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Electrocorticographic (ECoG) signals have been successfully used to provide information about arm
movement direction, individual finger movements and even continuous arm movement trajectories. Thus,
ECoG has been proposed as a potential control signal for implantable brain–machine interfaces (BMIs) in
paralyzed patients. For the neuronal control of a prosthesis with versatile hand/arm functions, it is also
necessary to successfully decode different types of grasping movements, such as precision grip and whole-
hand grip. Although grasping is one of the most frequent and important hand movements performed in
everyday life, until now, the decoding of ECoG activity related to different grasp types has not been
systematically investigated. Here, we show that two different grasp types (precision vs. whole-hand grip) can
be reliably distinguished in natural reach-to-grasp movements in single-trial ECoG recordings from the
human motor cortex. Self-paced movement execution in a paradigm accounting for variability in grasped
object position and weight was chosen to create a situation similar to everyday settings. We identified three
informative signal components (low-pass-filtered component, low-frequency and high-frequency amplitude
modulations), which allowed for accurate decoding of precision and whole-hand grips. Importantly, grasp
type decoding generalized over different object positions and weights. Within the frontal lobe, informative
signals predominated in the precentral motor cortex and could also be found in the right hemisphere's
homologue of Broca's area. We conclude that ECoG signals are promising candidates for BMIs that include the
restoration of grasping movements.
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Introduction

Brain–machine interfaces (BMIs) are being widely discussed as a
possible means for helping severely paralyzed patients to regain
neuronal control over prosthetic limbs (Velliste et al., 2008) or even
their own paralyzed limbs via functional electric muscle stimulation
(Moritz et al., 2008).

Since it has been shown that not only spike (action potential)
recordings but also continuous signals such as the local field potential
(LFP) and the electrocorticogram (ECoG) can be used to infer
movement intentions from the motor cortex (Ball et al., 2009a;
Leuthardt et al., 2004; Mehring et al., 2003; Pistohl et al., 2008; Schalk
et al., 2007; Stark and Abeles, 2007), the ECoG has been proposed as a
potential control signal for BMIs (e.g., Ball et al., 2004; Levine et al.,
2000; Leuthardt et al., 2006;Mehring et al., 2004; Schalk et al., 2008a).
An ECoG-based BMI might exhibit several advantages: compared to
spike recordings, measurements do not require implantation of
intracortical electrodes, compared to non-invasive techniques, such
as extracranially recorded electroencephalography (EEG) or magne-
toencephalography (MEG), it exhibits higher spatio-temporal resolu-
tion, superior signal-to-noise ratio, in particular in high frequencies,
and is less prone to artifacts (Ball et al., 2009b). ECoG recordings are
used in patients for pre-surgical epilepsy diagnostics, which makes it
possible to conduct ECoG studies with human subjects.

One concept for BMI applications, which has first been pursued for
intra-cortical spike recordings, is to use cortical activation patterns as
generated during voluntary control of healthy limbs to control
equivalent movements of an artificial effector. If ECoG recordings
are to be used in this manner, their potential for correct and reliable
decoding of real movements has to be proven. This has been already
achieved for classification of movement directions (Ball et al., 2009a;
Leuthardt et al., 2004;Mehring et al., 2004), fingermovements (Ball et
al., 2004; Miller et al., 2009), and for predicting continuous
trajectories of hand-arm movements (Chao et al., 2010; Gunduz et
al., 2009; Pistohl et al., 2008; Schalk et al., 2007). Perfect accuracy in
offline decodingmay not be necessary in order to exploit the decoding
of natural movement patterns in long-term online BMI applications,
as performance can still be improved by neural adaptation to the
properties of a BMI (e.g., Taylor et al., 2002).

http://dx.doi.org/10.1016/j.neuroimage.2011.06.084
mailto:tobias.pistohl@bcf.uni-freiburg.de
http://dx.doi.org/10.1016/j.neuroimage.2011.06.084
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Fig. 1. Reach-to-grasp experiment. (a) Layout and time course of the self-paced
movement sequence. From a central resting position (1), marked by a hand pictograph
(here seen in perspective view), the subjects reached for a cup (2) located at one of four
predefined positions marked by circles. Without interrupting the movement, the cup
was grasped, picked up from the table (3) and carried (4) to another of the four
positions (self-chosen by the subject) and released there (5). After that, the subjects
returned their hand (6) to the starting position and waited several seconds before
initiating, at a time of their own choice, the next movement sequence. Hand position
was recorded via an ultrasound emitter attached to the wrist. The small inset in the
upper right corner shows an example of a hand speed profile during one trial, with
stages of the movement sequence marked (1–6). (b) Each 15–16 trials, the cup was
exchanged, alternating between a light and a heavy version. (c) In each trial, the subject
arbitrarily decided whether to use a precision grip on the handle of the cup or a whole-
hand grip on the whole cup.
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For the control of a hand-arm prosthesis, it is essential to decode
hand movements. Studies in monkeys have demonstrated successful
one-dimensional control of a gripping device using spike signals from
the motor cortex (Carmena et al., 2003; Velliste et al., 2008). As of yet,
however, opening and closing movements have been implemented
without distinguishing between different grasp types.

Previously, it has been shown that it is possible to decode
individuated finger movements from human ECoG (Kubánek et al.,
2009; Miller et al., 2009). Whether a strategy aimed at decoding
multiple finger movements performed simultaneously can be success-
ful, and if it would allow reproducing well-coordinated grasping
movements in natural movement settings, is, however, currently
unclear. Such decoding might be difficult to achieve as different ways
of grasping an object can involve the same types of finger movements,
such as flexing all the fingers at the same time, both in whole-hand and
precision grips, but with different patterns of inter-finger coordination.
Therefore, we took a different approach: an appropriate control scheme
for hand prostheses with many degrees of freedom or artificial re-
innervation of hand muscles by functional electrical stimulation does
not necessarily need to control every single joint separately. Natural
grasping involves a large number of synergies (Mason et al., 2001;
Santello and Soechting, 2000; Thakur et al., 2008), which may also be
represented in the neural control of natural handmovements (Schieber
and Hibbard, 1993; Zatsiorsky et al., 2000). A BMI for grasping might
therefore rather use high-level commands that activate several
actuators or muscle groups in coordination. Among the most basic
and most important of such high-level commands would be the ones
initiating grasps for interaction with different objects.

Therefore, we aimed to investigate the use of ECoG signals for
motor decoding of different hand configurations in a scenario close to
an everyday environment, as this might be the venue of possible BMI
applications. The experimental design we created for this purpose
allowed for graspswithin a sequence of natural, continuous self-paced
movements. To cover some of the variability innate to the natural use
of the human hand and arm, it used a wide workspace with objects to
be grasped at different angular positions and requiring different hand
forces. In the course of the movement sequence, two different grasp
types were applied by the subjects on a familiar object (a mid-sized
cup): precision grip and whole-hand grip. We investigated whether
the ECoG signals recorded during this grasping task constituted a
reliable neural signal for controlling a grasping prosthesis. In
particular, we investigated which signal components were informa-
tive about grasping movements, and, based on precise assignment of
electrode positions to the cortical brain anatomy of the patients, from
which cortical areas they could be recorded.

Methods

Motor task

The motor task chosen for this study was designed to allow for
natural movement sequences of reaching and grasping. A table-like
platform was placed in front of the subjects sitting upright in a
hospital bed. A plastic cup could be placed in one of four different
positions, marked by circles, arranged in a semi-circle around a central
point. The distance between neighboring positions was 15.6 cm. A
different sign (a pictograph of a hand) marked the central resting
position. The task sequence is outlined in Fig. 1.

