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Most current studies of neuronal activity dynamics in cortex are based on network models
with completely random wiring. Such models are chosen for mathematical convenience, rather
than biological grounds, and additionally reflect the notorious lack of knowledge about the
neuroanatomical microstructure. Here, we describe some families of new, more realistic network
models and explore some of their properties. Specifically, we consider spatially embedded
networks and impose specific distance-dependent connectivity profiles. Each of these network
models can cover the range from purely local to completely random connectivity, controlled by
a single parameter. Stochastic graph theory is then used to describe and analyze the structure and
the topology of these networks.

1. Introduction

The architecture of any network can be an essential determinant of its respective function.
Signal processing in the brain, for example, relies on a large number of mutually connected
neurons that establish a complex network [1]. Since the seminal work of Ramoén y Cajal more
than a hundred years ago, enormous efforts have been put into uncovering the microcircuitry
of the various parts of the brain, including the neocortex [2-6]. On the level of networks,
however, our knowledge is still quite fragmentary, rendering computational network models
for cortical function notoriously underdetermined.

Networks with a probabilistically defined structure represent, from a modeler’s
perspective, a viable method to deal with this lack of detailed knowledge concerning cell-
to-cell connections [7]. In such models, data from statistical neuroanatomy (e.g., coupling
probabilities) are directly used to define ensembles of networks where only few parameters
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Figure 1: Left: reconstruction of a pyramidal cell stained in a tangential slice of the rat neocortex (top view).
Middle: schematic 2D section representing a spatially embedded network composed of locally (red lines)
connected pyramidal cells (black triangles). Right: different types of abstract networks.

are needed to define relatively complex network structures. Properties that all members of
such a statistical ensemble have in common are then regarded as “generic” for this type of
network.

Random graphs [8, 9] and more general stochastic graph models have been
mathematically analyzed in great detail. The main motivation was that striking threshold
behavior and phase transitions could be observed when certain parameters of such systems
were varied. Recently the theory of “complex networks” began to raise even more interest as
it was discovered that real-world networks of very different nature (e.g., social networks,
the Internet, and metabolic networks) share a number of universal properties [10-12].
Applications to large-scale brain organization were among the earliest applications of the new
concepts [13-15]. Here, we suggest to import some of the ideas and methods that came up in
the abstract theory of complex networks and apply them to neuronal networks at a cellular
level (Figure 1). Specifically, we provide several parametric models for spatially embedded
networks. These models allow us to synthesize biologically realistic networks with controlled
statistical properties, which serve as candidate models for cortical networks. Providing such
models supports the joint structural analysis of synthetic and biological networks.

The graph-theoretic analysis of cortical networks raises the following problem: graphs
usually do not deal with space (right part Figure 1), even though a spatial embedding
of the physical network implicitly determines some of its properties. Horizontal wiring
between cortical neurons, for example, exhibits a clear dependence on the distance of the
involved cells, indicated by the left part of Figure 1. Many synaptic contacts are formed
between close neighbors, in accordance with, and constrained by, the geometry of neuronal
dendrites and local axons [16-18]. However, there is also an appreciable number of axons
that travel for longer distances within the gray matter before making synaptic contacts with
cells further away [6, 7, 19, 20]. Absolute numbers of local and nonlocal synaptic connections
are still a matter of debate among neuroanatomists, and the same is true for the details of
the spatial organisation of synaptic projections [1, 6, 7]. Here, we consider three different
candidate network models, each representing one possible concept for the geometric layout
of distance-dependent connectivity. The uncertainty concerning the ratio of local versus
nonlocal synapses is reflected by the systematic variation of a suitable parameter in each
model. Moreover, if spatial aspects are included in simulating and analyzing cortical network
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dynamics, neurons are commonly placed on the grid points of a regular lattice [21, 22].
Cortical neurons, however, are unlikely to be arranged in a crystal-like fashion [1], neither
in three dimensions nor in a two-dimensional projection.

