blue lines), HFC (red lines) or both components together (black lines) and for rLDA (full lines) and rQDA
(dotted lines) based detection algorithms, averaged over all subjects and all possible electrode subsets. Error bars show 95% confidence intervals.
doi:10.1371/journal.pone.0055235.g012
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linear and quadratic discriminant analyses with a variable
threshold for detection. This makes our algorithms linear or
quadratic in nature. Use of more complex and flexible algorithms
might improve the detection, although, in the present study, the
simpler rLDA algorithm outperformed the more complex rQDA
algorithm whenever more than one electrode or signal component
was used.
The afore mentioned studies detecting movement states did not

investigate the effect of temporal tolerance on the precision of the
detector. Here, we showed that detection accuracy rises with the
tolerance, until it saturates at around 300–500 ms. This implies
that ERNRs used to detect error events are not perfectly timed to
those events, and that the variability or ERNRs in response to
error events is at the level of 300–500 ms. Reasons for this
variability might be imprecision due to noise or other kinds of
neuronal activity (e.g. ongoing activity) or the variability in the
time subjects needed to recognize the error. Measurements of
choice reaction time variability [62] have reported reaction time
variability of about 400 ms (95% of all reactions). In any case, the
variability caused by the limited detection frequency of 32 Hz
should be negligible compared to other effects.

Comparison to Previous ERNR Studies
Most of the earlier ERNR studies concentrated on activity of

the anterior cingulate cortex (ACC) and its functional significance
[63–65]. These studies were conducted using trial-based tasks
measuring brain activity by the electroencephalogram (EEG). The
observed neuronal responses were classified into several types:
response error related negativity (rERN) [66,67], feedback error
related negativity (fERN) [68], observation error potential (oErrP)
[69] and interaction error potential (iErrP) [70]. In contrast to
these studies, we investigated errors during a continuous task. At
this stage, it is unclear what the relation between the mechanisms
generating these two kinds of responses is or whether the
mechanisms are different at all. Krigolson and Holroyd [15,18]
compared EEG correlates of error-related activity during a
continuous tracking task to the ERNs observed in trial-based
tasks of previous studies [67,68]. Krigolson and Holroyd report
similarities (e.g. spatial distribution of the neuronal error signal)
and differences (e.g. in the timing of the response) between the
continuous error responses recorded in their study and trial-based
rERN and fERN reported in other studies. However, in contrast
to our study they use EEG instead of ECoG and their continuous
task is also different from ours. Thus, further investigations would
be needed to clarify the relation between the ERNRs reported in
our study and the well-established ERN. To address this
interesting question, one could compare trial-based and continu-
ous error responses in the same subjects using the same recording
methodology. To the best of our knowledge, no such study has
been carried out so far and we consider this to be an interesting
topic for future research.
ERNRs have also previously been found in motor cortex

[14,16,69,71], somatosensory cortex [14,16] and in other cortical
areas [14,16,72–77]. Our study extends our previous findings [16]
by showing that error related neuronal responses recorded by
ECoG can be detected in continuous neuronal activity recordings.
Furthermore, we demonstrated that outcome errors could be
detected with higher accuracy than execution errors.

Relevance for Brain Machine Interfaces
One motivation for this study was to investigate whether

ERNRs can be used to improve the performance of continuous
movement BMIs [1,3,8,9,78–80].

To achieve this goal, (i) error related neuronal signals need to be
present in the used recording of neuronal activity, (ii) these error
related signals need to be detectable, (iii) different error types (e.g.
execution and outcome error) need to be differentiable from the
signals and (iv) adaptive decoding algorithms utilizing error signals
need to be available. Extensive research in error related neuronal
signals already showed that such signals can be recorded with a
wide range of recording techniques. Specifically, Milekovic et al.
[16] showed that error signals can be recorded using ECoG during
continuous tasks and that execution errors can be differentiated
from outcome errors, thereby resolving points (i) and (iii) for ECoG
based BMIs. Adaptive algorithms decoding continuous move-
ments can indeed benefit from error detection [12,81], resolving
point (iv). In this study, we showed that error detection is possible,
thereby resolving point (ii). Even though all points have now been
resolved, it still remains necessary to demonstrate the proposed
continuous BMI decoding system that utilizes neuronal error
signals in an online study, making this an interesting topic for
future research.
Our previous study [16] showed that outcome and execution