Three-dimensional hand positions were continuously tracked by a
system (Zebris, Isny, Germany) using markers on the patients' wrists
(over the radial styloid process) emitting ultrasound pulses recorded
by a set of sensors.

A movement trial started when the subjects (referred to as S1, S2
and S3) reached out, at a time of their own choosing, from the resting
position to a plastic cup situated at one of the four peripheral
positions, grasped it and relocated it to a new position, self-chosen
from the three remaining positions. After the cup was put back on the
table, the hand was returned to the central resting position. This
ended the trial, and the subjects waited for some time before initiating
the next trial. Information on actual timing within and across trials is
summarized in Table 2.

In each single trial, the subjects decided whether to apply a
precision grip or a whole-hand grip. The precision grip was performed
by grasping the cup by the handle between the thumb and the index
finger, supported by the other fingers, while the whole-hand grip was
performed by closing the hand around the whole cup (cf. Fig. 1c).
When one grasp modality seemed under-represented during a
running experimental session, the subjects were instructed to use
this grasp typemore often. However, such instructions needed only to
be given once or twice per subject.

To control for the application of different hand forces, for every new
block of 15 (S1) or 16 (S2 and S3) trials, the cup was switched between
two, otherwise identical, versions of different weight. The lighter cup
weighed 68 g (2.4 oz), while the heavier one, with a metal weight fixed
to the inside of the cup, was 5 times as heavy, weighing 340 g (12 oz).

Although, across trials, there was considerable variability in the
applied hand configurations, even within the same subject and grasp
type (e.g., due to corrective movements made to align the hand
properly to the handle of the cup), no trials were excluded from the
analysis for such reasons, as the present study aimed to investigate
the possibility of decoding grasp type in the presence of a natural
degree of variability, as can be expected in daily life situations.
Subjects

The experiment was conducted with three human subjects (all
female, aged 14–16) suffering from intractable epilepsy and
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undergoing pre-neurosurgical diagnosis by means of ECoG. All
subjects were right-handed, but they were asked to use the hand
contralateral to the electrode implantation site (cf. Table 1). The
study was approved by the Ethics Committee of the University
Medical Center Freiburg and conducted after the subjects and their
parents (since subjects were underage) gave their written informed
consent.
Neural recordings

All subjects had implanted stainless-steel electrodes (Ad-Tech,
Racine, Wisconsin, USA) of a 4 mm diameter, covered in sheets of
silicone and arranged in regular grids (cf. Table 1) with a 10 mm
center-to-center distance. S2 had additional inter-hemispheric
stripes, which were not used for data analysis. Electrode arrays
were subdurally implanted over the lateral convexity of the
subjects' cortices, partially covering the precentral motor cortex.

For S1 and S2, ECoG was recorded using a clinical EEG-System (IT-
Med, Germany) and sampled at a rate of 256 Hz (S1, S2) using a high-
pass filter with a 0.032 Hz cutoff frequency and a low-pass filter at
95 Hz. The same monitoring system with different amplifiers was
used for S3, sampling at 1024 Hz while applying high- and low-pass
filters at 0.032 Hz and 379 Hz, respectively. For all subjects, digital
video recordings (25 Hz frame rate), synchronized to the ECoG
signals, were acquired.

Electrical stimulation through the electrode grid was performed
using an INOMED NS 60 stimulator (INOMED, Germany). Trains of a
7 s duration consisted of 50 Hz pulses of alternating-polarity square
waves of 200 μs each. The intensity of stimulation was gradually
increased up to 15 mA or to the induction of sensory and/or motor
phenomena. The patients were unaware of the timing of stimulation,
unless anymotor-, sensory- or speech-related symptoms occurred. All
sites with arm or hand motor responses were, in all subjects, located
outside the ictal onset zone.

In each subject, a structural MRI data set with full head coverage
and 1 mm×1 mm×1 mm resolution was acquired, both before and
after electrode implantation, using a T1MPRAGE sequence. Themotor
cortices were identified according to anatomical landmarks (Rumeau
et al., 1994; Steinmetz et al., 1989; Yousry et al., 1997). Individual
locations of the central and lateral sulci, as determined from the post-
implantation MRI, were used to assign the electrodes to the frontal,
parietal and temporal lobes using a probabilistic atlas system
(Eickhoff et al., 2006) based on the maximum-probability assignment
of the cortical position immediately beneath an electrode contact (i.e.,
Table 1
Subject overview. All subjects were female and had ECoG electrodes subdurally
implanted for pre-neurosurgical diagnosis. FCD = focal cortical dysplasia.

S1 S2 S3

Age (years) 14 16 15
Handedness Right Right Right
Pathology Right frontal FCD FCD in right superior

frontal gyrus/right
cingulate gyrus

Right
frontal
FCD

Implanted
electrodes

Fronto-parietal 8×8 grid; 3
lateral prefrontal stripes
(1×6 contacts); 1 anterior
cingulate depth electrode
(10 contacts); 1 medial
fronto-polar depth electrode
(10 contacts); all electrodes
on the right

Fronto-parietal 6×8
grid; 3 inter-
hemispheric stripes
(1×4 contacts); all
electrodes on the left

Right
fronto-
parietal
8×8 grid

Seizure
onset zone

Right medial and lateral
prefrontal

Left inter-hemispheric Right
premotor
perpendicular to the electrode surface). The probabilistic maps used
were part of the SPM Anatomy Toolbox Version 1.7b. Electrode
positions were visualized in the pre-implant MRI as described by
Kovalev et al. (2005).

In addition to the intracranial ECoG, classical scalp EEG was
recorded using either 19 (S1) or 21 (S2 and S3) scalp electrodes, as
well as horizontal and vertical EOG (electrooculogram).

The choice of electrode implantation sites, electrical stimulation,
MRI acquisition and other measures described in this section were
dictated solely by clinical requirements.

Data analysis

Assignment of events
Since the performance of the motor task was completely self-

paced, individual events constituting a grasping movement, i.e.,
movement onset, grasp onset, release of the cup, and movement
end had to be identified post-hoc on a single-trial basis. For S1 and S3,
hand position recordings obtained synchronously to the neural data
were used for this purpose. Both grasp onset and cup release were
marked by local minima in the speed profile of the hand (see inset in
Fig. 1a) by a local minimum in height and a turn in position parallel to
the surface of the table, as these events correspondedwell to the times
of grasp onset and cup release. For S2, wrist position recordings could
not be accurately synchronized to the neural recordings, and the
synchronously acquired video recordings were used to identify the
above-mentioned events. Here, ‘grasp onset’ refers to the time when
the grip was tightened, shortly before the subjects lifted the cup, and
not when they first touched it or when the hand was pre-shaped for
the grasp during the reaching movement, which, in fact, could occur
as early as at movement onset.

In total, 961 trials were recorded from S1, S2 and S3. The average
durationof a trial, frommovement start tomovement end,was3.7±0.6 s
(mean±standarddeviation)with a1.2±0.7 s pause between successive
trials of one block of 15 (S1) or 16 (S2, S3) successive grasps. The average
time from movement onset to grasp onset was 1.1±0.3 s (Table 2).

Signal-to-noise ratio
The signal-to-noise ratio (SNR) allows to assess the strength of a

specific signal relative to corrupting noise (e.g., caused by variability
in task execution). For the comparison of time- and frequency-
resolved ECoG amplitudes from the two grasp types, we used the SNR,
defined by the difference of the class means (as an estimate of the
signal) divided by the average trial-by-trial fluctuations within classes
(as an estimate of noise):

SNR =
μ1−μ2j j

0:5 × σ1 + σ2ð Þ

where μ1 and μ2 are the means of the two classes of grasping
movements; σ1 and σ2 are their standard deviations across trials.
Table 2
Behavioral data for each subject (S1, S2, S3). Number of trials, average duration of trials,
time from movement start to grasp onset, and inter-trial intervals (ITI) (excluding
breaks between blocks of 15 or 16 trials, which were longer). Times are given as
averages in seconds and standard deviation in parentheses. The last column (‘all’) gives
the same numbers over all trials of all subjects.

