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Abstract
A brain–machine interface (BMI) can be used to control movements of an artificial effector,
e.g. movements of an arm prosthesis, by motor cortical signals that control the equivalent
movements of the corresponding body part, e.g. arm movements. This approach has been
successfully applied in monkeys and humans by accurately extracting parameters of
movements from the spiking activity of multiple single neurons. We show that the same
approach can be realized using brain activity measured directly from the surface of the human
cortex using electrocorticography (ECoG). Five subjects, implanted with ECoG implants for
the purpose of epilepsy assessment, took part in our study. Subjects used directionally
dependent ECoG signals, recorded during active movements of a single arm, to control a
computer cursor in one out of two directions. Significant BMI control was achieved in four out
of five subjects with correct directional decoding in 69%–86% of the trials (75% on average).
Our results demonstrate the feasibility of an online BMI using decoding of movement
direction from human ECoG signals. Thus, to achieve such BMIs, ECoG signals might be
used in conjunction with or as an alternative to intracortical neural signals.

(Some figures may appear in colour only in the online journal)

1. Introduction

A brain–machine interface (BMI) is a device that translates
neural activity of the brain into signals controlling a machine.

7 Author to whom any correspondence should be addressed.
8 Current address: Department of Neuroscience, Brown University, PO Box
1953, Providence, RI 02912, USA.
9 These authors contributed in equal parts.

Different techniques exist to record brain activity for BMIs
and there are different approaches to translate brain signals
into movements of an external effector (Wolpaw et al 2002,
Lebedev and Nicolelis 2006, Waldert et al 2009).

Some of the most powerful BMIs have been realized
using the spiking signals of multiple neurons recorded
with intracortical electrode implants (Serruya et al 2002,
Carmena et al 2003, Hochberg et al 2006, Santhanam
et al 2006, Moritz et al 2008, Velliste et al 2008, Fraser
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et al 2009). However, recordings from intracortical implants
can be unstable due to the response of brain tissue to
the implant (Shain et al 2003, Bjornsson et al 2006)
and due to changes of the neuronal activity–behaviour
relationship across time (Donoghue et al 2004, Dickey et al
2009). BMIs have also been implemented using non-invasive
recording techniques, where the neural activity is recorded
outside of the subject’s skull using electroencephalography
(EEG), magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI) or near infrared spectroscopy
(NIRS; Birbaumer et al 1999, Weiskopf et al 2004, Wolpaw
and McFarland 2004, Mellinger et al 2007, Abdelnour and
Huppert 2009, McFarland et al 2010).

In addition, recordings from the surface of the brain
(electrocorticography; ECoG) using epicortical implants have
also been used for BMIs (Leuthardt et al 2004, Schalk et al
2008). Compared to intracortical implants, ECoG signals can
be recorded without implanting the electrodes into the cortex,
do not require spike sorting and exhibit potential advantages
with regard to long-term recording stability (Chao et al
2010). In comparison to non-invasive recording techniques,
ECoG has a higher spatial resolution (Freeman et al 2000,
Slutzky et al 2010), higher bandwidth (Staba et al 2002),
higher signal to noise ratio (Ball et al 2009a) and is less
prone to artefacts (Ball et al 2009a). Additionally, ECoG
recordings are used in clinical procedures, such as pre-surgical
epilepsy diagnostics (Rosenow and Luders 2001) and electrical
stimulation mapping (Foerster 1931, Uematsu et al 1992),
which makes it possible to conduct ECoG studies with human
subjects without additional medical risk.

Previous online brain-control studies using ECoG
decoded the execution or imagery of different parts of the
body (e.g. right versus left hand) to control an external actuator
(Leuthardt et al 2004, Schalk et al 2008). In addition, it has
been shown that different movements of the same limb (e.g.
the direction of an arm movement) can also be inferred from
ECoG (Leuthardt et al 2004, Mehring et al 2004, Schalk et al
2007, Pistohl et al 2008, Ball et al 2009b, Miller et al 2009,
Wang et al 2009, Chao et al 2010). For example, continuous
position and velocity of 2D arm movements (Schalk et al
2007, Pistohl et al 2008), continuous finger position (Kubanek
et al 2009) and different grasping movements (Pistohl et al
2012) have been decoded. However, all these studies decoded
the movements offline. An online BMI using the decoding
of kinematic movement parameters from ECoG has not been
realized until now.

Here, we demonstrate online brain control of a computer
cursor using the decoding of movement direction from ECoG
recordings in humans.

2. Methods

2.1. Subjects and recordings

Five subjects (S1–S5) suffering from intractable pharmaco-
resistant epilepsy (table 1) voluntarily participated in the study
after having given their informed consent. The study was
approved by the Freiburg University Ethics Committee.

For pre-neurosurgical epilepsy diagnostics, the subjects
were implanted with an 8 × 8 grid of subdural surface
electrodes (Ad-Tech, Corp., 1 cm inter-electrode distance,
4 mm electrode diameter) covering parts of the primary
and pre-motor cortex (figure 1). S1, S2, S3 and S4
had additional ECoG stripes implanted. In addition to
the signal from the subdural electrodes, 21 surface EEG
channels, one or two bipolar electro-oculography (EOG)
channels, the electrocardiography (ECG) channel and several
electromyography (EMG) channels were recorded. Signals
from the ECoG electrode stripes, EEG, ECG and EMG
channels were not analyzed in this study.

