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Abstract

Functional near-infrared spectroscopy (fNIRS) has become an established tool to investigate brain function and is, due to its
portability and resistance to electromagnetic noise, an interesting modality for brain-machine interfaces (BMIs). BMIs have
been successfully realized using the decoding of movement kinematics from intra-cortical recordings in monkey and
human. Recently, it has been shown that hemodynamic brain responses as measured by fMRI are modulated by the
direction of hand movements. However, quantitative data on the decoding of movement direction from hemodynamic
responses is still lacking and it remains unclear whether this can be achieved with fNIRS, which records signals at a lower
spatial resolution but with the advantage of being portable. Here, we recorded brain activity with fNIRS above different
cortical areas while subjects performed hand movements in two different directions. We found that hemodynamic signals in
contralateral sensorimotor areas vary with the direction of movements, though only weakly. Using these signals, movement
direction could be inferred on a single-trial basis with an accuracy of ,65% on average across subjects. The temporal
evolution of decoding accuracy resembled that of typical hemodynamic responses observed in motor experiments.
Simultaneous recordings with a head tracking system showed that head movements, at least up to some extent, do not
influence the decoding of fNIRS signals. Due to the low accuracy, fNIRS is not a viable alternative for BMIs utilizing decoding
of movement direction. However, due to its relative resistance to head movements, it is promising for studies investigating
brain activity during motor experiments.
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Introduction

Functional near-infrared spectroscopy (fNIRS) has recently
attracted the interest of researchers working on motor control [1,2]
and brain-machine interfaces (BMIs; [3]). Unlike electroenceph-
alography (EEG), fNIRS is not corrupted by electromagnetic noise
and in contrast to functional magnetic resonance imaging (fMRI),
fNIRS is portable.
Several studies have assessed the capabilities of fNIRS to

investigate brain activity or as a potential control signal for BMIs
[4–6]. Here, we investigated the characteristics of movement
related fNIRS signals recorded above motor areas. So far, fNIRS
signals have been shown to vary between rest and motor execution
or imagery [7,8] and to reflect motor task complexity [9] or force
levels exerted in isometric hand/finger contractions [10]. fNIRS
also allows to distinguish between left and right hand movements
(performed or imagined), i.e. between left and right hemispheric
motor activity [3,11,12].
Until now it has been unknown whether the spatial resolution

and the signal-to-noise ratio of fNIRS are sufficient to investigate
cortical activity related to different movements of the same limb.

This question is of interest for motor control and BMIs, where the
decoded direction of upper limb movements can be used as a
control signal. Georgopoulos and colleagues [13] found a
systematic dependence of single neuron spiking activity in monkey
primary motor cortex on arm movement direction. Since then,
systematic relations between spiking activity and various move-
ment parameters have been found and online BMIs using decoded
movement kinematics have been realized [14,15]. Recently,
researchers showed that not only spiking activity is tuned to
movement parameters but also signals reflecting the activity of
neuronal populations: local field potentials, electrocortico-
(ECoG), magnetoencephalograms and EEG, see review [16];
corresponding online BMIs have been realized using ECoG [17]
and MEG [18].
Research on respective tuning of hemodynamic signals com-

menced only recently. Studies using fMRI found single voxel
activity to depend on hand/arm movement direction [19–21].
These studies suggest that the directional tuning of hemodynamic
signals might be used as a BMI control signal. However, fMRI is
not portable and therefore, not suitable for many BMI applica-
tions. fNIRS, a portable and low-cost technique, might instead be
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used to gather these signals but until now, it has remained unclear
whether movement kinematics can be extract from fNIRS signals.
Therefore, we investigated fNIRS signals recorded simulta-

neously above several brain regions while subjects performed
unilateral hand movements in different directions. We character-
ized the spatio-temporal properties of hemodynamic signals,
quantified the strength of movement dependent differences and
performed single-trial decoding of movement direction from
fNIRS signals. Furthermore, we used a magnetic tracking system
to measure and analyze the influence of head movements on
fNIRS.

Materials and Methods

Subjects and Ethics Statement
Seventeen naı̈ve subjects (aged between 20 and 45, average

26.865.6, seven female, ten male) participated in this study after
giving written informed consent. From these subjects, five (aged
between 22 and 30, average 26.662.8, one female, four male)
participated in a pilot experiment and twelve (aged between 21
and 45, average 26.866.4, six female, six male) in the main
experiment. The experimental procedures have been approved by
the Ethics Committee of the University of Freiburg.