S1 S2 S3 All

Number of trials 303 338 320 961
Duration (s), mean (σ) 4.2 (0.6) 3.3 (0.5) 3.5 (0.5) 3.7 (0.6)
Start to grasp (s), mean (σ) 1.1 (0.3) 1.0 (0.3) 1.2 (0.4) 1.1 (0.3)
ITI (s), mean (σ) 1.0 (0.3) 2.0 (0.5) 1.0 (0.3) 1.2 (0.7)
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Preprocessing of neural data

General treatment of recordings. Prior to more specific processing, all
neuronal activity data was re-referenced to a common average
reference of all grid channels indicated in Fig. 2. Additionally, for
each recorded channel, the average voltage over the whole data block
(usually one hour) was subtracted to eliminate any possible offset of
the data. Then, to normalize for systematic differences in amplitudes
across channels, the signal from each channel was divided by its
standard deviation over the entire block of data. Otherwise,
covariance matrices estimated from very differently scaled channels
could become ill-conditioned, leading to inaccurate results during
matrix inversion (cf. Decoding).
Spectral amplitudes. All frequency-resolved data used in this study
were generated via a multi-tapering method (Thomson, 1982)
applied to successive overlapping 250 ms windows of the recorded
ECoG signals, moved in steps of 125 ms. This resulted in a frequency
binning of 4 Hz and a temporal sampling rate of 8 Hz for the estimates
of spectral amplitudes. Multi-tapering methods yield a statistically
consistent spectral estimator, with improved localization in the
frequency domain and reduced variance of the spectral estimates.
To this end, the ECoG signal from each time window was first
multiplied by a window function (a taper) and then Fourier-
transformed. Multiple taper functions, orthogonal to each other,
were used and a weighted average was applied to the resulting
spectrograms. We used Slepian taper functions (Percival and Walden,
1993), which yield optimal localization in the frequency domain. The
effective frequency resolution is reduced by this method, depending
on the number of tapers used. We used three Slepian tapers,
corresponding to a frequency resolution with a half-bandwidth of
8 Hz.

To account for the large variations in spectral power over different
frequencies, in particular decreasing power with increasing frequen-
cies, each frequency bin was normalized to, i.e., divided by, the trial-
and time-averaged amplitude value of this frequency bin during a
baseline period. The baseline period consisted of intervals of 0.75 s (6
time windows), from 1 s to 0.25 s before movement onset. This
normalization procedure is not only valuable for the presentation of
spectral modulations over a large frequency range, but is especially
important when averaging amplitudes over broad frequency bands.
Without such normalization, high frequencies with low power but not
necessarily low signal-to-noise ratio (cf. Results, Movement-related
Fig. 2. Location and functional electrical stimulation results of subdurally implanted ECoG ele
on the ECoG grid that were identified as being over motor/pre-motor areas (magenta), so
Frontal electrode sites where electrical stimulation evoked hand or armmovements are mar
arm motor channels were used for decoding in the main analyses). Locations of the centr
determined from the individual post-implant MRIs (marked by solid black lines).
potentials and spectral amplitude modulations), would be under-
represented in the average across a broad frequency band.

Since information from normalized amplitude modulations over
adjacent frequency bins within broader frequency bands can be
assumed to be highly correlated, we averaged normalized amplitudes
over a number of adjacent frequency bins, both to reduce the
dimensionality of the feature space and to increase the signal-to-noise
ratio. We concentrated most of our analyses on amplitude modula-
tions in three distinct frequency bands that were modulated during
the motor task (cf. Results, Movement-related potentials and spectral
amplitude modulations) and also yielded good decoding results (cf.
Results, Classification of grasp types).

Low-pass filtered component (LFC). ECoG was consistently modulated
in a low-frequency band (b6 Hz, cf. Results, Classification of grasp
types) during task execution. To extract this signal component, we
applied a low-pass filter to the raw signals with a cut-off frequency of
approximately 5 Hz. In contrast to analyses based on amplitude
modulations (see above), this procedure retains phase information of
the signals. Moreover, the low-pass filtered component (LFC) had
been already successfully used for motor decoding in earlier EEG,
MEG, LFP and ECoG studies (Ball et al., 2009a; Mehring et al., 2003;
Pistohl et al., 2008; Rickert et al., 2005; Schalk et al., 2007; Waldert et
al., 2008; see alsoWaldert et al., 2009 for a review). Furthermore, Jerbi
et al. (2007) have shown that MEG in a 2–5 Hz range was phase-
locked to the time-varying speed of the hand, indicating a direct
relationship between hand movement and a low-frequency compo-
nent of cortical potentials.

To extract the LFC, we applied a 2nd order Savitzky–Golay filter
(Savitzky and Golay, 1964) of 250 ms width, mainly retaining
frequencies below 5 Hz (frequency response dropped below
−3 dB), to the ECoG recordings. While Savitzky–Golay filters do not
have a well-defined cut-off frequency, they preserve local minima and
maxima of the original signal better than other low-pass filtering
methods and may be seen as a good smoothing tool.

Decoding

Algorithm. We used a regularized version (Friedman, 1989) of linear
discriminant analysis (Hastie et al., 1995) to classify the trials from the
recorded ECoG activity. For each class of movements (e.g., grasp
modality: precision grip or whole-hand grip), an N-dimensional
Gaussian distribution was fitted to the N-dimensional feature vector
ctrodes. From left to right: subjects S1, S2 and S3. Gray or colored dots indicate locations
mato-sensory (blue), posterior parietal (green), Brodmann areas 44 and 45 (yellow).
ked by black outlines and a black dot in the center of the electrode symbol (these hand-
al sulcus (CS) and the lateral sulcus (LS, S3 only) relative to electrode positions were
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samples of all trials within a predefined training set. We used
common covariance matrices for all classes but class-dependent
means (assumption of linear discriminant analysis). To avoid over-
fitting, regularization was applied, imposing restrictions on the
covariance matrix by interpolating between the maximum likelihood
estimate of the covariance matrix Σ and the scalar covariance
(Friedman, 1989):

ˆΣ γð Þ = 1−γð ÞΣ +
γ
N
tr Σð ÞI

where I denotes the identity matrix and tr(Σ) — the trace of Σ. The
degree of interpolation is specified by the regularization parameter γ
to obtain the regularized covarianceΣ̂ γð Þ.

For each feature vector representing a trial from the test set, we
computed the posterior probability for each class by Bayes' theorem
using a homogeneous prior and chose the class with the highest
posterior probability. The percentage of correctly decoded trials is
referred to as the decoding accuracy (DA). To account for the
possibility of different sample sizes of each class in the test set, we
calculated the DA for each class separately and then averaged it over
classes. Whenever DA is presented, we refer to this normalized
version.

Feature vectors. For use in an automated classifier, neuronal signals are
usually reduced to a set of features that capture the characteristics of
the different classes. One crucial factor in the decoding process is the
choice of signal features used for classification. Generally, feature
optimization, as through improved channel selection (Lal et al., 2004)
or spatial filtering methods like common spatial patterns (CSP; Müller
et al., 2000; Ramoser et al., 2000) could greatly improve decoding in
EEG-based studies and might also be considered for ECoG data. Our
investigation, however, was not focused on subject-specific optimi-
zation, but instead employed a selection of features, common for all
subjects.