Recordings from all electrodes were digitized at 1024 Hz
sampling rate for S1, S2 and S3 (Brainbox EEG-1164
amplifier, Braintronics B. V., Almere, Netherlands) and at
2500 Hz sampling rate for S4 and S5 (AC441-01 Neuvo
amplifier, Compumedics Limited, Abotsford, Australia).
Recordings for S1, S2 and S3 were made using a hardware
high-pass filter with 0.032 Hz cutoff frequency. Recordings
for S4 and S5 were made without the hardware high-pass
filter. Experiment control and paradigm presentation were
performed using our own laboratory software. Subsequent data
analysis was performed using MATLAB (MATLAB versions
7.4-7.11, Natick, Massachusetts: The MathWorks Inc., 2007–
2011).

2.2. Task

Subjects interacted with an experimental paradigm shown on
a computer screen (figure 2). The experiment was carried out
in sessions, defined as uninterrupted time epochs in which
subjects continuously interacted with the paradigm. Each
session consisted of 50 or 25 trials after which the subject
stopped performing the task. Each trial consisted of a pause
phase (1–2 s, random, uniformly distributed) followed by a
preparatory informative cue presentation (displayed for 1–2 s,
random, uniformly distributed), which informed the subject to
prepare for moving a joystick to the left (purple rhomboid)
or to the right (red rhomboid) using the hand contra-lateral
to the implantation site. After a delay of 2–3 s (random,
uniformly distributed), a go cue (green dot) was presented
and subjects had to initiate the movement during the next 1 s.
During the movement, no visual feedback was given to the
subject. After reaching the joystick end position, they had to
keep it in this position for additional 2 s. If subjects did not
follow this sequence correctly, the trial was stopped and not
used. This was done to ensure stereotypical movements of the
subjects after the go cue and no movements before the go cue.
Subsequently, the cursor on the screen moved in the direction
in which subjects moved the joystick (feedback phase).

Each experiment started with an introduction session in
which the subject was familiarized with the task. Subjects
were encouraged to perform correct as well as incorrect
trials, so that they would get used to the task and to the
error messages written on the screen. Once the subject was
familiar with the task, the introduction session was stopped
and one or two training sessions followed. During the feedback
phase of the training sessions, the cursor always moved over
to the maximum distance from the centre in the correct
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Table 1. Clinical profiles of the subjects taking part in the experiment.

Subject Age Sex Handedness Electrode location Seizure focus

S1 33 M R Grid right fronto-central Right frontolateral
Right fronto-lateral strip Right parietal
4 Right inter-hemispheric strips Right inter-hemispheric

S2 22 M R Grid left frontal Left frontal
3 Left dorsolateral-prefrontal and frontal strips
4 Inter-hemispheric strips

S3 41 F L Grid left fronto-lateral Left precentral
2 Left frontal strips
4 Inter-hemispheric strips

S4 17 M R Grid right frontal Rest of gyrus temporalis
2 Depth electrodes to right insula and hippocampus superior (after resection)
2 Right occipital and temporo-basal strips Right hippocampus

Right posterior insula
Right frontal lobe

S5 23 M R Grid right fronto-central Right frontal
5 Inter-hemispheric strips
Right parieto-occipital strip
2 Posterior parietal strips

Table 2. Summary of the online closed loop experiment. Numbers of left (L), right (R) and total (Tot) number of correctly performed trials
are shown for each session. For every brain-control session, we listed the sessions, selected number of electrodes and electrode selection
strategy (all ESM H&A motor electrodes, or selecting the electrodes by visual inspection of the neural responses) used for model building.

Number of trials

Session R L Tot Model trained on Number of electrodes Electrodes used

S1 S1s1 (training) 23 27 50
S1s2 (training) 23 22 45
S1s3 (brain control) 24 21 45 S1s1 and S1s2 16 ESM H&A motor
S1s4 (brain control) 23 22 45 S1s3 6 Visual inspection
S1s5 (brain control) 16 24 40 S1s4 6 Visual inspection

S2 S2s1 (training) 24 20 44
S2s2 (brain control) 18 23 41 S2s1 16 ESM H&A motor
S2s3 (brain control) 12 29 41 S2s1 & S2s2 16 ESM H&A motor
S2s4 (brain control) 24 22 46 S2s1, S2s2 and S2s3 16 ESM H&A motor

S3 S3s1 (training) 24 23 47
S3s2 (brain control) 20 27 47 S3s1 8 Visual inspection
S3s3 (brain control) 21 28 49 S3s1 & S3s2 2 Visual inspection

S4 S4s1 (training) 26 20 46
S4s2 (brain control) 13 9 22 S4s1 12 Visual inspection

S5 S5s1 (training) 21 29 50
S5s2 (brain control) 11 11 22 S5s1 19 ESM H&A motor

direction. Once the training sessions were finished, a model
was built from the collected data. One or more brain-control
sessions followed, identical to the training sessions, except
for the feedback phase. Now, the distance travelled by the
cursor was proportional to the posterior probability for the
cued movement direction as decoded with the trained model. A
vertical line was positioned at the half of the maximum distance
the cursor could travel, signifying posterior probability of 0.5.
Every time the posterior probability was higher than 0.5, the
cursor would cross the line and the word ‘Tor’ (German for
‘goal’) was written on the screen, providing positive feedback
to the subject. After every brain-control session the model was
re-built using one or more of the previous sessions as training
data, sometimes with a change in the selection of electrodes.
Table 2 summarizes the experiments for all subjects.