errors can be reliably distinguished upon detection. Instead of just
providing binary information, whether a decoding error has been
made or not, detection of multiple error types could further
improve BMI operation. Outcome error detection can be used to
subsequently correct the errors [5–7,70,82]. Subsequently cor-
recting decoded trajectory errors by detecting execution errors
might not be beneficial, since BMI users will rather try to correct
the decoding mistake by corrective movements. On the other
hand, in a task where movements are made to perform some kind
of selection, e.g. by guiding a cursor to one of several target
locations, it would be possible to subsequently correct incorrect
selections by detecting outcome errors, thereby making the BMI
more efficient. In addition, outcome errors can also be used within
the reinforcement learning framework [83]. However, reinforce-
ment learning algorithms tend to require long recording sessions,
making them much slower in their adaptation towards more
efficient BMI decoders.
Detection of execution errors can be used to directly label

incorrectly decoded trajectories and, thus, the part of the
recordings that were incorrectly interpreted. Such information
can be used to facilitate BMI algorithm adaptation [12,81].
Even though we carried out offline analyses in this study, our

detection methods are directly applicable to detect errors in online
experiments and could be utilized as a part of an online BMI
system. For intermediate channel and feature numbers no special
computer hardware will be required; in fact similar preprocessing
and decoding algorithms [23,84–86] as utilized by our detection
algorithm, have already been used in real-time during online BMI
applications on standard computing hardware. For high channel/
feature numbers parallel processing, e.g. utilizing the graphics
processing unit or multiple cores of standard laptop/desktop
computers, might be used [87].
For most invasive BMIs, motor cortex is the primary target area

for the implantation of electrodes whose signals are to be used to
extract intended motor actions. We demonstrated that one can
detect error signals with high accuracy based on motor cortical
signals only. Therefore, movement decoding and error detection
may be implemented using the same electrode implants. Conse-
quently, no additional implants over other cortical areas would be
required for BMIs employing such neuronal error signals, thereby
not inflicting additional medical risk when adding error detection
to a BMI system.

Detection of Errors from Human ECoG Recordings

PLOS ONE | www.plosone.org 18 February 2013 | Volume 8 | Issue 2 | e55235



Acknowledgments

We would like to thank the subjects for participating in our study. We are
grateful to the staff of the Freiburg University Hospital, Epilepsy Center for
their help.

Author Contributions

Conceived and designed the experiments: TM TB CM. Performed the
experiments: TM TB CM. Analyzed the data: TM TB. Wrote the paper:
TM TB ASB AA CM.

References

1. Velliste M, Perel S, Spalding C, Whitford A, Schwartz A (2008) Cortical control
of a prosthetic arm for self-feeding. Nature 453: 1098–1101.

2. Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, et al. (2010)
Comparison of brain-computer interface decoding algorithms in open-loop and
closed-loop control. J Comput Neurosci 29: 73–87.

3. Kim SP, Simeral JD, Hochberg LR, Donoghue JP, Black MJ (2008) Neural
control of computer cursor velocity by decoding motor cortical spiking activity in
humans with tetraplegia. J Neural Eng 5: 455–476.

4. Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based
communication: presence of an error potential. Clinical neurophysiology :
official journal of the International Federation of Clinical Neurophysiology 111:
2138–2144.

5. Parra L, Spence C, Gerson A, Sajda P (2003) Response error correction–a
demonstration of improved human-machine performance using real-time EEG
monitoring. IEEE transactions on neural systems and rehabilitation engineering
: a publication of the IEEE Engineering in Medicine and Biology Society 11:
173–177.
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