Altogether, we face a spatially embedded and very sparsely connected network, where
only a very small fraction of neuron pairs are synaptically coupled to each other directly.
What is the impact of these general structural features of synaptic wiring in the cortex? Do
these features matter in determining the global topology of the network? Sparse couplings
save cable material, but they also constrain communication in the network. Can the sparsity,
in principle, be overcome by smart circuit design? Likewise, admitting only neighborhood
couplings saves cable length but increases the topological distance between nodes in the
network, that is, the number of synapses engaged in transmitting a signal between remote
neurons becomes quite large [23, 24]. On the other hand, allowing for distant projections
reduces the topological distance, but it induces a higher consumption of wiring material.
These wires occupy space that is clearly limited within the skull. Has cortex optimized
its design by making use of such tricks? Here, we approach these and related biological
questions by establishing suitable parametric families of stochastic network models and by
exploring their properties numerically.

Preliminary results of this study have been presented previously in abstract form
[25, 26].

2. Methods

We considered network models that comprised neurons with directed synaptic connections.
Therefore, our cortical networks were represented by directed graphs G (see Figure 2, left),
specified by nonsymmetric adjacency matrices A(G) = (a;j). We had a;; = 1ifalinki — j
existed, otherwise a;; = 0 (see Figure 2, middle). We did neither allow for autapses (self-
coupling) nor for multiple synapses for any pair of neurons. Also, our choice of the adjacency
matrix approach did not allow, at this point, to differentiate between excitatory and inhibitory
synaptic contacts. Our networks were composed of N = 1024 sparsely connected nodes.
On average, only a fraction ¢ = 0.012 of all N(IN — 1) possible links was realized in each
particular network. These synaptic connections were established according to probabilistic
rules common to all neurons. In general, the expected number of both incoming and outgoing
synapses was fixed to k = 12; see Table 1. The same distribution for incoming (P(ki,)) and
outgoing (P(kout)) links, respectively, held for all nodes. However, in any specific network
realization, each node had random in- and out-degrees. Along the same lines, all other
network properties assumed random values if computed from individual networks. To
obtain characteristic mean values, we generated 20 independent realizations for each type

of network and calculated the corresponding averages and the standard errors of the means
(SEM).

2.1. Spatially Embedded Graphs

Each neuron was situated in a quadratic domain of extent R = 1, wrapped to a torus to
avoid boundary effects (see Figure 2, right). We considered the following two types of 2D
spatially embedded networks, random position networks (RPNs), and lattice position
networks (LPNs). In RPNs, the positions of all nodes were drawn independently from the
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Figure 2: Left: simple ring graph composed of 6 nodes. Middle: the corresponding adjacency matrix. Right:
scheme describing the construction of spatially embedded networks with distance-dependent connectivity.
Each node (red dots) has a connectivity disk (filled circle); blue arrows indicate periodic boundary
conditions (torus topology).

Table 1: List of randomness parameters used to construct the spatially embedded RPNs. ¢ is the rewiring
probability for the SW model, (r,p) describe range and probability of connectivity in the FN model, and
(0, po) are the parameters for the adjusted GN networks.

SW: ¢ 0 0.01 0.02 0.05 0.1 0.2 0.5 0.8 1
FN:p 1 0.99 0.98 0.95 0.9 0.8 0.5 0.2 0.01
FN: r 0.0611 0.0614 0.0617  0.0627  0.0644 0.0683 0.0864 0.1366 0.5
k (FN, LPN) 12 — 11.76 11.4 10.8 10.2 12.00 12.00 11.9
GN: py 1 — — 0.95 0.9 0.8 0.5 0.2 0.05
GN: o 0.0432 — — 0.0443 0.0455 0.0483 0.061 0.0965 0.197

same uniform probability distribution. In LPNs, the nodes were placed on the grid points of

a rectangular lattice. For a comparison, we also analyzed the corresponding 1D ring graphs.
In a network with no long-range connections, nodes placed within a circular neighbor-

hood of radius r were linked to the center node with connection probability p, according to

cR* =pr’zr withr <R. (2.1)

For the LPNs, the smallest possible neighborhood compatible with this rule was obtained
for full connectivity (p = 1), implying a radius rnin = Rv/c/ar = 0.061. This neighborhood
consisted of 8 nearest neighbors and 4 additional next-to-nearest neighbors, compatible with
k = 12 for all networks considered in this study.

We considered the following three families of networks, each spanning the full range
from regular to random connectivity.