Characteristics of the neural movement-related activity were
gathered in a vector of signal features using (i) values of one or
several signal components, (ii) measured at one or more ECoG
electrodes, (iii) at one or several time points in relation to the grasping
event. The choice of ECoG channels (ii) and time points (iii) was based
on the anatomical and functional assignment of the electrodes and the
typical timing of the reach-to-grasp movements (cf. Table 2). No
further optimization for informative signals was performed in order to
provide a consistent and transferable scheme of feature selection that
could be applied without calibration.

This procedure yielded one feature vector per trial comprising a
maximum of 168 values, depending on the subject and the intended
analysis (maximum reached for S1: 6 channels, 4 signal components,
7 time points; 6×4×7=168 feature dimensions, less for S2 and S3
because of lower number of channels; see Section 3.2).

Evaluation of decoding performance. Ten-fold cross-validation was
used to evaluate decoding performance: the trials were randomly
assigned to ten different sets of equal size, nine of which were
grouped to fit the model parameters (training set). The remaining one
tenth of the trials were used to apply the classifier and evaluate the
performance of the decoding against real labels (test set). Subse-
quently, the test set was switched to another subset of trials, so that,
after ten repetitions, each trial took part in a test set exactly once. To
improve estimation, this procedure was repeated several times with
different random assignments of the trials to the subsets. If not stated
otherwise, DAs are given as the average over 20 repetitions of a ten-
fold cross-validation.

To choose an appropriate value for the regularization parameter γ,
within each cross-validation step, a number of secondary ten-fold
cross-validations were run on the current training set, testing
different values of γ (10−4 and 0.1 to 1 in steps of 0.1). The value
yielding the best decoding was used to retrain the model on the basis
of the complete training set. Thereby, in each cross-validation step,
the regularization parameter was optimized on the basis of the
training data only.

To test for significance, we assumed a null hypothesis of random
assignment with equal probabilities for each of the two classes
(chance level: 50%). Resulting chance predictions can be described by
a binomial distribution. From the cumulative binomial distribution, an
upper limit of DAs (upper significance level), to cover a portion of 1-α
of chance decodings, can be inferred (pbα). Since in a set of multiple
tests, it becomes more likely to observe DAs above the identified
significance level by pure chance, the α level was adjusted using a
Bonferroni correction when necessary (see Results).

Results

Most of our analyses focused on measurements from electrodes
implanted over the hand-arm motor cortex. The hand-arm motor
cortex was defined as the precentral region where electrical
stimulation mapping showed hand and/or arm motor responses.
Channels located posterior to the central sulcus, as determined from
the subjects' individual MRI data sets, were excluded from the
analysis to reduce the impact of responses from the postcentral
somato-sensory cortex.

Movement-related potentials and spectral amplitude modulations

Fig. 3a shows, for all three subjects, the time-resolved amplitude
spectra from one representative channel from the hand-arm motor
cortex. Recordings were averaged over all trials of one type of grasp
(top row: precision grip, second row: whole-hand grip) for frequen-
cies from 0–128 Hz relative to a baseline period before each trial (cf.
Methods, Preprocessing of neural data). Clear modulations, both
reduction and increase in amplitudes, can be observed in very low
frequencies below 6 Hz. A longer-lasting reduction of amplitudes,
starting well before and ending well after a grasp, can be observed in
the alpha and beta ranges, as is typical for any motor task. A similar
but smaller power drop was found in higher frequencies up to almost
50 Hz. Finally, in a broad band of high frequencies from 54 Hz up to
over 100 Hz, a consistent amplitude increase can be observed around
the grasp, with a second, smaller peak at the time of cup release (as
could be confirmed by aligning recordings to this time, see
supplementary material, Fig. SUP6). For S3, whose signals were
recorded at a higher sampling rate and with different filter settings
(cf. Methods, Neural recordings), this increase continued to even
higher frequencies. S1 and S2 showed the strongest responses below
100 Hz – in these two subjects, however, frequencies above 128 Hz
could not be examined, since signals were sampled at a rate of only
256 Hz (S3: 1024 Hz).

Next, we asked how differentiable ECoG activity for different grasp
types (precision grip and whole-hand grip) was. For this purpose, we
determined the signal-to-noise ratio (SNR) of the ECoG spectrograms
as the ratio of the differences of the means for both grasp types to the
mean variability (standard deviation) across trials (cf. Methods, Data
analysis). For the ECoG spectrograms of one channel per subject
recorded from the hand-arm motor cortex the SNR for the two grasp
types, resolved over time and frequency, is shown in Fig. 3b. A
consistent property over subjects was the almost negligible SNR in the
intermediate-frequency bands that showed an amplitude reduction
during task execution, whereas modulations in the low- (≤6 Hz) and
high-frequency (≥54 Hz) bands had much higher SNR. Note that the
SNR for S2 was considerably lower than for S1 and S3; higher SNR
values for S2 were only found on channels, recorded over the somato-
sensory cortex.



Fig. 3. Spectro-temporal modulations of the ECoG signals during the task. (a) Average spectrograms of normalized ECoG amplitudes, aligned to grasp onset (cf. Methods, Data
analysis) from a representative channel over the hand-armmotor cortex of each subject (S1–S3, from left to right). Top row: precision grip (PR), second row: whole-hand grip (WH).
Pink bars in the left of the frames mark the frequency bands used for decoding. (b) Signal-to-noise ratio (SNR, cf., Methods, Data analysis), resolved in time and frequency, obtained
from the spectrograms of the same channel as in (a). (c) Scan over continuous frequency bands of different width and location for decoding of grasp type (precision grip vs. whole-
hand grip), averaged over subjects. Decoding was evaluated on the amplitudes averaged across all frequency bins between a lower (vertical axis) and an upper (horizontal axis)
limit. The resulting average DA is color-coded for each possible contiguous frequency band. Decoding was based on neuronal features gathered from the frequency-band
modulations of all hand-arm motor cortex channels at seven different time points, evenly distributed over an interval of 1 s before to 0.5 s after grasp onset. Pink circles mark
frequency bands used for decoding (cf. pink bars in (a)) in the remainder of this study.
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These results (Figs. 3a-b) suggest a range of possible signal
components to be used for decoding. On a coarse scale, three
frequency bands seem to play distinctive roles during grasping: a
low-frequency band showing either amplitude increase or decrease a
high-frequency band showing amplitude increase, and an intermedi-
ate-frequency band, displaying a more sustained amplitude decrease,
which, in turn, could be divided into lower and higher, possibly
functionally different, sub-bands. However, from this, it is not obvious
whether a further subdivision into narrower – or different – frequency
bands could be beneficial for decoding grasp types. Therefore, all
possible continuous frequency bands, i.e., averages over sets of
neighboring frequency bins (cf. Methods), were tested for their
potential applicability (Fig. 3c, discussed in Classification of grasp
types), by decoding on the basis of each of these bands, respectively.

We selected three frequency bands, based on the local maxima in
Fig. 3c, for more detailed analyses. The definition of these bands was
consistent with observations made on the basis of task-related
relative amplitude modulations (Fig. 3a):

(1) a low-frequency band: 2–6 Hz,
(2) an intermediate-frequency band: 14–46 Hz, and
(3) a high-frequency band: 54–114 Hz.

To examine amplitudemodulationswithin each of these frequency
bands, normalized amplitude values were averaged over all enclosed
frequency bins.

Figs. 4a–c show, for a set of neighboring electrodes and for each
grasp type, the averaged normalized amplitudes in each of the three
frequency bands defined above, during task execution. Very clear
differences between the two grasp types can be observed in the low-
(Fig. 4a) and high-frequency bands (Fig. 4c). This holds for several
channels recorded over hand-arm areas of the motor cortex, with
different channels exhibiting grasp specificity in different features of
the signals (amplitude, timing, or both), which could potentially
provide non-redundant information. Differences in the intermediate-
frequency band (Fig. 4b) were much smaller, as could be expected
from the time-frequency-resolved SNR (Fig. 3b).