Recording Systems – fNIRS
Hemodynamic brain activity was recorded using the fNIRS

system ‘DYNOT-932’ from NirX Medical Technologies. The
system operates at wavelengths of 760 and 830 nm and provides
32 optodes, from which 23 are detectors and nine are co-located
sources. Flexible distribution of the optodes on the scalp was
possible. Each detector measured the light intensity at 7.94 Hz
sampling rate.

Recording Systems - Head Tracking
Head movements were recorded with the magnetic tracking

system ‘Patriot’ from Polhemus. The device recorded the position
and orientation (six degrees of freedom) with a resolution of
11.7 mm and 0.0031u, respectively, for source-sensor distances
around 30 cm. The sensor was attached at a medial occipital
position at the fNIRS helmet. The source creating the magnetic
field was placed at approximately the same height and 30 cm
behind the sensor (Figure 1A). The head position was sampled at
30 Hz. The smallest distance between the magnetic sensor and the
metal sheaths of all optodes was approximately 6 cm. We could
not detect any differences in the measurements of the tracking
system with or without the helmet and optodes (similar precision
according to visual interpretation of data recorded during
extended position tracking).
The tracking system also provided a stylus, which was used to

determine the 3D-coordinates of the optodes and the surface of the
scalp.
Control of the tracking system and the presentation of visual

cues were realized in separate Matlab programs. Both Matlab
programs as well as the software controlling the fNIRS system ran
on the same computer, which allowed for synchronization of the
three systems based on system time.

Experimental Setup and Paradigm
Subjects were seated approximately 60 cm in front of a

computer screen and asked to rest their head on a chin rest in
order to reduce head movements and support the weight of the
fNIRS helmet with optodes during the experiment. Optodes were
positioned above contra- and ipsilateral sensorimotor areas (C3
and C4 position, 10–20 system) as well as above ipsilateral

prefrontal and occipital areas (Figure 2). The right forearm rested
on a pillow to prevent arm and shoulder movements (Figure 1A).
The posture was adjusted so that the right hand was relaxed and
could move without contact to objects or obstacles.
Subjects continuously gazed at a fixation cross. Visual cues (size

,1.2u) were presented on the screen according to the sequence
shown in Figure 1B. Each trial started (white square) with the hand
hanging down in a relaxed position (home position). Subjects were
instructed to perform periodic (,0.25 Hz) hand movements
causing the finger tips to alternate between the outer and home
position for ten seconds in each trial (directions: left – radial
deviation of the wrist and finger extension, up - dorsiflexion of the
wrist and finger extension, right - ulnar radiation of the wrist and
finger extension, down - palmar flexion of the wrist and finger
flexion). Movement amplitudes (,5 cm) and speeds were approx-
imately the same for all directions. Directions were indicated in a
pseudo-random order by a visual cue. A temporal jitter between
the preparation (white square) and the directional cue (arrow)
prevented periodic signals (e.g. heart beat, breathing or Mayer
wave) to influence fNIRS signals in a consistent manner.
We performed a pilot experiment (five subjects) using all four

movement directions to estimate which two of the four directions
could be distinguished best from the fNIRS signals. In this pilot
experiment, subjects were instructed to prevent any head
movements while moving their hand in one of the four directions
as instructed by the corresponding cue. Each movement direction
had to be performed 20 times. No head tracking data were
recorded during the pilot experiment.
Based on the results of the pilot experiment, we selected two

movement directions (left- and downwards, see Results) in order to
increase the number of trials per movement direction in the main
experiment. The main experiment (twelve subjects) consisted of
two sessions. Each session comprised 30 trials per direction and
recordings of head tracking data. In session 1, we instructed the
subjects to prevent any head movements while moving the hand.
After a short break, we continued with session 2 (control). In this
session, the posture was the same but we instructed the subjects to
not move the hand but instead to perform small direction-
correlated head movements (left - head shaking left right, down -
head nodding up down) in the same periodic pattern as previously
for the hand in session 1. The amplitude of head movements was
similar for both directions and less than 1 cm (, ca. 3u yaw (left)
and pitch (down)).