(i) Fuzzy neighborhood (FN) network: this model assumed uniform connectivity of
probability p within a circular neighborhood of radius r. No connections were
established with nodes further away. Starting from a symmetric adjacency matrix
A(G) with (r,p) = (*min, 1), the transition to a completely random graph was
induced by simultaneously increasing r and decreasing p accordingly to (r,p) =
(0.5,0.015).

(ii) Small-world- (SW-) like network: again starting from (v, p) = (¥min, 1), we applied
a rewiring procedure in order to introduce long-range links, that is, connections
spanning larger distances than 7min. Each individual link of the graph was, with
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probability ¢, replaced by a randomly selected one. For ¢ = 1 we again ended up
with a completely random graph.

(iii) Gaussian neighborhood (GN) network: Gaussian profiles were used to define a
smooth distance-dependent connection probability, adjusted to the connectivity
parameters of the FN networks. The corresponding parameter pairs were (o, po),
where o was the width of the Gaussian profile used. For technical reasons, we
confined our investigation here to RPN models. In contrast to the FN and SW
models, the initial adjacency matrix A(G) for (o, po) = (0.043,1) was nonsymmet-
rical. Motivated by neuroanatomical data [16], GN models represent a biologically
more realistic connectivity model.

2.2. Characteristic Network Properties

The following descriptors were used to characterize and compare the network models
described above. Most quantities are well established in the context of graph theory (see, eg.,
[10, 11]).

(a) Degree distributions and correlations: counting incoming and outgoing links for
each node of a graph yield an estimate of the distribution of in-degrees Pi,(k) and out-
degrees Pyt (k), respectively. Here, we only used the out-degree for analysis. The two-node
degree correlation K. = (3;_, jkik;) describes out-degree correlations between connected
nodes i — j. In addition, to account for the spatial embedding aspect of our graphs, we
considered histograms of the number of links between any two nodes depending on their
spatial distance.

(b) Small-world characteristics: the cluster coefficient describes the probability that
two nodes, both connected to a common third node, are also directly linked to each other.
Let C; be the fraction of links actually established between any two nodes receiving a link
from node i. We considered the mean cluster coefficient C = (1/N) 3 ;C;. Additionally, we
calculated the degree-dependent cluster coefficient C(k), where the average was formed over
all nodes with a given out-degree [27]. The shortest path L;; is the minimal number of hops
necessary to get from node i to node j respecting link directions. We considered the average
shortest path length L = (1/N(N - 1)) 3, iLij for all pairs of distinct nodes, referred to as
“characteristic” path length. If delays in a neuronal network are mainly generated by synaptic
and dendritic integration times, L is a natural measure for the total delay to transmit a signal
from neuron i to neuron j. The two measures C and L together constitute the so-called small-
world characteristics [10-12].

(c) Wiring length: since we deal with spatially embedded networks, any pair of nodes
i and j can be assigned a spatial distance D;;. Of interest here was the total pairwise distance
of connected nodes D = 3;_,;D;;. It provides a measure of the total wiring length of the
network, assuming straight cables [28, 29]. If delays in a neuronal network are mainly
generated by axonal conductance times, D is a natural measure for the total delay to transmit
a signal from neuron i to neuron j.

(d) Eigenvalues and eigenvectors: for any graph G with N nodes, we numerically
determined the N (complex) eigenvalues A of its adjacency matrix A(G) and estimated the
eigenvalue density P(1) based on 20 samples of graphs of the same type [10, 30, 31]. The
corresponding eigenvectors v of A(G) were also numerically determined [10]. To quantify
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Figure 3: Localization of four sample eigenvectors of spatially embedded graphs. The squared value of
each component of an eigenvector is represented by a rectangle of proportional area, centered at the
position of the corresponding node. Top left: FN random position network with p = 0.9. Bottom right:
EN lattice position network with p = 0.5. Right top and bottom: Two different eigenvectors of a SW RPN
for ¢ =0.1.

the spatial spread of a normalized eigenvector v, we used three different measures: firstly,
the weighted 2D circular variance

V=4-2 —2 ) (2.2)

