
IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 9 (2012) 026007 (21pp) doi:10.1088/1741-2560/9/2/026007

Error-related electrocorticographic
activity in humans during continuous
movements
Tomislav Milekovic1,2,3, Tonio Ball1,4, Andreas Schulze-Bonhage1,4,
Ad Aertsen1,5 and Carsten Mehring1,2,3

1 Bernstein Center Freiburg, University of Freiburg, Hansastr. 9A, 79104 Freiburg, Germany
2 Faculty of Biology, Institute of Biology I, University of Freiburg, Hauptstr. 1, 79104 Freiburg, Germany
3 Department of Bioengineering and Department of Electrical and Electronic Engineering,
South Kensington Campus, Imperial College London, SW7 2AZ London, UK
4 Epilepsy Center, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany
5 Faculty of Biology, Institute of Biology III, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg,
Germany

E-mail: t.milekovic@imperial.ac.uk

Received 24 October 2011
Accepted for publication 12 December 2011
Published 13 February 2012
Online at stacks.iop.org/JNE/9/026007

Abstract
Brain–machine interface (BMI) devices make errors in decoding. Detecting these errors online
from neuronal activity can improve BMI performance by modifying the decoding algorithm
and by correcting the errors made. Here, we study the neuronal correlates of two different
types of errors which can both be employed in BMI: (i) the execution error, due to inaccurate
decoding of the subjects’ movement intention; (ii) the outcome error, due to not achieving the
goal of the movement. We demonstrate that, in electrocorticographic (ECoG) recordings from
the surface of the human brain, strong error-related neural responses (ERNRs) for both types
of errors can be observed. ERNRs were present in the low and high frequency components of
the ECoG signals, with both signal components carrying partially independent information.
Moreover, the observed ERNRs can be used to discriminate between error types, with high
accuracy (!83%) obtained already from single electrode signals. We found ERNRs in
multiple cortical areas, including motor and somatosensory cortex. As the motor cortex is the
primary target area for recording control signals for a BMI, an adaptive motor BMI utilizing
these error signals may not require additional electrode implants in other brain areas.

S Online supplementary data available from stacks.iop.org/JNE/9/026007/mmedia

1. Introduction

Current brain–machine interface (BMI) devices make errors
in decoding. Decoding errors can be recognized by the subject
and can evoke an error-related neural response (ERNR).
Such ERNRs could be utilized in two ways to improve the
performance of a BMI: (1) to correct the error that was made
and (2) to modify the decoding algorithm to decrease decoding
errors in the future. The first strategy has already been applied
in on-line BMI studies (Schalk et al 2000, Blankertz et al
2003, Parra et al 2003), but thus far only in trial-based task

designs. However, many powerful BMIs, such as the brain
control of a prosthetic arm (Carmena et al 2003, Hochberg
et al 2006, Velliste et al 2008) and the brain control of
a computer cursor (Serruya et al 2002, Taylor et al 2002,
Hochberg et al 2006) use continuous movement control of
the effector. The principal feasibility of the second strategy
has, thus far, only been demonstrated in computer simulations
applying decoding algorithms which adapt using error signals
(Rotermund et al 2006, Blumberg et al 2007).

Both strategies for improving the performance of
BMIs require appropriate ERNRs. Most previous ERNR
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Figure 1. Application of neuronal error signals to improve the performance of a continuous BMI control. Subjects intend cursor movements
in a given direction (white arrow). If the decoding is correct, the cursor performs the intended movement and no neuronal error signal is
elicited in a subject. If there is a discrepancy between the intended and the decoded movement, an ERNR can be elicited. If the ERNR is
detected by the BMI system, the decoding algorithm can be adapted to reduce the number of decoding errors in the future.

studies concentrated on trial-based tasks with human
electroencephalogram (EEG). Several types of ERNRs
were reported: response error-related negativity (rERN)
(Falkenstein et al 1991, Gehring et al 1993), feedback error-
related negativity (fERN) (Miltner et al 1997), observation
error potential (oErrP) (van Schie et al 2004) and interaction
error potential (iErrP) (Ferrez and del R Millan 2008).