2.3. Model building for decoding in brain-control sessions

Data from relevant (table 2) sessions was common average
referenced using recordings from all electrodes on the 8 ×
8 ECoG grid that did not have any defects or did not record
epileptic activity.

First we chose the strategy for selecting the electrodes to
be used in model building. We either selected all electrodes
that showed a hand or arm motor response during the electrical
stimulation mapping (ESM; ESM H&A motor electrodes;
Foerster 1931, Uematsu et al 1992) or we chose the electrodes
by visual inspection of the recorded ECoG amplitudes for each
movement direction (table 2).

Our decoding model was based on several features of low-
pass filtered ECoG signals (second-order symetric Savitzky–
Golay filter with window length optimized between 0.25 and
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Pre-central sulcus
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Figure 1. Position of the implants on the neocortex and in relation to the Sylvian fissure, precentral, central and postcentral sulci. Brain
outlines were reconstructed from the pre-implantation MRI of the subjects. Electrodes (red and black dots) and sulci were reconstructed
from the post-implantation MRI of the subjects. Note that, due to local pressure in the region of the implant, brain tissue can be partially
compressed and the brain surface can be slightly deformed relative to the pre-implantation state. Therefore, a mismatch between the sulci on
the pre-implantation MRI and sulci reconstructed from the post-implantation MRI is possible. We analyzed the signals from the electrode
grid implants only (red dots).

1 s; Savitzky and Golay 1964, Steinier et al 1972). Following
filtering, features were taken at different time points with
respect to the go cue. Model building consisted of testing
different values of parameters defining the feature selection
and the decoder used for classification. Feature selection
consisted of selecting: (i) the window length of the Savitzky–
Golay filter, (ii) the number of features from one electrode,
(iii) the time of the first feature relative to the go cue, and (iv)
the temporal distance between the first and the last feature.
For decoding, we used regularized linear discriminant analysis
(RLDA; Friedman 1989), which uses an additional parameter,
the regularization coefficient (v), to improve generalization.
ECoG recordings for S4 and S5 were not high-pass filtered
by the recording system. Therefore, to remove low frequency
potential drifts for S4 and S5, we subtracted the low-pass
filtered ECoG signal that was obtained by filtering using

a causal running average filter. In addition to other model
parameters, for S4 and S5, we also selected between different
values of (vi) the window length of the running average filter.
For each of these parameters, we defined a set of values and
tested every combination of these values using five-fold cross
validation. The set of parameter values which gave the highest
estimated normalized decoding accuracy (DA) was used to
build the model on the entire set of training data:

DA = 1
Nclass

Nclass∑

i=1

ci

ni
(1)

where Nclass is the number of classes (in our case 2; left and
right movements), ci is the number of correct trials for a given
class and ni is the total number of trials for a given class.
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Figure 2. Subjects interacted with an experimental paradigm shown on a computer screen. One session consisted of 50 or 25 trials. Each
trial consisted of a pause phase (1–2 s, random, uniformly distributed), informative cue presentation (1–2 s, random, uniformly distributed),
a delay phase (2–3 s, random, uniformly distributed), a movement phase initiated by a go cue and a feedback phase. The screen showed a
fixation cross during pause and delay phases, a coloured rhomboid (purple: movement to the left, red: movement to the right) during the
informative cue presentation and a green dot during the movement phase, all in the centre of the screen. In the feedback phase the cursor
changed to the colour of the informative cue, and was moved in the direction of the subjects’ joystick movement. In addition, a thick line in
the colour of the informative cue would appear in the path of the cursor. If the cursor crossed the line, the word ‘Tor’ (German for ‘goal’)
would be written on the screen. If subjects did not perform stereotypic movements after the go cue or performed movements before the go
cue, an error message would appear and the trial would be terminated. Subjects were then asked to resume the initial position and the next
trial would start.

2.4. Offline data analysis

During the online experiment, the time for model building
was limited. Therefore, the number of tested parameter values
was reduced. In the offline analysis we always used a more
exhaustive range of parameter values: (i) Savitzky–Golay filter
window length: 1

4 , 1
2 , 3

4 and 1 s; (ii) number of features from
one electrode: 1, 2, 3, 4 and 6; (iii) temporal distance of the first
feature relative to the go cue: from 0 till 1.4 s after the go cue
in steps of 0.1 s; (iv) time interval between the first and the last
feature: 1

16 , 1
8 , 1

4 , 3
8 , 1

2 , 3
4 and 1 s; (v) regularization parameter:

0, 0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99; (vi) window length of
the running average filter: 5, 10 and 20 s (for S4 and S5 only).

2.5. Comparison of electrode selection strategies

To optimize decoding, proper electrode selection is important
(Muller et al 2000, Lal et al 2004, Demirer et al 2009). In
the case of patients recovering after intracranial surgery, an
additional restriction is that the model has to be built in the
short amount of time available for experiments and, hence,
needs to be based on only a small amount of training data. This
restricts the number of possible electrode selections that can
be tested. For this reason, before the brain-control sessions, we
selected the electrodes used for model building based either
on the results of ESM or on visual inspection of the neural
responses, thereby not optimizing the electrode selection on
the basis of DA.