Data Analysis – fNIRS
The fNIRS signals were low-pass filtered using a 3rd order

Butterworth filter. In most analyses, acausal filtering (zero phase
shift) with 0.15 Hz cutoff was applied. As acausal filtering requires
knowledge about the signal’s future, it cannot be applied in a real-
time BMI. Therefore, we applied causal filtering using a corrected
cutoff [22] of 0.12 Hz in the decoding analysis. After filtering, the
signal was cut into trials ranging from six seconds before
movement onset (MO) to 25 seconds after movement end (ME).
All trials were used, i.e. no trials were rejected.
Raw fNIRS signals were converted to relative concentration

changes according to [23]: division by baseline, taking of the
negative logarithm, integration of absorption coefficients. The
average signal over the second preceding MO was used as baseline
and the absorption coefficients were obtained by averaging the
individual coefficients provided in Wray and colleagues [24] and
Prahl [25]. Not all theoretically possible 288 channels (source-
detector pairs) provided reasonable signals due to too small or
large distances. Therefore, data analysis was performed using
channels selected in a two-step procedure: First, channels were
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Figure 1. Experimental setup and trial structure. (A) Experimental setup showing the fNIRS optodes and the source and sensor of the magnetic
head movement tracking device. (B) Trial structure, timing and visual cues presented to the subjects. The white square indicated the preparation cue,
followed by the white arrow indicating the direction of hand (or head) movements to be performed between movement onset (green square) and
end (red square). The trial number was displayed continuously in the lower left corner of the screen (numbers not in scale).
doi:10.1371/journal.pone.0049266.g001

Figure 2. Optode setup, numbers and positions mapped on the scalp (red - source, blue - detector).
doi:10.1371/journal.pone.0049266.g002

fNIRS: Directional Tuning & Movement Resistance

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e49266



selected which across all trials only contained real values for
relative concentration changes (complex values can occur due to
the logarithm used in conversion from negative values in raw data,
negative values being caused by strong noise in weak signals).
From this group of channels, only those with source-detector
distances between 2.5 and 5.2 cm (long-distance channels) were
selected. Signals recorded on channels with shorter source-
detector distances are unlikely to have penetrated cortical tissue.
However, such channels can be used for artifact assessment and
are, therefore, included in some analyses (explicitly indicated).
Likewise, contralateral sensorimotor signals with corresponding
source-detector distances in the range of 0–2 cm (short-distance
channels) were decoded for comparison.

Data Analysis – Head Tracking
The tracking data were filtered (causal) and cut into trials

exactly as the fNIRS signals. These data thus reflect changes of
head position and orientation with respect to the position and
orientation during the second preceding movement onset. The
head tracking data were resampled to 7.94 Hz (the sampling rate
of the fNIRS data).

Topographies
The 3D coordinates of the optodes above contralateral

sensorimotor areas were reduced to 2D coordinates using PCA,
i.e. contralateral optodes were projected on a ‘‘best-fit’’ (least-
square) plane using the two principle components with largest
eigenvalues of the 3D coordinates. Using the projected 2D
coordinates, the previously selected, contralateral fNIRS channels
were positioned midway between their corresponding source and
detector. Hemodynamic signals of single channels were plotted at
this position.
Furthermore, these positions were used to calculate an

interpolated topographical activity map (Matlab function ‘TriS-
catteredInterp’, linear interpolation). The spatial distribution of
the signal-to-noise ratio (difference between the mean signals l

(left) and d (down) for both movement directions, divided by the
standard deviation of the mean corrected trials l and d across both
directions)

SNR~
Dl{d D

std l{l,d{d
! "

was calculated in this activity map.

Decoding
The fNIRS and head tracking data were decoded on a single-

trial basis with regularized linear discriminant analysis (RLDA;
[26]) and non-linear support vector machines (SVM, LibSVM;
[27]) with radial basis functions. For each subject, decoding
performance of both classifiers were determined as the average
across 5–10 times 10-fold cross-validations. The sets of trials used
for training and decoding were mutually exclusive. Hyperpara-
meters were determined exclusively using training data. The
decoding performance was quantified as the percentage of
correctly decoded trials, termed decoding accuracy (DA). As input
to the classifier we used the amplitude of the fNIRS signals at
single time points (time-resolved decoding) or multiple time points
of either single channels, channel groups, all contralateral
sensorimotor channels (27 to 42 (Ø35) channels per subject) or
all channels above the ipsilateral hemisphere (7 channels for all but
one (4 channels) subject). The statistical significance of the
individual or average decoding performance for all subjects was

estimated using the binomial cumulative distribution of the
subject-individual data or the data pooled across all subjects,
respectively. With t being the number of targets and n the number
of decoded trials, the probability to predict the correct target at
least k times by chance is calculated as follows:

p(k)~
Xn

i~k
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Thus, all decoding accuracies larger than l = 100 6 k/n are
considered significant with a p-value smaller than p(k).