Fig. 4d shows trial-averaged potentials of the low-pass-filtered
ECoG component (LFC; cf. Methods) for both grasp types. Other than
the amplitude modulations of the frequency bands described above,
the LFC also includes phase information and allows for larger grasp-
specific differences, since movement-related potentials may have
opposite signs for different grasp types.
Classification of grasp types

When using amplitude modulations in different frequency bands
of the ECoG to decode grasp movement classes, there is no obvious
rule, which frequency bands should be used and how many different
frequency bands should be differentiated (cf. Movement-related
potentials and spectral amplitude modulations). Therefore, we tested
the performance of decoding on the basis of a wide variety of
frequency bands in the range of 0 to 128 Hz. For this purpose, we
constructed a feature vector for each trial from amplitude values of
the examined band taken from a time interval ranging from −1 s to
+0.5 s in relation to grasp onset in each trial. This temporal range
roughly corresponded to the first epoch of high-frequency activation
related to the grasp (Fig. 3a). Within this interval, values were picked
every 250 ms to obtain samples from non-overlapping and thus more
independent analysis windows of the spectrogram (cf. Methods,
Preprocessing of neural data). For each band, a ten-fold cross-
validation with mutually exclusive test and training sets was repeated
20 times (cf. Methods, Decoding).

Fig. 3c presents the average decoding accuracy (DA) over all
repetitions and all subjects for all investigated frequency ranges
sorted for their respective lower and upper frequency limits.
Generally, broader frequency bands (points farther from the diagonal
in Fig. 3c) yielded a higher DA than narrow frequency bands (points
closer to the diagonal). The low- and high-frequency bands, as
described in section "Movement-related potentials and spectral
amplitude modulations", corresponded to local maxima in Fig. 3c. A
much lower DA was achieved using bands from the intermediate-
frequency range. However, a local maximum of relatively low
amplitude was also found in a band encompassing the beta and low
gamma range (14–46 Hz). Bands comprising the alpha- and beta-
range frequencies (6–26 Hz) were least informative with regard to
decoding grasp types from ECoG signals.

Based on the results in Figs. 3a–c, we restricted all further analyses
to the frequency bands discussed in Section 3.1 (low, intermediate
and high) as well as to the LFC.



Fig. 4. Average modulations (±3×standard error of the mean) of different neuronal signal components over the course of a movement sequence aligned to grasp onset for precision
grip (black) and whole-hand grip (gray). Signals are exemplarily shown for a subset of electrodes from S1 (equivalent illustrations for S2 and S3 in Figs. SUP4 and SUP5).
(a) Normalized amplitude modulations in the frequency bands of 2–6 Hz, (b) 14–46 Hz, (c) 54–114 Hz, and (d) potentials of the low-pass-filtered component (LFC). Channels are
presented in a topographical manner as they were located in the electrode grid. Solid lines separate electrode positions posterior (lower left) and anterior (upper right) to the central
sulcus; electrodes on the hand-arm motor area are marked by a dashed outline.
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A summary of the average DA of all three subjects is shown as
groups of three bars for each kind of feature combination in Fig. 5a.
Variability over 20 repetitions of the cross-validation is indicated by
small black bars in the graph, depicting standard deviation. Please
note that this should not be translated into confidence intervals of DA,
since results for repetitions are not statistically independent.

We used the spatio-temporal pattern of the features described
above (hand-arm motor channels, 1 s before to 0.5 s after grasp time)
for each of the four signal components (low, intermediate, high, LFC),
and their combinations. Three particularly notable combinations were
included into Figs. 5a,b. On average, the LFC yielded a higher DA than
any of the three amplitude signals or any combination of amplitude
signals. The most successful of the amplitude signals was the high-
frequency band, closely followed by amplitudes in low frequencies.
Amplitudes in the intermediate-frequency range yielded a significant
but very low DA. A slight increase in performance from the LFC alone
could be achieved by adding low- and high-frequency amplitudes to
the feature vector. Further enlargement of the feature vector by
adding amplitude values from all three frequency bands did not
increase performance. While predictions for S1 and S3 were very
accurate, reaching 97.1% and 97.2% DA, respectively, the performance
for S2 yielded a lower DA of 84.0%. Note that channels recorded
posterior to the central sulcus were excluded from the analyses to
reduce sensory input.

The time-resolved DA of the signals in relation to the grasping
eventwas evaluated by using signal vectors composed of all hand-arm
motor channels assembled from one specific time point in a trial,
repeated for all time points during the entire duration of a typical trial
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Fig. 5. Decoding accuracy (DA). (a) Classification of the two grasp types using different signal components: l: amplitudes of a low-frequency band (2–6 Hz), m: amplitudes of an
intermediate-frequency band (14–46 Hz), h: amplitudes of a high-frequency band (54–114 Hz), LFC: low-pass-filtered potentials. Additional bars represent combinations of these
signal components. In all cases, a temporal pattern of samples (seven samples at different time points indicated by gray triangles in (b)) from each hand-arm motor channel was
used. Each triplet of bars of one specific color represents the decoding results from a specific signal component or a combination thereof for subjects S1, S2 and S3 (left to right). The
average over subjects is marked by the correspondingly colored horizontal lines. The black horizontal line indicates chance level (0.5) below significance level (pb0.001) bars are
displayed in pale colors. Small black bars on top indicate standard deviation over 20 repetitions of the cross-validation. (b) Temporal development of the DA (across trials of all
subjects), using samples from hand-arm motor channels at only one time point (horizontal axis) with relative to grasp onset. Results for single signal components (l, m, h and LFC)
are depicted in the left panel of (b). The significance level is given by a dashed line. The right panel of (b) shows the same for combinations of different signal components. Colors for
signal types and combinations thereof are the same as in (a). (c) Decoding of different object weights — same form of presentation as in (a), but calculated with different frequency
band limits (see text: low: 0–10 Hz, intermediate: 14–26 Hz, high: 74–118 Hz), and the temporal pattern shifted to later in the trial (between 0.5 s before and 1 s after grasp onset).
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(from about 1 s before to 3 s after grasp onset). DAs, calculated over all
decoded trials from all subjects, as shown in Fig. 5b, indicate that the
peak DA was obtained close to grasp onset, but all signal components,
except for the intermediate-frequency range, provided significant
information on grasp type almost over the entire duration of the trial,
indicating that grasp type could be decoded already during the
reaching movement.

Additionally, we evaluated whether grasp type could be signifi-
cantly predicted before the start of the reaching movement, i.e., on
average, 1.1 s before grasping (see Table 2), that is, in the absence of
hand-arm movements while the subjects held their hand still in the
initial resting position. To this end, we tested discrimination of the
two grasp types based on 4 samples of each hand-armmotor channel,
from time periods from 500 to 125 ms before movement onset,
thereby excluding any possible sensory feedback from movement
execution. For each subject, any of the four selected signal
components (low-, intermediate- and high-frequency amplitudes
and LFC) and all possible combinations thereof (15 combinations in
total) were evaluated. Results from each subject were tested for
significance (pb0.05), Bonferroni-corrected for multiple testing (15
signal components and combinations). While DA was below this
significance level for S1 and S2, three signal combinations yielded low
but significant DA for S3 (above 58%, see supplementary material, Fig.
SUP9 for details).

Anatomical origin of informative signals

Thus far, signals from the hand-arm motor cortex were used as
features to classify ECoG recordings according to grasp type.
Additionally, we determined the DA over all anatomical locations
covered by the electrode arrays. For this purpose, we used a temporal
pattern of features (as discussed in the previous section) from only a
single electrode at a time and evaluated the DA of grasp types as it is
shown for all three subjects in Fig. 6. We found that, for S1 and S3, the
most informative sites were located in areas identified as part of the
hand motor cortex by electrical stimulation. This held for all four
analyzed signal components, although the specific contributions
varied with the signal component used.