Offline analysis was used to test whether selecting the
electrodes in a different manner could have increased the DA.
We restricted the electrode selection to the ESM H&A motor
electrodes, trying to avoid electrodes where information could
be a result of some kind of artefact (e.g. eye movements)
and minimizing the influence of sensory feedback induced by
the subjects’ movements. To further minimize the influence
of sensory input, we also considered the subset of the ESM
H&A motor electrodes that lay over the motor cortex according
to the sulci reconstruction (ESM H&A motor + SR motor
electrodes).

Thus, two electrode sets were considered for the offline
electrode selection strategy: (a) all ESM H&A motor
electrodes and (b) ESM H&A motor + SR motor electrodes.
For each of these sets, we considered (i) single electrodes
belonging to the electrode set (a or b), (ii) electrode pairs
(vertical or horizontal) within the electrode set, (iii) three
neighbouring electrodes within the electrode set, (iv) four
neighbouring electrodes within the electrode set and (v)
all electrodes together belonging to the electrode set. We
evaluated the DA of all electrode subsets for all parameter
values (see above) by five-fold cross validation on the training
data and selected the parameter values and electrode subset
yielding the highest DA for (i), (ii), (iii), (iv) and (v) separately.
These subsets and parameter values were then used to decode
the brain-control sessions offline. Sessions used for training
and testing the model were chosen in the same way as in the
online experiment (table 2).
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2.6. Significance testing of neural responses

To confirm that neural responses to left and right movements
were significantly different from each other and from baseline
activity, a Mann–Whitney–Wilcoxon test was applied between
neural responses at every time point. Neural activity recordings
were first low pass filtered with the Savitzky–Golay filter
(symmetric, second-order, 0.5 s window length). Since the
response had to be present within a limited time after the
trigger, we tested the epoch of the neural activity from the go
cue until 2 s after the go cue. Baseline neural activity was
defined as all neural activity outside the epochs described
above. To sample the baseline activity distribution properly,
we removed the autocorrelation of the low-pass filtered activity
arising from the filtering procedure by sampling the baseline
activity only every 0.5 s. To reduce the computation time of
the significance testing, we tested significance of the neural
responses every 31.25 ms (corresponding to 32 Hz), instead of
testing for every recorded time point.

Due to the large number of statistical tests, correction for
multiple testing was necessary to control the number of falsely
rejected null hypotheses. We used the Benjamini–Hochberg
procedure (Benjamini and Hochberg 1995) with a correction
for dependent statistics (Benjamini and Yekutieli 2001) to set
the false discovery rate for one subject at the level of 5% for all
tests. A neural response to the go cue on a certain electrode was
considered significant if there was at least one time point for
which the neural response to the go cue for right movements
was significantly different from baseline neural activity or,
alternatively, at least one time point for which the neural
response to the go cue for left movements was significantly
different from baseline neural activity. This condition needed
to be satisfied after the correction for multiple testing was
applied, taking into account all time-point-wise tests for both
conditions. A neural response to the go cue was considered
significantly different between left and right movements if
there was at least one time point for which the neural response
to the go cue for right movements was significantly different
from the neural response to the go cue for left movements,
after the correction for the multiple testing was made.

2.7. Movement onset versus go cue alignment

Since the neural signal epochs used for decoding were aligned
to the go cue, differences in movement reaction times and,
hence, in the onset times of neural responses time-locked to
movement onset, could have quite different effects on DA,
depending on whether they originate from trials of the same
movement type (either left or right) or whether they stem
from a systematic difference in reaction times for different
movement types (left versus right). In the latter case, the
systematic difference in response onset by itself would allow
for correct directional decoding, even for otherwise identical
neural responses. Removing the systematic reaction time
difference by aligning the neural signal epoch on movement
onset instead of on go cue should then reduce the DA. On the
other hand, differences in reaction times for trials of the same
movement type would increase the variability of the neural
responses of both movement types when aligned to the go cue

and, hence, lead to a reduction in DA. Removing the effect
of reaction time variability by aligning the signal epochs on
movement onset, instead of on go cue, would then be expected
to result in an increase of DA.

To test which of these two scenarios were true, we
realigned the neural responses to movement onset, thereby
removing, or at least reducing, both response onset variability
and systematic response onset latencies due to differences in
reaction times. We ran the whole experiment offline as if it was
an online experiment, i.e. using the same sessions for training
and testing (table 2).

2.8. Electrical stimulation mapping and neuroanatomical
electrode assignment

Electrical cortical stimulation through the electrode grid was
performed using an INOMED NS 60 stimulator (INOMED,
Germany) as a part of the clinical procedure. Stimulation trains
of 7 s duration consisted of 50 Hz pulses of alternating polarity
square waves of 200 µs each. The intensity of stimulation was
gradually increased up to 15 mA or to the induction of sensory
and/or motor phenomena. Subjects were unaware of the timing
of stimulation, unless these phenomena occurred. Phenomena
were reported by the subject, specifying the limb of origin and
the type of sensation (motor or somatosensory). Consequently,
ESM maps were created and used to select the electrodes used
for online brain control (figure 3).