Results

For the pilot experiment, comprising four movement directions
and five subjects, we only calculated the time-resolved decoding
accuracy with RLDA (not shown) and found a maximum average
accuracy of 36% (binomial test: p,0.01, 3% standard error of the
mean (s.e.m.)) around ME. Additionally, we performed pair-wise
decoding, i.e. left vs. right, down vs. up, etc. and found that on
average across all subjects left vs. down provided a slightly higher
decoding accuracy (71%) than pairs of the other directions (58% to
64%). We decided to use left vs. down in the main experiment with
twelve additional subjects.
All results presented in the following are based on the main

experiment.

Characteristics of fNIRS Signals Related to Movements of
One Hand in Different Directions

Comparing signals of the same movement
direction. For all subjects and independently of movement
direction, several channels above contralateral sensorimotor areas
detected movement related hemodynamic responses (Figure 3).
Besides this common pattern, the waveform of the signals was not
uniform across subjects but differed in characteristics like
maximum amplitude, time point of maximum amplitude, and
duration to decline to baseline after ME, or also whether the
signals were uni- or bimodal.
fNIRS signals measured above contralateral sensorimotor areas

were always substantially stronger than those above ipsilateral
sensorimotor areas (paired one-tailed t-test: p,0.01 for ten
subjects, p,0.08 for two subjects; source-detector distances
,5.2 cm). Movement related neuronal activity in ipsilateral
sensorimotor areas is known from electrophysiological studies
[28–32] as well as fNIRS [3,33]. Furthermore, hemodynamic
responses above prefrontal or occipital areas were always lower
than those above contralateral sensorimotor areas, comparable to
those above ipsilateral sensorimotor areas or not detectable (four
subjects) (example subject 8: Figure 4, all subjects overview:
Figure 5).

Comparing signals for one movement direction against
the other. Within subjects, the trial-averaged fNIRS signals for
both directions were almost identical for some channels, for other
channels the signals differed in amplitude and for some subjects
also in waveform (Figure 3). However, there was no systematic
amplitude difference across subjects, i.e. for some subjects leftward
movements caused higher hemodynamic responses than down-
ward movements and vice versa for other subjects. In five subjects,
responses for leftward movements were for some channels higher
and for other channels lower than those for downward
movements.

Topographies. To visualize the topographical distribution of
hemodynamic responses elicited by the two movement directions,

fNIRS: Directional Tuning & Movement Resistance
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we computed an interpolated map of the activity measured above
contralateral sensorimotor areas and computed the activity above
prefrontal, ipsilateral sensorimotor and occipital areas by sepa-
rately averaging the signals recorded by the corresponding
channels (Figure 4). For all subjects, the interpolated activity
map of the contralateral sensorimotor areas showed a focal
increase of oxygen supply (Figure 5). The location of this focal
increase was similar for both movement directions.
Based on the activity map (contralateral sensorimotor area) and

the averaged signals (ipsilateral hemisphere), we computed the
topographic distribution of SNRs for left- versus downward
movements. The SNR maps for individual subjects were
heterogeneous (Figure 5). For some subjects, the area of highest
SNR was focal and often coincided with the area of strongest
activity. For other subjects, this area did not coincide with the area
of strongest activity and was not focal, but also never uniformly
covered the complete map. For all subjects (except subjects 2 and
12), the SNR of the contralateral sensorimotor areas was higher
than that of ipsilateral prefrontal, sensorimotor and occipital areas.

Decoding of Movement Direction
Decoding of fNIRS signals. Using RLDA to decode single-

trial fNIRS signals recorded above contralateral sensorimotor
areas during left- and downward movements of the right hand, we
found the decoding performance to vary across subjects (Table 1
and Figure 6A).
For comparison with the head tracking data and to provide a

general estimate of what performance to expect when in such a
BMI, we focused on the time-resolved decoding curves (Figure 6A)
for all following results. Averaging decoding curves across all
subjects revealed a maximum DA of 64% (binomial test: p,0.001,
3% s.e.m.) around 12 s after MO (Figure 6B; values for acausal
filter: max 66% around 8.7 s, 2% s.e.m.; hence ,65% as reported
in the abstract). DA started to continuously increase from chance
level around 7 s after MO, exceeding the significance level
(binomial test: p,0.001) around 9.3 s and reaching a plateau
around 11.3 s after MO (acausal filter: 2.4, 4.5 and 8.3 s,
respectively). DA declined after ME and fell below significance
level around 6.9 s later (acausal filter: 4 s).
Importantly, DA for contralateral sensorimotor areas remained

around chance level when only channels with source-sensor
distances 0–2 cm were used as input to the decoder (not shown).