Z|vk|2627rixk/R
k

Z |Uk |26271'iyk /R
k

where v are the components of v satisfying 3,07 = 1 and (xi,yx) denotes the spatial
coordinates of node k. Complex numbers were used here to conveniently account for the
fact that the neurons in our model are arranged on a torus. The circular mean [32, 33] of x-
coordinates across all neurons y, = 3, e*™*)/R was used to obtain the average x-coordinate
in a consistent manner. The circular variance 02 = 2(1 - |u.|) provides a measure for the
dispersion of x-coordinates and small values of o2 indicate a high concentration on the
circle. For any eigenvector v, we considered the sum of the circular variances for x- and
y-coordinates, respectively, each weighed according to the participation of individual nodes
k described by the coefficient |vi|*. This definition gives values for 0 < V < 4. Small values
of V indicate that the “mass” encoded by the squared components of v is concentrated in a
compact spatial region (see Figure 3 (top-left)), while larger values of V imply that it is more
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uniformly spread over the whole domain (see Figure 3 (bottom-right)). For comparison, we
also considered two other measures, the entropy H and the inverse participation ratio I

N N
H=-Yollog(loi?), 1= fol* 2.3)
k=1 k=1

The entropy H assumes its maximal value Hpax = log N if the mass encoded by the squared
coefficients of v is uniformly distributed over its N components. Its minimal value Hpin = 0
is assumed if the mass is concentrated in one point in space. The inverse participation ratio
was suggested for the analysis of 1D ring graphs [31]. In contrast to H, it assumes its
minimal value I, = 1/N if the mass encoded by the squared coefficients of v is uniformly
distributed over its N components. Its maximal value In.x = 1 is assumed if the mass is
concentrated in one point in space. As the circular variance, both measures were used to
asses the spatial concentration of eigenfunctions. Figure 3 shows four sample eigenvectors
arising from different networks, with the corresponding values for the three locality measures
indicated above each plot.

3. Results

We employed several characteristic network properties to compare different types of spatially
embedded networks (FN, SW, and GN). Comparing FN and SW connectivity, we aimed
to analyze the effect of unconstrained long-range connections, as opposed to the compact
FN connectivity. We also asked if GN connectivity provides an appropriate compromise,
involving long-range links combined with a compact local connectivity range. We focused on
networks with random node positions (RPN), while the results for lattice position networks
(LPNs) and the corresponding 1D ring graphs are only discussed in case of a significant
deviation.

3.1. Degree Distributions and Degree Correlations

In the FN, SW, and GN scenarios, networks with random node positions exhibited binomial
distributions for both the in- and out-degree (Figure 4 (top-left)), irrespective of the relative
abundance of nonlocal connections. For networks with nodes positioned on a regular lattice,
however, these distributions were binomial only in the case of random connectivity. Here,
a more regular wiring (¢ < 0.5, p > 0.5), that is, fewer nonlocal connections, implied less
spread in the distribution [28]. For RPN, the variability of the degree of each node depended
both on the randomness parameter characterizing its connectivity and on the fluctuations of
the number of nodes located within its neighborhood (connectivity disk). In case of LPNs,
however, this variability was only determined by the randomness parameter.

Figure 4 (top-right) shows the two node degree correlations of RPNs for the three
types of connectivity considered in this study (FN, GN, and SW). Additionally shown are
the results of calculating K. for 1D ring graphs with SW and FN connectivity. These were
comparable to those of the LPN models but much less influenced by the strong sensitivity
to fluctuations in k as they occurred for LPNs with FN connectivity. For regularly connected
1D ring graphs (p = 1 or ¢ = 0) the degree correlations exhibited smaller values (K. = k k)
than for random connections (p = 0, ¢ = 1), resulting in an increasing K. curve. In contrast,
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Figure 4: Top left: binomial out-degree distributions (gray) for RPNs based on FN and SW connectivity for
different parameter settings. The fitted binomial distribution is superimposed (black). Top right: degree
correlations depending on the randomness parameters p and ¢, respectively, for EN (blue), SW (red),
and GN (green) RPNs. The results for the corresponding 1D ring graphs are also indicated, for both SW
(magenta) and FN (light blue). Each data point represents the mean outcome of 20 simulations, the largest
occurring SEM is 0.54. Bottom: three histograms P(d) of the number of links in dependence of their spatial
distance d. Each histogram represents one connectivity type (SW, EN, or GN). The specific parametric
realizations are chosen according to an approximately equal mean distance of connected nodes D = 0.15,
corresponding to a horizontal line in Figure 5, bottom left.