For S2, a slightly different picture emerged: only four electrodes in
total were found to reside over the hand-arm motor cortex, and the
most informative signals were found to originate from the somato-
sensory cortex. S2 also was the only subject in whom recordings were
obtained from the left hemisphere and the only one to use the
dominant hand. Whether these differences are a reason for the lower
amount of grasp-specific information found in the recorded motor-
cortical channels, however, would require further investigation in a
larger sample of subjects to systematically compare dominant and
non-dominant, as well as left and right hemisphere signals.

For S1 and S3, channels on somato-sensory areas showed the
second highest capacity to discriminate between grasp types. For
these two subjects, significant DAs up to 79% (high-frequency band,
S3) could also be obtained from channels from Brodmann areas 44
and 45 (homologue of Broca's area in the right hemisphere).
Significant DAs were also found for parts of the posterior parietal
cortex (cf. Figs. 2 and 6) in all subjects. Brodmann areas 44 and 45 are
known to be activated during both performed and imagined hand
movements (Gerardin et al., 2000). The posterior parietal cortex has
been shown to participate in appointing hand-shape and gripping
force during visuo-motor tasks (Davare et al., 2007).

Influence of applied hand forces

In addition to decoding grasp type, we also classified cup weights
as a separate property of each trial providing additional useful
information. To assess the suitability of different frequency bands, we
ran the same decoding procedure as for the classification of grasp
types (cf. Fig. 3c), i.e., in a scan over all possible contiguous frequency
bands, but now using features later in the trial (0.5 s before to 1 s after
grasp time) to better represent the epoch of carrying the cup. Results
are shown in Fig. SUP1 (supplementary material). According to this
analysis, and compared to the earlier results in Fig. 3c, we found
slightly different frequency bands than in the case of decoding grasp
type to yield a high DA for cup weight: 0–10 Hz as a low-, 14–26 Hz as
an intermediate-, and 74–118 Hz as a high-frequency band. These
three frequency bands, and their possible combinations, together with
the earlier described LFC, were subsequently compared for their
performance in decoding cup weight. The results are summarized in
Fig. 5c. The LFC was clearly the most informative signal component for
all subjects, followed by amplitudes in the high-frequency band.
Features yielding the highest DA could be found shortly before grasp
onset and very late in the carrying phase (Fig. SUP2, supplementary
material). Note that, in all cases, weight decoding yielded a
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Fig. 6. Anatomical origin of informative signals. Results are exemplarily provided for S1, S2 and S3. The DA was computed using a temporal pattern of samples from each single
electrode of the ECoG electrode grid. Results are color-coded for each electrode and arranged according to the electrode locations on the grid. Color patches with a central white dot
indicate the DA below significance level (pb0.05, Bonferroni-corrected for multiple testing). Solid magenta lines separate electrode positions posterior and anterior to the central
sulcus; the dashed line outlines electrodes over the hand-arm motor area; a gray outline marks electrodes over Brodmann areas 44 and 45. The spatial mapping is presented
separately for each of the examined signal components (from left to right: low-, intermediate- and high-frequency band amplitudes, and LFC).

Table 3
Control for effects of force (weight of the grasped object) on the generalization of grasp
decoding. Row 1 (‘trained on high weight’) shows the decoding accuracy (DA, in %)
when the classifier was only trained on trials executed with the heavier cup and then
evaluated over the remaining trials i.e., while using the light-weight cup. Row 2
(‘trained on low weight’) shows DA for the opposite case. P-values are given to assess
statistical significance for the difference between these two results by splitting up test
sets into 15 subsets and comparing the distribution of both results with the Wilcoxon
rank sum test. Feature vectors for decoding were constructed from a temporal pattern
of all hand-arm motor channels, combining low- and high-frequency amplitudes, and
the LFC (cf. Fig. 5a). For comparison of the average results for the transfer of decoding
models across different weights (‘average’), the bottom row (‘weight-balanced trials’)
provides decoding results from a comparable two-fold cross-validation with equal
numbers of low- and high-weight trials in test and training sets repeated and averaged
over 20 different random realizations of validation subsets.

S1 S2 S3

Trained on high weight 84.9 78.1 92.8
Trained on low weight 93.7 81.3 95.2
p-value 0.012 0.603 0.270
Average 89.4 79.7 94.0
Weight-balanced trials 95.3 81.0 95.1
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substantially lower DA than grasp type decoding, even though the
composition of feature vectors was adapted to each condition
independently and in the same way.

One possible concern could be that, by using different grasp types
and holding the cup at different positions, different forces might have
been applied by the subject. Possibly, therefore, results presented in
section "Classification of grasp types" might indicate the decoding of
hand force rather than hand configuration during the grasp. Our
experimental design, with half of the trials performed with a
lightweight cup and the other half with a five times heavier version
(cf. Methods), however, controls for this possibility: should we have
mainly decoded hand force, variations in applied force across trials
should, to a larger extent, be related to object weight than to grasp
type. Results presented thus far did not distinguish between trials
with a light or a heavy cup, indicating that grasp type can be inferred
from ECoG independently of the grasped object's weight and, hence,
of the associated variations in applied force.

To further investigate generalization of grasp decoding over
different object weights, we trained the classifier for differentiating
grasp type only on the basis of the trials with the heavy cup, using the
most successful combination of ECoG signal components (low- and
high-frequency band and LFC), and tested its decoding performance
on the trials with the light cup, and vice versa. Average results,
summarized in Table 3, were very similar to the ones obtained using
an analogous two-fold cross-validation using ‘weight-balanced trials’,
with equal amounts of trials with low and high weights in test and
training data sets, respectively (Table 3). Although the decoding based
on low-weight trials with a decoder trained on high-weight trials
resulted in a somewhat lower DA than in the procedure performed the
other way round, this difference was small and only significant
(pb0.05) for S1 (Wilcoxon rank sum test, see Table 3 for p-values).
Even in the case of S1, the average DA obtained in this manner (89.4%)
was not much lower than the DA obtained when decoding with
mixed-weight, weight-balanced trials in test and training set (95.3%).

In summary, our results indicate that the weight of the object –
and, hence, the applied hand force – had, if at all, only a weak effect on
the decoding of grasp type from the ECoG data.
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Dependence on arm kinematics

From previous studies, it is known that arm kinematics as a
continuous property of arm movements are represented in the ECoG
and can be decodedwith linearmethods (Pistohl et al., 2008; Schalk et
al., 2007), albeit with limited precision. If, alongside with finger
kinematics, which define hand posture, also the kinematics of arm
trajectories vary over different grasp types, part of the DA from ECoG
signals could be explained by its relation to arm kinematics, rather
than to hand postures.

Synchronously acquired recordings of wrist position did, indeed,
reveal significant differences in arm kinematics for both grasp types,
as represented by absolute position in the workspace (on the x-, y-
and z-axis), velocity (in x- , y- and z-direction) and absolute hand
speed (magnitude of the 3-dimensional velocity vector). Illustrations
of these differences are provided as supplementary material (Fig.
SUP7). To test how much influence these differences might have on
the classification of grasp types – provided arm kinematics were
perfectly represented in the ECoG – we tried decoding directly from a
set of kinematic parameters of the arm movement, as a function of
time, relative to the grasp. Generally, a feature vector including all
examined kinematic parameters (3-dimensional position and velocity
and absolute speed) delivered highest DA. The peak DA for pure arm-
kinematics-based decoding was lower than that for the LFC alone,
while not negligible in amplitude, and its time course was different
(supplementary material, Fig. SUP8).