Likewise, the signals measured with channels above the ipsilateral
hemisphere yielded a DA which fluctuated around chance level
and never reached significance (Figure 6B).
Decoding performance decreased to 58% (causal, 59% acausal)

if the HbR instead of HbO signals were classified. Feature vectors
composed of both signals did not improve decoding accuracy
(HbO+HbR: 65% causal, 64% acausal) compared to the decoding
accuracy obtained using HbO alone.
Likewise, non-linear classification or different preprocessing of

the fNIRS signals as well as decoding from multiple time points
did not improve the decoding accuracy for HbO: using non-linear
SVMs with radial basis functions and a grid search for parameter
optimization (kernel size and either nu or C), yielded on average
across subjects a DA around 63/66% (C/nu, 4/3% s.e.m.; values
for acausal filter: 65/64%, 4/3% s.e.m.; all DAs significant with
p,0.001, binomial test), similar to the decoding accuracy obtained
by RLDA (no significant difference between both SVMs or
between either SVM and RLDA, Wilcoxon signed rank test
p..0.05). Using the cutoffs 0.3 or 0.5 Hz for the low-pass filter or
a sliding window including multiple time points as input to the
RLDA also resulted in similar peak decoding accuracies (63%, 3%
s.e.m.; for acausal filter: 66%, 3% s.e.m.; all DAs significant with
p,0.001, binomial test) on average across subjects.
Next, the acausally filtered, contralateral HbO signals at 8.7 s

(time point of highest decoding) were decoded using groups of
increasing numbers of randomly selected channels, numbers
ranging from one to 35 channels. This procedure was repeated
35 times per subject and carried out for the average across all
subjects and, due to the high variability over subjects and a
possible subgroup of better performing subjects, also separately for
the average across the five subjects showing highest decoding
performance (Figure 6A and Table 1: S3, S4, S6, S9, S11). The
following holds for both groups of subjects: The average decoding
performance increases with the number of channels, starting at
chance level for one random channel and reaching maximum DA
for 35 channels (Figure 7A, black curves). If the group of channels
contained only those channels which showed highest single
channel decoding (‘best channels first’, single channel DA
determined in a ten times 10-fold cross-validation), the decoding
performance curves are very similar but start at a higher DA
(Figure 7A, gray curves).

Figure 3. Average hemodynamic responses. Average hemodynamic responses recorded by one exemplary, contralateral sensorimotor channel
for each subject (acausal filter, red solid/dashed - HbO/HbR leftward hand movements, blue solid/dashed - HbO/HbR downward hand movements,
shaded areas - standard error of the mean, ordinate - concentration change, abscissa - time relative to movement onset, vertical black lines -
movement onset and end).
doi:10.1371/journal.pone.0049266.g003
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Figure 4. Topographic distribution of hemodynamic responses for subject 8. (A) Contralateral sensorimotor optodes mapped on a plane
(3D positions shown in Figure 2) and average hemodynamic responses (HbO, acausal filter, Figure 3) for exemplary contralateral sensorimotor
channels (insets). Insets are positioned in relation to the sources (S) and detectors (D). (B) Same as (A) but hemodynamic responses interpolated using
original signals and channel positions. Insets in the right column show the hemodynamic responses averaged across trials and channels above the
ipsilateral-prefrontal, ipsilateral-sensorimotor and ipsilateral-occipital brain areas as indicated (ipsilateral channels with source-detector distances
,5.2 cm). (C) Hemodynamic responses for leftward movements as in (B) but color-coded amplitudes (in mM*mm) around movement end. This
presentation is used in Figure 5.
doi:10.1371/journal.pone.0049266.g004

fNIRS: Directional Tuning & Movement Resistance
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Among the ten ‘best’ channels (showing highest single channel
decoding) for each subject, most had a source-detector distance
around 3 cm (Figure 7B, pooled across all subjects, hence 120
‘best’ channels in total, or pooled across five subjects, hence 50
‘best’ channels in total). However, the total number of recorded
channels varied strongly across source-detector distances. If the
number of ‘best’ channels for each source-detector distance is
normalized by the total number of recorded channels for this
source-detector distance, the distribution of ‘best’ channels across
distances between 2.5 and 5.2 cm is more uniform (Figure 7C).
Still, channels with distances between 3 and 4.5 cm tended to be
more likely among the ‘best’ channels.