Data from post-implantation MRIs were used to
reconstruct the positions of the Sylvian fissure, central sulcus,
postcentral sulcus and precentral sulcus with respect to the
electrodes (figures 1 and 3). The reconstruction informed us
whether an electrode was lying over one of the reconstructed
sulci or not. We defined the sulci reconstruction (SR) motor
electrodes as set of electrodes located over the central sulcus,
over the precentral sulcus, or in-between the central and the
precentral sulci according to the sulci reconstruction. Sulci
reconstruction was available only after the online experiment
had finished.

3. Results

3.1. Neural responses

We found significant neural responses to go cue (figure 4) on a
large number of electrodes (47 out of 64 for S1, 37 out of 64 for
S2, 52 out of 64 for S3, 19 out of 64 for S4 and 44 out of 64 for
S5; 62% of the electrodes on average). In contrast, only a small
number of electrodes showed significant differences between
neural responses to left and right movements (8 electrodes for
S1, 1 for S2, 7 for S3 and none for S4 and S5, 5% of the
electrodes per subject on average). These results show that,
even though the neural response to hand movements are widely
distributed, only a small fraction of the responses contained
directional information.

3.2. Decoding accuracy in online closed loop experiments

During the online experiment, we ran two training and three
brain-control sessions with subject S1, one training and three
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Figure 3. Overview of the electrode selection for the online brain control combined with ESM results and sulci reconstruction. For each
subject, an 8 × 8 electrode grid (circles represent electrodes) is shown, oriented in the same manner as the grid in figure 1. Arrows above
the top right corner point in the frontal direction. Red circles mark the electrodes initially used for brain control, blue circles mark the
electrodes used after the electrode selection was changed. Electrode selection was changed only once for S1 and only once for S3. Letters
above the electrodes mark the type of the ESM response elicited: A: arm, H: hand, L: leg, E: eye and F: oro-facial responses. Black letters
mark motor responses, white letters mark somatosensory responses. Solid green lines mark the Sylvian fissure, precentral, central and
postcentral sulci reconstructions.

Table 3. Summary of the parameter values used for building the model before each of the brain-control sessions during the online
experiment. The high-pass filter, implemented by subtraction of the low-pass filtered signal using running average filter, was used for
subjects S4 and S5 only.

Savitzky–Golay filter Features per Time of the first Temporal distance between the High-pass filter
Session window length (s) channel feature (s) first and the last feature (s) Regularization window length (s)

S1s3 1 2 1.4 1/4 0.7 x
S1s4 1 3 1 1/16 0.1 x
S1s5 1/2 2 0.9 3/8 0.01 x
S2s2 1/2 2 0.3 1/16 0.3 x
S2s3 3/4 1 0.4 x 0.01 x
S2s4 2/3 1 0.5 x 0.01 x
S3s2 1/3 1 1 x 0.1 x
S3s3 1/2 1 0.9 x 0.5 x
S4s2 1/2 1 1.3 x 0.3 5
S5s2 3/4 1 0.7 x 0 20

brain-control sessions with S2, one training and two brain-
control sessions with S3 and one training and one brain-control
session with S4 and S5 each (table 2). Table 3 shows the
overview of the chosen parameter values during the model
building phase for each of the brain-control sessions.

We achieved significant (p < 0.01, binomial test)
directional decoding in online closed loop hand movement
direction decoding in four out of five subjects and eight out
of ten sessions (figure 5(A), table 4) with average DA of

75%. We used two different strategies to select the electrodes
used for model building. For the first brain-control session
for S1 and all brain-control sessions for S2, S4 and S5 we
used all ESM H&A motor electrodes (average DA 71%). For
the other brain-control sessions, we selected the electrodes
which showed strongest tuning during training, not necessarily
restricting ourselves to ESM H&A motor electrodes (average
DA 80%). The difference in DA between these two strategies
was significant (p < 0.05, Fisher’s exact test). On the other
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(A)

(B)

Figure 4. (A) Mean ± standard error of the mean of the low-pass filtered neural activity (second-order symmetric Savitzsky–Golay filter,
0.5 s length) for S3 for left (blue) and right (red) movements relative to the go cue (0 s) over the electrode grid. Every subplot represents one
electrode with the top left subplot corresponding to the top left grid electrode as shown in figure 1. The arrow points in the frontal direction.
Solid green lines in the background show sulci reconstructions. (B) Low-pass filtered neural responses recorded from two selected
electrodes for every subject (same filter as in A). 0 s marks the go cue. For S1, S2 and S3 mean ± standard error of the mean of the neural
response is shown for the first training session (T 1) and the first and the second brain-control session (BC 1 and 2). For S4 and S5, only one
brain-control session was recorded. Therefore, only T 1 and BC 1 are shown. Green background marks the times when the neural response
for left and right movements were significantly different from each other for all three sessions.

hand, we found no significant difference (p = 0.48, Fisher’s
exact test) between strategies of using only the last preceding
session to train the model (average DA 77%) and using
multiple sessions (average DA 74%).

In the second brain-control session of S3, we used neural
activity measured with only two neighbouring electrodes,
1 cm apart, for decoding (figure 5(A), electrodes marked in
figure 3). The DA of 76% achieved by using only these two
electrodes was not significantly different from the DA in the
remaining sessions (mean DA = 75%, p = 1, Fisher’s exact
test).