for RPNs, K, started with rather high values and decreased with increasing randomness
parameter, terminating at the same value of approximately K. = 156 as observed for
randomly connected 1D ring graphs. RPNs with GN connectivity exhibited rather small K.
values for ¢ < 0.2 compared to the other two models. Thus, P(k) and K, clearly depended on
the type of spatial embedding (RPN versus LPN), whereas there were only small deviations
with respect to the type of connectivity (FN versus SW versus GN).

The three histograms in Figure 4 (bottom) indicate the frequency of connections P(d)
at a given distance d for SW, FN, and GN RPNs, respectively. Each of these networks was
established with the same total wiring length D = 0.15 (cf. Figure 5). In contrast to the
out-degree distribution P(k), the distributions P(d) reflect the specific distance-dependent
connectivity profiles. For uniform connection probability, as given in the local neighborhood

d < tmin =0.0611 in SW networks, P(d) exhibited a linear slope; see Figure 4, bottom-left.
We also observed a linear increase of P(d) within the connectivity range r of FN networks, as
well as for the number of long-range links (rmin < 7 < R) in SW models. This feature is due to
the linear increase of the circumference of a circle with increasing radius. Therefore, in case of
a 2D spacial embedding with uniformly distributed node positions and a constant connection
probability, the number of nodes connected at a given distance grows linearly with increasing
distance. For GN networks, however, the connection probability is not constant but decreases
with increasing distance, leading to the nonlinear rise, and decline, as displayed in Figure 4,
bottom-right.
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Figure 5: Top left: cluster coefficient C and average shortest path length L for RPN with SW (upper) and
FN (lower) connectivity, for different parameters p and ¢, respectively. All curves are normalized to the
common maximum (Cpax = 0.586, Lnax = 8.53). Shown are mean values obtained from 20 simulations
for each parameter, the SEM is always below 0.003. Top right: scatter plot of the normalized values of C
versus L for RPNs with FN, SW, and GN connectivity. The leftward bending of the SW curve reflects the
small-world effect: Strong clustering (high values of C) coexists with short paths linking pairs of nodes
(low values of L). Bottom left: mean distance of connected nodes D for EN, GN, and SW RPNs, depending
on p or ¢, respectively. All values are normalized as described above (Dmax = 0.38). The SEM is below on
0.00009. Bottom right: scattering of D versus L for the same FN, GN, and SW RPNs.

3.2. Small-World Characteristics and Wiring Length

In this section, most results are shown for RPNs. Concerning the average shortest path length
and the mean distance of connected nodes, any differences between RPNs and LPNs were
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Figure 6: Degree-dependent cluster coefficient for RPNs (left) and LPNs (right) with SW (red symbols) and
FN (blue symbols) connectivity. Each figure shows the results for several different values of the parameters
p and ¢, respectively.

negligible. Only the cluster coefficient was significantly higher in case of RPNs; for a detailed
analysis of this issue, see [28].

The well-known characteristic feature of small-world networks is the L-C ratio
depending on the rewiring probability ¢. Starting from a regular graph with increasing ¢
the average shortest path length, L, initially decreases much more than the cluster coefficient
C. This is exactly what we observed for our spatially embedded SW networks; see Figure 5,
top left (red curves). In contrast, we found C < L for all p in case of FN connectivity (blue
curves). These findings are summarized in Figure 5, top-right, plotting C versus L for the
three types of connectivity. Randomness now progresses from top-right to bottom-left. Spa-
tially embedded SW networks showed a strong small-world effect, according to which very
few long-range connections sufficed to dramatically decrease the characteristic path length
L, while the cluster coefficient C remained relatively high. Neither FN nor GN networks
shared this behavior. Any given clustering C was associated with much shorter paths L in
SW networks than in FN or GN networks.