Decoding of head tracking data, comparison of sessions 1
and 2. Although subjects were instructed to prevent head
movements in session 1 (hand but no head movements), data of the
high-precision head tracking system could be decoded with a peak
DA of around 77% (binomial test: p,0.001, 4% s.e.m.) on average
across subjects (Figure 6B). DA rapidly increased after MO and
remained at a plateau until ME. Thus, subjects made unconscious
head movements that were correlated to the direction of hand
movements and clearly measurable with the head tracker. Yet, the
decoding of the head movements yielded a time course of DA
which was strikingly different from the time course of the DA of
the fNIRS signals, which resembled the time course of the
hemodynamic responses (Figure 6B, DA; Figure 3, hemodynamic
response).
In session 2 (control: voluntary, small direction-correlated head

but no hand movements), decoding of the head tracking signals
resulted in a similar time course of DA as for session 1 with an
even higher plateau of around 88% (binomial test: p,0.001, 4%
s.e.m., Figure 6B). This indicates at least equally strong head
movements in sessions 1 and 2, which we further confirmed by
comparing the amplitude of head movements of both sessions
(amplitudes in session 2 were two to twenty times larger than and
rarely similar to those in session 1). Although the DA of the head
tracking data was higher in session 2, the DA for the contralateral
fNIRS signals from this session fluctuated around chance level.

Discussion

We showed that hemodynamic signals recorded with fNIRS
above contralateral sensorimotor areas vary with the direction of
hand movements and can be decoded with ,65% accuracy. This
finding closes a gap in previous research about directional tuning
by completing the spectrum of signal types, so far comprising
intra- and extracranial electrophysiological recordings and fMRI.
The modulation of fNIRS signals by movement direction is weak
and the decodable directional information too low for an
application in practical BMIs. Our results also demonstrate that
fNIRS is relatively resistant to head movements, which makes an
application of fNIRS in motor control studies promising.

Characteristics of fNIRS Signals & Topographies
Across subjects neither the waveform of fNIRS signals nor their

directional tuning was uniform, e.g. for some channels the signal
amplitude differed with movement direction, for other channels
the signal waveform varied with direction (Figure 3). Such signal
diversity is a common finding for all recording techniques and

Figure 5. Topographies for each subject around movement
end. Left and middle column: Interpolated color-coded amplitudes (in
mM*mm) of average hemodynamic response (HbO, acausal filter) for left
and downward movements, right column: interpolated signal-to-noise
ratios (color-coding equal for all subjects). The small insets adjacent to
each topography show the color-coded amplitudes of the hemody-

namic responses averaged across trials and channels above ipsilateral-
prefrontal, ipsilateral-sensorimotor and ipsilateral-occipital brain areas
(from top to down, ipsilateral channels with source-detector distances
,5.2 cm).
doi:10.1371/journal.pone.0049266.g005

fNIRS: Directional Tuning & Movement Resistance
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Figure 6. Time-resolved decoding accuracies. Time relative to movement onset, vertical black lines indicate movement onset and end,
horizontal black line indicates chance level (50%). (A) Subject individual decoding accuracies (DAs) computed using fNIRS signals (HbO, causal filter)
recorded above contralateral sensorimotor areas during hand movements (session 1). (B) Average DAs computed using precise head tracking data or
using fNIRS signals (HbO, causal filter) recorded above different brain areas and during the different tasks (sessions 1 and 2, see Materials and
Methods). Time-resolved DA based on acausally filtered fNIRS signals is shown for comparison (gray solid line, see Methods). Shaded areas reflect
standard error of the mean and the dashed line the significance level (binomial test: p,0.001) for the average decoding accuracy across all subjects.
doi:10.1371/journal.pone.0049266.g006

Table 1. Maximum decoding accuracies (DAs) within the time window 5–20 seconds after movement onset.

subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

DA (%) 67* 61 75*** 91*** 66* 78*** 54 68** 74*** 62* 79*** 54

DA values extracted after 0.5 Hz low-pass filtering the DA curves (Figure 6A) to reduce fluctuations of DA due to noise. Asterisks indicate a significant DA with *p,0.05,
**p,0.01 and ***p,0.001 (binomial test, false discovery rate corrected for multiple testing).
doi:10.1371/journal.pone.0049266.t001

fNIRS: Directional Tuning & Movement Resistance
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implies that also decoders for fNIRS BMIs should be individually
trained for each subject to increase performance.
The topographic representations revealed a focal increase of

hemodynamic activity in contralateral sensorimotor areas
(Figure 5). As the location of this increase was similar for both
movement directions, it might reflect movement related neuronal
activity in the hand area of the primary motor cortex. Differences
in the location across subjects are explained by differences in the
positions of the optodes relative to the hand area and by different
activation patterns. The area of highest SNR was also focal and
often coincided with the area of strongest activity (Figure 5). The
SNR of ipsilateral areas was lower than that of contralateral
sensorimotor areas.
These findings demonstrate that the strongest signal modulation

and most pronounced differences in the signals between both
movement directions were found above contralateral sensorimotor
areas.

Decoding of fNIRS Signals
Our results show that on average the directional information of

fNIRS is low. Different decoding strategies were applied but could
not increase accuracies. The observed differences in decoding
performance across subjects (Figure 6A, Table 1) could be due to a
suboptimal optode placement in some subjects (e.g. subjects 5, 7,
10, Figure 5) but also indicate that for some subjects (e.g. S4 and
S6, Figure 6A) fNIRS can allow for higher decoding performance.
At this stage it is unclear whether there are two groups of subjects,
one with directional fNIRS tuning and the other one without; the
maximum DAs did not indicate any multi-modality but rather a
broad distribution of decoding performance. A higher number of

subjects would allow investigating a potential grouping of subjects
according to their decoding performance.
Using HbR instead of HbO signals resulted in a performance

decrease. Thus, the HbR is less informative with respect to hand
movement direction (unilateral), which is in contrast to left hand
versus right hand movements, for which HbR can allow for similar
decoding performance as HbO [3] because control of these
movements is spatially separated into the motor areas of the two
hemispheres.
Compared to electrophysiological recordings ranging from

single- and multi-unit activity over local-field potentials and
electrocortico- to electroencephalo- and magnetocencephalograms
(for a comparison see [16]), fNIRS allowed for a much lower
accuracy in decoding hand/arm movement direction. This low
performance for fNIRS might be caused by the low spatial
resolution and extra-cortical sources (e.g. movement-unrelated
changes of blood flow in the scalp), which influence the absorption
of near-infrared light. In a related fNIRS study, Sato and
colleagues [34] estimated the direction of high isometric forces
(15 N) applied with the arm in different directions and reported
DAs of 87.5% for two and 55.5% for four directions. A
comparison is problematic as that study used large isometric
forces and did not provide information about the recorded signals.
Is it possible to increase the directional information of fNIRS by

using a higher resolution optode arrangement? We used six
sources and 15 detectors over the contralateral sensorimotor area,
which is comparable to previous studies on decoding fNIRS
signals from sensorimotor areas [3,10–12]. A more dense
arrangement of optodes might increase the decodable information;
however, source-detector distances below approximately 2 cm are

Figure 7. Decoding performance versus number of channels and source-detector distances. (A) Decoding accuracy in relation to the
number of decoded channels (black – using random channels, gray – using those channels which showed highest (‘best’) decoding on the single
channel level, solid – average across all subjects, dashed – average across the five subjects showing highest decoding performance). (B) Occurrences
of certain source-detector distances among the ten ‘best’ single channels for each subject (left: pooled across all subjects, hence 120 channels in total;
right: pooled across the five subjects showing highest individual decoding performance). (C) As (B) but normalized by the total number of recorded
contralateral channels of the same source-detector distances, yielding the likelihood of a particular source-detector distances to be among the ten
channels with highest decoding.
doi:10.1371/journal.pone.0049266.g007
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unlikely to provide reliable signals from cortical sources. Our
results show indeed that channels with source-detector distances
between 3 and 4.5 cm are more likely to contain high directional
information compared to channels with shorter (2–3 cm) or longer
(4.5–5.2 cm) distances (Figure 7C). As the density in the used
optode arrangement was already high, adding further optodes
would mainly yield additional short-distance channels and is
therefore unlikely to substantially improve accuracy. However,
performance might benefit from an optimized arrangement of
optodes which could for instance be obtained by an additional
calibration procedure or by localizing the hand area in primary
sensorimotor areas by fMRI. Whether any of the above means can
boost the accuracy of directional decoding such that it can actually
be used in a practical BMI remains a question to be addressed in
future studies.