3.3. Comparison of electrode selection strategies

We evaluated the DA from different electrode se-
lection strategies and different electrode subsets (fig-
ure 5(B)). For ESM H&A motor + SR motor elec-
trodes, the DA from four neighbouring electrodes (av-
erage DA 78%) was not significantly different from
the DA from all subset electrodes (average DA 76%;
p = 0.61; Fisher’s exact test) or the DA from the brain-control
sessions (average DA 76%; p = 0.56; Fisher’s exact test). This
shows that most of the directional information was already
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Figure 5. (A) Overview of the DA in the online brain-control experiment. (B) Offline analysis of DA for different electrode sets (ESM H&A
motor, ESM H&A motor + SR motor) and their subsets (single electrode, electrode pair, electrode quartet, all electrodes) and comparison to
DA from the brain-control sessions. For each or the electrode sets, the optimal electrode subset and the corresponding set of parameters were
chosen by maximizing DA evaluated using five-fold cross-validation on the sessions used for model building. Histograms show the average
DA evaluated on the testing sessions with error bars showing 95% confidence intervals of the mean. Choice of sessions used for model
building and testing sessions was identical to those used in the online experiment (table 2).

Table 4. Summary of DA in the online closed loop experiment. For
every brain-control session, we listed the number of left (L) and
right (R) successful/total trials and significance level (p) testing a
chance level decoder hypothesis using a binomial test.

Successful trials

Brain-control session R L DA P value

S1s3 15/24 11/21 0.58 0.12
S1s4 16/23 21/22 0.83 <0.001
S1s5 9/16 22/24 0.74 <0.001
S2s2 17/18 14/23 0.78 <0.001
S2s3 8/12 23/29 0.76 <0.001
S2s4 22/24 17/22 0.85 <0.001
S3s2 18/20 23/27 0.87 <0.001
S3s3 18/21 19/28 0.76 <0.001
S4s2 9/13 7/9 0.74 0.009
S5s2 5/11 6/11 0.50 0.42

present in the signals recorded from small subsets of four
neighbouring electrodes (contained within a 14 mm × 14 mm
area). Additionally, ESM provides a strong indication that all
four of these electrodes were recording neuronal signals from
the hand and arm area of the motor cortex.

Using all ESM H&A motor electrodes yielded the highest
DA (average DA 81%), with a tendency to be higher than the
DA from brain-control sessions (p = 0.07; Fisher’s exact test)
and the DA from using only all ESM H&A motor + SR motor
electrodes (p = 0.07; Fisher’s exact test). Note that the ‘all
ESM H&A motor electrode set’ can include electrodes that
lay over pre-motor and somatosensory cortex according to the
sulci reconstruction (see section 2.6).

3.4. DA topographies

Figure 6 shows the spatial distribution of DA over the electrode
grid when electrode quartets were used for decoding. For all
subjects, the maxima of the DA had at least one electrode in
the quartet belonging to the ESM H&A motor electrode set,
with other high DA quartets grouped around the locations of
the maxima. This is expected for a task involving hand and
arm movements and confirms that the neural responses used
for decoding were not the product of artefacts.

3.5. Movement onset versus go cue alignment

Inspection of the joystick movements (figure 7(A)) revealed
that, apart from reaction time and movement direction,
rightward and leftward movements were quite similar, both
across movement types (left versus right) and across trials
within the same movement type (either left or right). Following
the go cue, subjects initiated the movements (defined as
crossing 15% of the maximum joystick deflection in horizontal
direction) after 415 ± 87 ms (S1 304 ± 12 ms; S2 156 ±
12 ms; S3 439 ± 13 ms; S4 661 ± 33 ms; S5 513 ±
16 ms). We observed a significant difference in reaction time
between left and right movements (p < 0.05; Mann–Whitney–
Wilcoxon test) for some sessions of S2 and S4 (figure 7(B)).

To test whether response onset variability has an effect
on the DA, we re-aligned the neural responses to movement
onset and re-ran the experiment using the same sessions for
training and testing (table 2). We found that, in all subjects,
the resulting DA was higher after alignment to movement
onset than during the brain-control sessions where trials were
aligned on the go cue (figure 7(C); DA increase 0.08 ±
0.03%, p < 0.05; signed Mann–Whitney–Wilcoxon test). This
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testing sessions. Choice of sessions used for model building and testing sessions was identical to those used in the online experiment
(table 2). White circle marks the electrode quartet with the highest DA. Arrows above the top right corner point in the frontal direction.

indicates that the selected neural responses were indeed coding
for movement direction and that correct decoding was not
due to systematic response latency differences for different
movement types.

4. Discussion

Here we showed that it is possible to realize online brain-
control using the directional tuning of human ECoG signals.
Brain control was achieved for four out of five subjects. For the
subject where no control was obtained (S5), we could run only
one brain-control session. Eventually, due to medical reasons,
the experiments with S5 had to be stopped and no additional
brain-control sessions could be performed later on. For S1,
the first brain-control session was also unsuccessful. In the
subsequent sessions for S1, we changed the electrode selection
and achieved significant control. In case more experimental
time had been available for S5, we would have employed the
same strategy, hoping that it might have worked for S5 as well.