Figure 5, bottom, shows the mean Euclidean distance D between pairs of connected
nodes, again depending on the randomness parameters p, and ¢. For SW connectivity,
D increased linearly, while again both FN and GN curves exhibited a different behavior:
initially, there was a comparably weak increase, which became steeper at py = 0.8 and p = 0.8.
Wiring length D and graph distance L are jointly displayed for all networks considered here
in Figure 5, bottom-right. For all network models, D increased as L decreased from regular
(bottom-right) to random (top) connectivity. Non-local connections decreased the graph-
theoretic path length L, but they increased the total wiring length D. To realize a given graph-
theoretic path length, SW networks had the smallest wiring expenses, followed by GN and
FN networks, which make the least effective use of cables.

We also computed the degree-dependent cluster coefficient C(k), another well-
established measure for 1D networks [27]. For random graphs, C(k) is known to be indepen-
dent of the degree k. This is what we observed for RPNs, independently of the type of connec-
tivity, as well as for LPNs with FN and GN connectivity, as indicated by the horizontal lines in
Figure 6. Only for LPNs with a less random SW connectivity (¢ < 0.5) we found a decreasing
C(k) for degrees k larger than a certain threshold (depending on the specific value of
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¢). This effect cannot be traced back to the degree distribution since P(k) is identical for
the corresponding SW and FN LPNs (see above). In LPNs, thus, the nonconstant C(k)
carries information about deviations from a uniform connectivity. In turn, for more regular
connectivity, C(k) behaved differently for RPNs and LPNs, respectively.

To summarize, FN and GN models did not exhibit any small-world characteristics.
There was no reduction of L compared to C with increasing randomness because
unconstrained long-range connections were only present in the SW model. Long-range links
also induced the strong increase of D in the SW model, as well as the decrease in C(k) in case
of LPNs.

3.3. Eigenvalues and Eigenvectors

Concerning the eigenvalue distribution of the adjacency matrix, we again found characteristic
differences due to the spatial embedding, especially in the case of near-regular connectivity.
We observed, however, again only small deviations between different types of connectivity.

Figure 7, bottom rows, shows the density of eigenvalues (real part on the x-axis,
imaginary part on the y-axis) for the FEN (left) and SW (right) RPNs. From top to bottom
randomness progresses, indicated by p ranging from 0.95 to 0.015 and ¢ ranging from 0.05 to
1.0. For regular networks (p = 1 or ¢ = 0), these networks had a symmetric adjacency matrix
and, therefore, only real eigenvalues. The corresponding eigenvalue spectrum P(\) is shown
in Figure 7, top. Note the prominent peak at A = ~1 in an otherwise smooth and asymmetric
distribution. The GN network, however, even at py = 1 exhibited an asymmetric disk-like
structure, due to the initially asymmetrical adjacency matrix (data not shown). In contrast to
the smooth distributions of RPNs, the eigenvalue density of LPNs was rugged, with many
peaks; see Figure 8.

For both the FN and SW scenarios, the distribution of eigenvalues smoothly changed
its shape from circular (most eigenvalues complex) with radius \/Nc(1 -¢) in the case
of a completely randomly connected network to degenerate (all eigenvalues real) with a
heavy tail of large positive eigenvalues for networks with only local couplings; see Figure 7.
Additionally, both distributions exhibited a prominent peak at Re(A) = -1, clearly visible
only for p > 0.9 and ¢ < 0.1, respectively. In the FN model, there were more large real
eigenvalues, corresponding to the prominent horizontal line. For the SW model, particularly
in the range of ¢ = 0.5, we observed a higher frequency of eigenvalues with 2.5 < Re(\) < 7.5
and -1.5 <Im(\) < 1.5.

Although the spectra of FN and SW networks were quite similar, the average spatial
concentration of eigenvectors turned out to be a quite sensitive indicator for both the type
of spatial embedding (RPN versus LPN) and the type of wiring (FN versus SW) assumed
for the construction of the graph. Figure 9 shows the results of calculating the locality of
all eigenvectors. As explained in Section 2 we considered three measures, two of them are
displayed in Figure 9. In the top row, we present the entropy H for RPNs, the middle row
shows the square-root of the circular variance V'/? for RPNs, and the bottom row shows the
same quantity for LPNs. In each figure, dots correspond to the eigenvectors and eigenvalues
of one particular network realization. The different colors represent different randomness
parameters p and ¢, respectively.