However,wewere able to show that theDAachievedusing ECoGdid
not require differences in the arm kinematics described above. To this
end, for each subject,we selected the timeof themaximumDAresulting
from the 7-dimensional vector of movement parameters and subse-
quently searched for a subset of trials that minimized grasp-specific
differences in armkinematics at this particular time in the trial. Thiswas
done by eliminating trials to obtain equal (binned) distributions of
kinematic parameters for both grasp types. In effect, the DA resulting
from arm kinematics of this subset was not significant at pb0.01.
Subsequent decoding from the LFC on the same subset of trials (and at
the same time) was unaffected in comparison to decoding on the
complete trial set (see supplementary material, Fig. SUP8, for more
detailed results), demonstrating that grasp types can be decoded from
ECoG independently from arm velocity or position in the workspace.

Discussion

Movements examined in this study are of relevance for answering
the question whether ECoG can provide control signals for a grasping
prosthesis for paralyzed patients. Our motor task involved natural
movement patterns. Movements relied on internal choices, i.e., in
each trial, the timing of the movement sequence was self-paced and
the choice of grasp type was made by the subject. Therefore, we
decoded signals generated by the subjects' own intentions and
actions, rather than by external commands.

Several sources of variability were included into the experiment,
ensuring that the decoding could generalize over different task
conditions and did not require a stereotyped grasping movement.
While the degree of variability over different object weights and
positions within the workspace was well controlled, other sources of
variability were more implicit and due to the natural character of the
grasping task, which, e.g., allowed for varying the exact position of the
cup handle at the beginning of each trial. We found that, in spite of
these variable conditions, grasp type could be inferred with high
accuracy.

Comparison to other studies decoding grasp types and finger movements

Apart from evaluating the usefulness of ECoG signals for grasp
decoding, this study aimed to establish a new approach to the
decoding of grasping movements by investigating (i) self-paced and,
(ii) with respect to the type of grasp, self-chosen graspingmovements
that were (iii) part of a complex natural movement sequence
(reaching for a cup, grasping and picking it up, then putting the cup
down in a different position of the workspace). Such an approach
appears particularly useful for BMI development, as BMI control
should be self-initiated and work in natural conditions. In the
following section, we establish a context of previous studies on
related topics, applying different approaches.

It has been reported (Kubánek et al., 2009; Miller et al., 2009) that
single finger movements are strongly correlated with a broadband
component of the ECoG, including all frequencies up to 200 Hz. In
these studies, neighboring electrodes showed preferences for differ-
ent individual fingers.

On a smaller spatial scale, LFP recordings have been used to
investigate grasp configurations. Mollazadeh et al. (2008) conducted a
study in which instructed externally paced dexterous finger move-
ments were performed by a monkey during the operation of three
different switches, while LFP was measured from the motor cortex.
Similar to our results, the type of hand movement could be decoded
with highest accuracy from the spectral power in a high- (75–170 Hz)
and low-frequency bands (b4 Hz), whereas signal components in
intermediate-frequency ranges (6–15 Hz and 17–40 Hz) only yielded
poor decoding. In this LFP study, average DAs up to 81% were reported
based on the low- and high-frequency components from 10
electrodes by using a multi-layered artificial neural network.

Furthermore, Spinks et al. (2008), focusing on LFP power in 15–
30 Hz and 30–50 Hz bands from the macaque primary motor cortex
and area F5 during grasping of different objects, found differences
during the grasping of an object grasped in different ways (e.g., hook
and side grip). The choice of the analyzed frequency bands, in
comparison to our study, is remarkable, as we found only very weak
decoding within these frequency ranges. However, since no single-
trial based decoding analysis was carried out, these results are not
quantitatively comparable to those of our study.

Stark and Abeles (2007) analyzed the LFP, together with single-
unit activity (SUA) and a multi-unit activity signal component that
reflected an estimate of the activity of multiple neurons surrounding
the electrode tip, calculated as the root mean square of 300–6000 Hz
filtered extracellular potentials. These signals were recorded from the
dorsal premotor cortex, while the monkeys grasped different objects
from one of six positions after an instructed delay. Using LFP or SUA
from up to 16 electrodes, two grasp types (power and precision grip)
could be distinguished with a 73% accuracy in both cases. Using the
multi-unit activity estimate, grasp type could be decoded with an 85%
accuracy.

A comparison of our results to these studies, as far as such a
comparison is possible in view of differences in experimental design,
indicates that ECoG recordings from the human motor cortex are, in
terms of the DA of different grasp types, on par with LFP and spike
recordings from intra-cortical microelectrodes. This is in contrast with
previous observations that the decoding of reaching direction or arm
movement trajectories is considerably less accurate from ECoG,
compared to SUA, MUA or LFP (e.g., Pistohl et al., 2008; Schalk et al.,
2007 for ECoG, and Wu et al., 2006 for SUA; see also Waldert et al.,
2009 for a comparison).

One possible explanation for this difference between grasp
decoding and arm movement decoding may be found in the spatial
scale of neuronal signals that are informative about different grasps
and arm movements into different directions (cf., Fig. 6). Hand/finger
representations in the human precentral motor cortex are particularly
large and span several cm of the cortex along the central sulcus.
Furthermore, the control of grasping movements involves interaction
of a bigger number of joints and muscles. It is conceivable, therefore,
that specific grasp configurations employ synergies between different,
possibly distant, neuronal populations within the hand-arm area of
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the motor cortex, which are all needed for accurate classification.
Thus, the fact that ECoG electrode grids, as used in the present study,
covering a relatively large area of the cortex might be advantageous in
this case. Intra-cortical microelectrodes record mostly from a local
neural population in a range up to millimeters, which is smaller than
the area of the cortex covered by typical ECoG macro-electrodes.
Therefore, if the differential neural activity patterns related to
different arm movement directions predominate on a finer spatial
scale than those related to different grasp types, they might be better
captured in micro-electrode data.

Another explanation for the rather good performance of grasp type
decoding from human ECoG compared to intra-cortical recordings in
monkeys might be found in differences in the representation of hand
and arm movements between humans and monkeys (Meier et al.,
2008), in spite of the fact that comparisons of somatotopic maps of
both species reveal many similarities. Also, dexterous grasping for
humans constitutes a natural task which can be performed without
any practice, while a similar task for monkeys usually relies on very
specific, over-trained movements, a fact that could contribute to
differences in cortical representation.

Decoded signal components

During the examination of ECoG related to grasping movements,
most of the discriminative power could be found in slow modulations
(represented by the LFC), as they can also be observed in averages of
neural signals in the time domain, as well as in amplitude
modulations in high frequencies above about 55 Hz. The range of
low-frequency amplitude modulations that yielded a high DA over-
lapped with the frequency content of the time-domain LFC, and may,
to a large extent, reflect activation of the same neuronal ensembles.
The suppression of sensorimotor rhythms in an intermediate-
frequency range was spatially widespread and consistently observed
over both subjects and trials. Its specificity for grasp types was,
however, weak (see Figs. 3 and 5). These observations are in good
agreement with previous reports about the decoding of movement
direction from MEG (Waldert et al., 2008), ECoG (Ball et al., 2009a;
Schalk et al., 2007) and from the LFP (Rickert et al., 2005).