We also examined DA based on signals from a small
subset of neighbouring electrodes. In the second brain-control
session of S3, we showed that brain control is possible using
signals from only two neighbouring electrodes. DA obtained
with these two electrodes was the same as the average DA
from other online brain-control sessions. Moreover, our offline
analysis revealed that, across all sessions and subjects, already
four neighbouring electrodes provided almost all available
movement information. This supports the idea that most of the
informative signals in our experiment can be recorded from an

area that is relatively small compared to the size of the entire
ECoG grid. This is consistent with offline analyses of previous
studies showing high DA from local ECoG electrode quartets
(Ball et al 2009b), thereby indicating the feasibility of using
ECoG implants with small, possibly dense electrode grids for
BMI applications.

One of the possible BMI applications is to control
movements of hand and arm prostheses. Such prostheses might
not provide proprioceptive feedback. Moreover, sources of
the BMI control signals for the hand/arm prosthesis should
not interfere with movements of other body parts. Thus, we
focused on neural activity in the hand and arm area of the motor
cortex. ESM was used as an indication that electrodes recorded
neural activity predominantly related to hand and/or arm
movements while sulci reconstruction was used to determine
which of these electrodes were lying over the motor cortex
(figure 3). Our online experiment demonstrated that using
all ESM H&A motor electrodes lead to a significant DA of
71% on average. When the identical experiment was repeated
offline, now on all brain-control sessions and with a complete
search over all model parameters, DA increased to 81%.
According to sulci reconstruction, some of the ESM H&A
motor electrodes were lying over the somatosensory cortex
and some over the pre-frontal cortex. Thus, neural activity
related to somatosensory feedback and cognitive processes
may have contributed to decoding performance in the online
control condition. To test whether this was the case, we used
sulci reconstruction to determine a more restrictive set of
electrodes by using only ESM H&A motor electrodes within
the anatomically defined motor cortex. We demonstrated that
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Figure 7. (A) Horizontal and vertical joystick deflection for S3 (normalized to a range of −1 to +1). Movements are shown as average ±
standard error of the mean. (B) Average movement onset time (15% of joystick deflection) following the go cue for every subject and every
training (T) and brain-control (BC) session. Error bars show standard error of the mean. Stars mark significant differences (Mann–
Whitney–Wilcoxon test) between left and right movement onset times. (C) Comparison of DA from online brain-control experiment and DA
from trials realigned to movement onset. Thin black lines show DA chance level.

one can still achieve a significant DA of 76% from this
smaller electrode set. Even though neural activity related to
visual and somatosensory feedback is present in motor cortex
as well (Fetz et al 1980, Naito et al 1999, Merchant et al
2001), neural activity in the motor cortex mainly codes for
motor execution (Suminski et al 2009). Therefore, this result
suggests that BMI using decoding of movement kinematics
from ECoG recordings in humans may be possible, even
without somatosensory feedback.

In previous offline studies, higher DA was found when
using low-pass filtered ECoG activity as compared to using
the power modulations in several frequency bands (Schalk
et al 2007, Pistohl et al 2008, Ball et al 2009b). Schalk
et al showed that using low-pass filtered ECoG signals greatly
increased DA when added to power modulations in different
frequency bands. Pistohl et al showed that decoding 2D
arm movement trajectories from the low-pass filtered signal
component (LFC) of the ECoG recordings provided greater
accuracy than decoding from power in different frequency
bands. However, it is not clear how conclusions from these

offline studies would generalize to online experiments. Schalk
et al (2008) showed that online closed loop control is possible
using power modulations in different frequency bands of the
ECoG recordings. Here, we showed that online closed loop
control is possible using the LFC of the ECoG recordings as
well. Further studies are needed to reveal which feature of
the ECoG recordings, LFC or power modulations in different
frequency bands, provides a better signal for online closed
loop control and weather these two features can be combined
to improve accuracy.

In a previous study by Ball et al (2009b), it was shown
that it is possible to decode multiple movement directions of a
single arm from ECoG recordings. While Ball et al used offline
decoding, here we demonstrate that it is possible to realize
an online BMI based on decoding movement direction from
ECoG signals. In our study, subjects received visual feedback
depending on the decoded brain activity. An important aspect
of such closed-loop studies is the temporal delay between
neuronal activity and sensory feedback. Previous BMI studies
used different delays, ranging from instantaneous feedback
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based on spiking activity (Kim et al 2008), over 4s for
movement related EEG and fMRI signals (Kalcher et al 1996,
Neuper et al 2003, Weiskopf et al 2004, Lee et al 2009) to
over 20 s for communication BMIs (Farwell and Donchin
1988, Sellers et al 2006). Neuronal adaptation was observed
even in the case of delays of approximately 60 s (Yoo and
Jolesz 2002, Posse et al 2003). In another study (Birbaumer
and Cohen 2007) feedback provided 2 s after the corresponding
neuronal activity has been recorded improved the BMI control
of the subjects. Thus, delayed BMI feedback is functionally
relevant. In our study, the temporal delay between movement
initiation and feedback presentation was below 3 s, which is
well within the range of delays used in these previous BMI
studies. However, it has been observed that reducing the delay
by only several tenths of milliseconds in the range below
500 ms can improve BMI performance (Cunningham et al
2011). Furthermore, it has been suggested (Grosse-Wentrup
et al 2011) that long feedback delays may be one of the reasons
why the use of BMI for stroke rehabilitation had only limited
success (Buch et al 2008, Ang et al 2009), although, even
by using such long delays, rehabilitation was improved (Caria
et al 2011). A further investigation of the influence of the length
of the delay on BMI performance and neuronal adaptivity
is, therefore, an interesting topic for further research. In this
context, also the possible relation between using BMI and
the induction of neural plasticity should be included (Grosse-
Wentrup et al 2011).