In general, the eigenvectors corresponding to the largest absolute values of A were
the most local ones. Additionally, we found that the more regular the connectivity is, the
more spatial concentration occurs: there were more localized eigenvectors in the regular
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Figure 7: Eigenvalue density of FN (left) and SW (rlght) RPNs ranging from local (top) to random
(bottom) networks. Top: real eigenvalue spectrum of a (symmetric) locally connected network (r = 0.061,

=1, ¢ = 0). Note the exceptional peak of the density at small negative values around —1. Bottom:
complex eigenvalue density for (nonsymmetric) RPNs with FN and SW connectivity. The corresponding
parameters p and ¢ are indicated within the plot. The logarithmic gray scale indicates densities up to about
16 per unit square (black).
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Figure 8: Complex eigenvalue density for LPNs with FN (p = 0.95) and SW (¢ = 0.05) connectivity. The
logarithmic gray scale indicates densities up to about 16 per unit square (black).
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Figure 9: Locality of eigenvectors for RPNs and LPNs, either with FEN (left) or SW (right) connectivity.
Top: entropy H and square-root of circular variance V'/2 for RPNs. Middle: circular variance for LPNs. In
each plot the randomness parameters p or ¢ range from purely local (red) to random (blue) connectivity.
Bottom: mean V!/2 of all analyzed networks in dependence of p or ¢, respectively. Shown are FN and SW
connectivity for RPN and LPN and GN connectivity for RPNs only. Each data point represents the mean
of 20 simulations; error bars indicate the SEM.

connectivity range (red), and these exhibited smaller values of both V12 and H. (the T
measure behaved similar to H; data not shown). In addition to the features discussed above,
we again found a prominent aggregation for A = —1 which can be traced back to the peak at
Re(A = -1) in the eigenvalue spectrum. Comparing our two connectivity models, we found
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that the eigenvectors of the FN networks were clearly more local than those for SW networks:
There were more points with small V1/2 values on the left than on the right side of Figure 9.

Figure 9, bottom, indicates a prominent difference between RPNs and LPNs. Lattice
positions produced significantly less spatial concentration. We found only very few eigenvec-
tors for V1/2 < 1.5. The most local eigenvectors were not to be found in the regular connectiv-
ity range but for values of p and ¢ at approximately 0.5. Hence, a certain amount of random-
ness was important for the emergence of locality. There was less locality in the LPNs and less
locality in the SW model. However, for more random connectivity these differences were less
expressed. With respect to the circular variance, the GN model showed indeed intermediate
behavior: the eigenvectors were not as local as in the SW network, but there was more spatial
concentration than in the FN model.

4. Discussion and Conclusions

We introduced two families of network models, each describing a sheet, or layer, of cortical
tissue with different types of horizontal connections. We assumed no particular structure in
the vertical dimension. Neurons were situated in space, and the probability for a synaptic
coupling between any two cells depended only on their distance. Both models could be
made compatible with basic neuroanatomy by adjusting the parameters of the coupling
appropriately. Both families of networks spanned the full range from purely local, or regular,
to completely random connectivity by variation of a single parameter. The paths they took
through the high-dimensional manifold of possible networks, however, were very different.

The first model (fuzzy neighborhood) assumed a homogeneous coupling probability
for neurons within a disk of a given diameter centered at the source neuron. The probability
was matched to the size of the disk such that the total connectivity assumed a prescribed
value. The related Gaussian neighborhood model was based on similar assumptions but its
smoothly decreasing connection probabilities were defined by Gaussian profiles, adapted to
those of the fuzzy neighborhood model. For very small disks, only close neighbors formed
synapses with each other, and, for very large disks spanning the whole network, couplings
were effectively random. The second model (small world) started with the same narrow
neighborhoods but departed in a different direction by replacing more and more local
connections with nonlocal ones, randomly selecting targets that were located anywhere in
the network.

For most models considered in this study, the initial random positioning of neurons in
space guaranteed that both in-degrees and out-degrees had always the same binomial distri-
bution, irrespective of the size of the disk defining the neighborhood and irrespective of the
number of non-local connections. This means that none of the statistical differences between
the various candidate models described in the paper can be due to specific degree distri-
butions. This is in marked contrast to the original demonstration of the small-world effect
in ring graphs [34], where the locally coupled networks were at the same time completely
regular, that is, all degrees were identical. Finally, we also relaxed the random positioning of
neurons before linking them and put them on a (jittered) grid instead [28]. It is striking to see
(and a warning to the modeler) that this had indeed a strong impact on several parameters
considered (Figures 6 and 9).