Decoding of Head Tracking Data
Head movements could be decoded from head tracking data in

both sessions (Figure 6B). If the DA obtained for the contralateral
fNIRS signals were based on head movement artifacts, we would,
due to identical data processing, expect (a) a similar time course of
DA of fNIRS and head movement data (increase immediately
after MO, plateau from MO to ME) and (b) a DA significantly
above chance for session 2 (head movements but no hand
movements). We did not observe these effects. Even in the
presence of head movements, the fNIRS signals of contralateral
sensorimotor areas did only carry information about movement
direction when hand movements were performed (session 1).
Further tests (not shown) revealed that head movements of large
amplitudes (<.10 cm) do affect fNIRS due to mechanical
displacement of optodes.

How can fNIRS Signals Vary with the Direction of Hand
Movements?
Task-related changes in fNIRS signals could originate from

extra-cortical factors such as task-related displacement of optodes
or changes in skin blood flow [35]. Whereas movement artifacts
would affect both hemispheres and channels independently of
source-detector distances, changes in skin blood flow should affect
short-distance as well as long-distance channels. Furthermore, if
head movements caused changes in skin blood flow, these changes
should also occur in session 2 (no hand but only head movements)
and would be most likely bilateral and wide-spread. However, we
observed: significant decoding only for long-distance contralateral
sensorimotor channels, no decoding above chance for short-
distance contralateral sensorimotor channels or for signals from
the ipsilateral hemisphere, focal SNR increases and decoding
above chance only if hand movements were performed. Together
with the head tracking controls, our findings, therefore, show that
the fNIRS signals reflected tuning of cortical, hemodynamic
responses related to hand movements.

Tuning of neuronal population activity to movement parame-
ters has been demonstrated repeatedly [31,36–39], yet its origin
especially in the context of extra-cranial recordings is not
understood. In motor tasks, the intensity of hemodynamic
responses, recorded with fNIRS, seems to be directly related to
the force [10,40,41] and complexity [9] of movements, whereas
the relation to movement frequency seems to be less direct [42,43].
As we did not find a direct relation between the hemodynamic
response and the movement direction (e.g. leftward movements do
not uniformly cause higher responses) and as we instructed the
subjects to perform both movements with the same frequency, our
findings indicate that none of these three parameters (force,
complexity, frequency) had a prominent influence on the
measured fNIRS signals.
Directional tuning in recordings reflecting the activity of large

cortical areas might be explained by a large-scale ‘‘muscle map’’
because different movement directions require different muscles or
muscle activation patterns. However, such a map has not been
found and intra-cortical stimulation studies in monkeys do not
provide evidence for the representation of muscles in distinct,
separate areas [44].
Instead, previous studies suggested that directional tuning in

36363 mm fMRI voxels is observed due to neuronal clusters with
similar preferred directions [20]. It has been suggested [20] that
these clusters reflect mini-columns composed of neurons with
similar preferred directions as found in single-unit recordings in
monkey [45]. Given these findings one might explain the tuning of
the lower resolution fNIRS by assuming that fNIRS reflects the
activity of multiple fMRI voxels. To investigate whether this can
explain the strength of directional tuning found here would require
(1) a quantitative assessment of the resolution of fNIRS as well as
its signal-to-noise ratio given the influence of extra-cortical
confounding signals, and (2) assessing the distribution of
directional preferences over the range of fMRI voxels presumably
underlying the coarser fNIRS signal.
Alternatively, it has been shown that directional tuning of

neuronal population signals can emerge even in the absence of any
organization of preferred directions ([16]; see also [46] for a
similar case in the primary visual cortex).
In summary, our findings demonstrate that fNIRS allows for

investigating cortical activity associated with unilateral hand
movements. The signals vary with movement direction but
directional information is too low to be used as a control signal
in practical BMI applications. Utilization of fNRIS in motor
control studies seems particularly promising as we found fNIRS to
be relatively resistant to head movements.
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