Schalk et al (2008) realized an online cursor control
using the human ECoG using either movement execution or
imagery of movements of different parts of the body. In our
experiment, with movements of a single limb, movement of the
arm contralateral to the implantation site was used to generate
the neural control signals. In our experiments, recordings from
a rather small area of the motor cortex were sufficient to extract
most of the decoded movement information. Therefore, the
size of a future electrode implant covering the relevant cortical
area can be rather small as well. This is supported by the
results of the second brain-control session of S3, in which
brain control was achieved using the recordings from only two
neighbouring electrodes. The area covered by a hypothetical
future implant with two electrodes, using the same design as in
the implant used in this study, would be around 2 cm2 only (the
total area of the implants used in this study is approximately
64 cm2). Further support comes from our offline analysis which
revealed that, across all sessions and subjects, recordings from
four neighbouring electrodes (area of approximately 4 cm2)
already provided the maximum movement information.

When movements of different body parts are used, we
expect that, due to a roughly somatotopic representation of the
motor cortex, the required size of the implant to achieve BMI
would be larger. Furthermore, in the approach used by Schalk
et al subjects had to learn how to transform movements of
different body parts to the desired movements of a cursor,
e.g. that tongue protrusion is mapped to the cursor going
up. In our experiment, learning of such transformations is
easier since the control is intuitive: movement of the arm to
the left moved the cursor to the left and movement of the
arm to the right moved the cursor to the right. Schalk et al

demonstrated a higher level of brain control compared to our
study: subjects controlled computer cursors continuously in
two dimensions, whereas subjects in our study could only
generate a binary control signal. However, the earlier study by
Pistohl et al (2008) demonstrated that continuous decoding of
2D arm movement trajectories is possible using ECoG. Thus,
the approach of using decoding of motor kinematics from
ECoG might be extendable to continuous control and to more
degrees of freedom. Our study is a first step in this direction,
confirming that online brain control using ECoG recordings
with such approach is indeed possible. Future studies should
reveal whether raising the level of brain control to continuous
multidimensional control will be possible.

Our online experiment was performed using ECoG
recordings aligned to the go cue. Offline analysis revealed
that part of the decoding errors was a result of reaction
time variability. When we reran the experiment offline,
aligning the recordings to movement onset, DA increased
significantly. This shows that signals used for decoding
contained information about movement direction and not
just information about the reaction time. In addition, it also
suggests that our DA could be substantially improved during
online brain control if movement onset triggers, rather than
the go cue, were used for signal alignment. This could be
implemented by tracking the joystick positions and using
the moment where the joystick passed a certain threshold
as a reference point for the decoder. Such movement onset
detection could obviously not be used in the case of movement
imagery needed for the application for paralyzed patients. In
that case, the neural response onset, a purely internal event,
would need to be detected and used as a trigger.

Our study provides a proof of concept that the BMI using
directional tuning of ECoG recordings can be realized. We
used recordings from an ECoG implant designed for epilepsy
assessment, with 0.4 cm electrode diameter and 1 cm distance
between electrodes. Recent studies recorded ECoG using
high-resolution implants with electrode diameters and inter-
electrode distances on the order of micrometers (µECoG),
showing that epicortical potentials have spatial variability on a
millimetre scale or less (Kim et al 2007, Leuthardt et al 2009,
Slutzky et al 2010). Therefore, due to the implant design used
in the present study, it can be assumed that a large amount of
potentially informative signal was not recorded. Moreover, in
our study most of the movement information that we decoded
was already obtainable from a small area of the motor cortex.
Thus, using high density µECoG implants over a small cortical
area could potentially increase the accuracy of brain control.

Studies using intracortical recording techniques showed
better accuracy of brain control than predicted from
respective offline studies. This increase can be attributed to
neuronal plasticity which changes the neuronal representations
of movements to improve BMI control (Ganguly and
Carmena 2009). These learning effects typically occur across
days or weeks while, in our study, the available experimental
time was limited to a few hours during one or two days. Hence,
we expect that, with longer experimental time, the accuracy
of our BMI would have significantly improved due to subject
learning.
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Previous studies have shown that movements of individual
fingers (Kubanek et al 2009, Miller et al 2009) as well as
natural grasping movements (Pistohl et al 2012) can also be
decoded from ECoG. Future research will therefore reveal
whether utilizing high-resolution recordings from µECoG
implants together with subject training will increase the
accuracy and the number of degrees of freedom of brain
control, such that ECoG control of a dexterous hand and arm
prosthesis may become possible. If successful, such a BMI
can be used to restore hand and arm movements in paralyzed
patients (e.g. after spinal cord injury or stroke) or in amputees.
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