The first main result of this study is that networks residing in two dimensions—
very much like one-dimensional ring graphs [34]—can also exhibit the small-world effect
(Figure 5). As a prerequisite, though, the non-local shortcut links must be allowed to invade
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also remote parts of the network without any constraints on the distance they might need
to travel. In our small-world model, strong clustering (provided by intense neighborhood
coupling) and short graph-theoretical paths (provided by the long-distance bridges)
coexisted for certain parameter constellations. Such a smart circuit design is the prevailing
assumption for cortical connectivity [14, 15, 29]. In the fuzzy neighborhood models, in
contrast, the global limit imposed on the physical length of connections was strictly pro-
hibitive for this combination of properties. The Gaussian neighborhood model, finally, shows
comparably weak clustering but shorter graph-theoretical paths than the corresponding
fuzzy neighborhood model.

It seems reasonable to assume that, in neocortex, the length of a cable realizing a
connection is roughly proportional to the physical distance it has to bridge. The second main
result of this study is that the length of the average shortest graph-theoretical path was always
inversely related to the total length of cable that is necessary to realize it (Figure 5 (bottom
part)), considering networks with fixed global connectivity. Completely random networks
had very short graph-theoretical paths, but they needed a lot of cable to be wired up. In
contrast, networks with local couplings were only very economical in terms of cable, for
the price of quite long graph-theoretical paths. Networks from the small-world regime with
short graph-theoretical paths were relatively inefficient in terms of necessary cable length,
compared to the fuzzy and Gaussian neighborhood models (Figure 5). Only networks with
patchy long-range connectivity [7, 20, 29] provide a near-to-optimal solution since they
are very efficient in terms of both cable and graph-theoretical path lengths, in addition to
high clustering. Networks with patchy connectivity are, however, beyond the scope of this
paper. In view of the results presented here, an optimized model would employ a Gaussian
connectivity profile for local connections, combined with some long-distance bridges to
overcome the sparsity in cortical connectivity.

What conclusions can be drawn from graph spectral analyses? First of all, the complex
eigenvalue spectrum of the adjacency matrix of a graph is a true graph invariant in the sense
that any equivalent graph (obtained by renaming the nodes) has exactly the same spectrum.
To some degree, the opposite is also the case: significantly different graphs give rise to differ-
ently shaped eigenvalue spectra. Empirically, it seems that similar graphs also yield similar
spectra, but a rigorous mathematical foundation of such a result would be very difficult to
establish. So we informally state the result that the shape of eigenvalue spectra reflects char-
acteristic properties of graph ensembles, very much like a fingerprint. With an appropriate
catalog at hand, major characteristics of a network might be recognized from its eigenvalue
spectrum.

More can be said once the eigenvalue spectrum is interpreted in an appropriate
dynamical context. Linearizing the firing rate dynamics about a stationary state allows
the direct interpretation of eigenvalues in terms of the transient dynamic properties of
an eigenstate. Real parts give the damping time constant, and imaginary parts yield the
oscillation frequency. Although some care must be taken to correctly account for inhibition in
the network [35], it is safe to predict that networks with more local connections tend to have
a greater diversity with respect to the life times of their states and a reduced tendency to pro-
duce fast oscillations (Figure 7). The spatial properties of the eigenstates (Figures 3 and 9) are
potentially relevant for describing network-wide features of activity, which can be observed
in the brain using modern methods like real-time optical imaging. More specific predictions
about the network dynamics based on a network model, however, would certainly
depend on the precise neuron model, further parameters describing the circuit, in particular
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synaptic transmission delays [36], but also on the type of signal the dynamic properties of
which are considered [37].

Finally, we would like to stress once more the importance of identifying characteristic
parameters in stochastic graphs and their potential yield for the analysis of neuroanatomical
data. Measurable quantities, or combinations of such characteristic numbers, could be of
invaluable help to find signatures and to eventually identify the type of neuronal network
represented by neocortex.
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