The functional significance of this high-frequency ECoG compo-
nent is currently under intense debate (Crone et al., 2011). There is
accumulating evidence that the high-frequency ECoG is a suitable
index for functional mapping (Jerbi et al., 2000; Schalk et al., 2008b)
and is indicative of memory- and attention-related functions (Brovelli
et al., 2005; Jensen et al., 2007). It has been suggested that low- and
high-frequency responses observed in the ECoG of the motor cortex
are, in fact, part of a broad-band signal component, the contiguity of
which is masked by the prominent rhythms in intermediate alpha-
and beta-frequency ranges (Miller et al., 2009). In our study, task-
related activity in low and high frequencies (cf. Fig. 3a), as well as the
informative content of the LFC and low- and high-frequency
amplitudes do, to a great extent, overlap — both temporally
(Fig. 5b) and spatially (Fig. 6). However, together with the previous
observation of different preferred directions for the LFC and gamma-
band activity (Ball et al., 2009a), the observation that a combination of
these signal components did consistently increase the DA in all
subjects suggests that – to some degree – both signal components
may reflect functionally different neural processes.

Sensory and attentional factors

Weonly used signals from electrodes in direct contact with regions
of the motor cortex that, during electrical stimulation, evoked motor
hand and arm responses. Thus, it is unlikely that post-central sensory
processing was the exclusive source of the decoded signals. However,
as proprioceptive information is projected to the motor cortex (Naito
et al., 1999), and considering the fact that, due to volume conduction,
neural sources can be still detected in neighboring locations by ECoG,
as demonstrated by analyses of source visibility (Dümpelmann et al.,
2011), it is not to be excluded that the afferent information could be
responsible for part of the decoded signals.

Our task design did not involve an explicit planning phase for
which movement intentions could be studied in the absence of
movement. Since our results were aimed to be relevant for future
implementation in free BMI control, we designed a task in which
classification of signals did not rely on external cues or artificially
separated movement components (e.g., isolated reach and isolated
grasp). Absence of overt hand and arm motion and, hence, possible
proprioceptive feedback was thus only given within an inter-trial
resting period, long before the actual grasp (1.1±0.3 s). An additional
decoding analysis based on signals from this time period yielded a
very weak DA, exceeding the significance level (pb0.05) for only one
subject (supplementary material, Fig. SUP9).

Apart from proprioceptive interference, other sensory modalities
could have played a role, too. About 20% of neurons in the primary
motor cortex show significant responses to visual stimuli, and some of
these neurons modulate their firing behavior with respect to position
or motion of visual stimuli, which may be important for visuo-motor
coordination (Merchant et al., 2001). Furthermore, different demands
of visuo-motor processing for both grasp types (a precision grip
requires finer visuo-motor coordination than a whole-hand grip)
could have had an effect on the measured signals from the motor
cortex. This, however, does not necessarily constitute a confounding
factor in the analysis, but may rather form an integral part of
movement preparation and visuo-motor planning investigated in the
present study and therefore this kind of neuronal signalsmight also be
available during brain–machine interface control of a grasping
prosthesis. Signals related to visuo-motor planning from the posterior
parietal cortex have been already considered as viable candidates for
brain-machine interfacing (Scherberger et al., 2005).

On the other hand, differential activity in response to pure
movement observation – and, hence, unrelated to motor processing
– can be found in areas that are associated with movement execution.
These are mainly found in the ventral premotor cortex and the
anterior intraparietal cortex (Dinstein et al., 2008), the latter of which
has specifically been reported to code for complexity of the hand
movements observed (Biagi et al., 2010). None of the signals included
into our main analyses were recorded from these areas. Observation
of one's own movement could, however, explain the decoding
possible from posterior parietal locations and Brodmann areas
44/45 (see Fig. 6).

Grasp type may coincide with other differential movement
properties not controlled for in our experimental paradigm. For
instance, we have observed that, in whole-hand grip trials, the speed
of arm movements was higher and movement duration was slightly
shorter than during precision grips (Fig. SUP 7, supplementary
material). While we could exclude that differential arm kinematics
are a prerequisite for an accurate classification of grasp types (Section
3.5), different levels of task difficulty, and hence potentially different
attentional demands could have played a role in the applied task:
precision and whole-hand grips require different levels of fine-tuning
in the pre-shaping of the hand, which may require different levels of
visuo-spatial and motor attention. Neural systems involved in
attentional processing comprise widespread fronto-parietal networks
(Driver et al., 2010; Rushworth et al., 2003). Functional imaging
studies suggest thatmotor attention alsomodulates cortical activity in
the primary motor cortex (Binkofski et al., 2002; Johansen-Berg and
Matthews, 2002), and processing of visuo-spatial attention has been
associated with high-frequency activity in the ECoG recorded on the
premotor cortex (Brovelli et al., 2005).Thus, it cannot be excluded that
differences in attentional demands might have contributed to the
differential ECoG signals we used for grasp-type decoding. To clarify
the role of attentional processing in different types of movements,
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including grasping, further behavioral and brain research, beyond the
scope of the present investigation, is necessary. However, if
differential attention-related signals are difficult to disentangle from
movement-related activity, the corresponding attentional demands
might be closely linked to the performance of different grasp types,
thus being informative for grasp type decoding. Therefore, the
different degrees of attention required for different types of motor
performances might ultimately not confound, but support the use in
BMI applications.
Relevance for BMIs

We have shown that it is possible to decode natural grasp types
from motor-cortical ECoG signals with high accuracy. As grasping
forms a necessary part of everyday human motor behavior, these
results are a significant step towards an ECoG-based BMIwhichwould
allow for the neuronal control of grasping movements by paralyzed
people. The high accuracy of our decoding may encourage testing
classification of a higher number of grasp types (e.g., hook grips,
grasping along horizontal vs. vertical axes).

It would certainly be preferable if grasp types could be decoded by
non-invasive means like EEG or MEG. The feasibility of asynchronous
EEG-based BMIs controlled by voluntary modulations of EEG activity
has been impressively demonstrated (McFarland et al., 2010). Control
strategies for these BMIs often involve neural activity related to
movement execution or imagination of movements of different body
parts with spatially separate representations in the motor cortex (e.g.,
Blankertz et al., 2007; Neuper et al., 2006). Only recently, some
studies tried to decode different movements of the same limb from
non-invasive recordings (Bradberry et al., 2009, 2010; Waldert et al.,
2008). Decoding of movement direction from MEG and EEG has been
reported to reach only about half the information transfer rate as for
directional movement decoding from ECoG signals (cf. Ball et al.,
2009a; Waldert et al., 2008, 2009). In the present study, some EEG
channels were recorded at the same time as ECoG, allowing for a first
direct comparison of invasive and non-invasive signals. Using the few
EEG channels available, classification of different grasp types was
possible, to some degree, in two out of three subjects, but the DA
obtained (55.5–63%) was much lower than in the ECoG data (see
supplementary material, Fig. SUP10). An explanation of such low
performance might be the inferior spatial resolution and lower
signal-to-noise ratio of the EEG. We suspect that EEG recordings in
the present form, with current analysis approaches, might, in fact,
have a limited capacity for discriminating different grasping
movements.

There are several further requirements that would have to be
fulfilled by a BMI in order to provide adequate commands for grasping
that have not been addressed in this study. One step of fundamental
importance will be to show that the time of grasp onset can be
inferred from neuronal data with sufficient accuracy. Other concerns
are whether and how a classifier could be trained without actual
movements in order to be applicable in patients for whom a BMI
would primarily be designed, i.e., patients with missing limbs or
suffering from paralysis. Moreover, for some practical applications,
considering modulations of the gripping force might also be
necessary. Furthermore, as successful grasping requires correct
release of the grasp, it still needs to be clarified whether a command
for sustained grasping or a separate command for object release
(extension of fingers, rather than flexion) would be better suited for a
natural and intuitive BMI-based control of a grasping movement.

In spite of the fact that these various issues still require further
investigation, the presented results indicate that neural population
activity recorded from the cortical surface could be a potential
candidate for use in the restoration (or replacement) of grasping
movements via BMI technology.
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