By contrast, only a small number of studies investigated
ERNRs in continuous movement tasks. Again, different types
of errors in continuous tasks were reported: target error in
functional magnetic resonance imaging (fMRI; Diedrichsen
et al 2005), execution error in fMRI (Diedrichsen et al
2005) and outcome error in EEG (Krigolson et al 2008).
Target errors occur when the movement environment goes
through unexpected changes, such as a target jump. Execution
errors occur when the ongoing motor commands result in
an unexpected movement, due to changes in the movement
dynamics or kinematics. Such error occurs in BMI when,
for example, the decoding algorithm decodes incorrect
movements and, hence, the prosthesis does not perform the

intended movement (figure 1). If the difference between the
intended and the decoded movement is large enough, it can
be recognized by the subject and evoke an execution ERNR.
Finally, an outcome error appears when the desired goal of
a movement is not achieved. Such error would occur in BMI
when the prosthesis reaches a wrong target.

Diedrichsen et al (2005) found fMRI correlates of
execution errors and did not investigate outcome errors.
Moreover, due to the low temporal resolution, fMRI would
only allow for rather slow BMI control. Krigolson et al (2008)
observed EEG correlates of outcome errors but did not address
the question of execution errors.

Here, we show that both execution and outcome ERNRs
can be observed and differentiated in neuronal signals
recorded directly from the surface of the human brain
(electrocorticogram, ECoG; Cooper et al 1965, Leuthardt et al
2004, Schalk et al 2007, Pistohl et al 2008, Ball et al 2009a,
2009b, Kubanek et al 2009, Miller et al 2009, Chao et al
2010, Krusienski et al 2011) during a continuous movement
task, similar to typical BMI control tasks. The semi-invasive
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Figure 2. (a), A picture of the paradigm as seen by the subjects. Subjects played a video game in which they moved a spaceship in the
horizontal direction (left–right) to evade the blocks dropping from above. Every time the spaceship collided with a block (collision event;
(b)), one life was lost. From time to time, the spaceship moved in the opposite direction to the joystick movement for 500 ms (movement
mismatch event; (c)). Performance of the subject was measured by a score is shown in the bottom-right of the screen. The number of
remaining lives is shown in the bottom-left corner. The game (and the experimental session) ended when all lives were lost.

ECoG is an attractive recording technique for BMIs as it does
not require the implantation of electrodes into the cortex and
offers a higher spatial and spectral resolution than the non-
invasive EEG and MEG.

We found ERNRs above different cortical areas, including
motor cortex. Both low pass filtered ECoG signals and high
gamma ECoG signals yielded execution and outcome ERNRs,
with both signal components carrying partially independent
information. In addition, execution and outcome ERNRs can
be differentiated with high decoding accuracy, even based on
the responses from only one electrode.

2. Methods

2.1. Task

Subjects (S) played a simple video game in which they
controlled a spaceship with a small analogue joystick on
a gamepad (Logitech R© RumblepadTM 2, Logitech Europe
S.A., Morges, Switzerland) in the horizontal dimension (left
to right; figure 2(a); supplementary movie 1 available from
stacks.iop.org/JNE/9/026007/mmedia). The task was to evade
blocks dropping from the top of the screen at a constant
speed. The game was challenging enough so that the spaceship
collided with a block from time to time (collision event, figure
2(b), mean and standard error of the mean, sem, of time
between events: S1: 26.25 ± 1.80 s, S2: 38.57 ± 3.11 s,
S3: 47.62 ± 4.80 s, S4: 15.83 ± 0.96 s). After the collision
event, the spaceship and all blocks stopped moving for 2 s, to
allow subjects to recognize the collision. Afterwards all blocks
disappeared and the spaceship started to move again.

Occasionally, the spaceship moved in the opposite
direction to the joystick movement for the duration of
500 ms (movement mismatch event, figure 2(c), mean and
sem of time between events: S1: 18.46 ± 1.08 s, S2: 13.17 ±
0.49 s, S3: 30.36 ± 2.52 s, S4: 24.79 ± 2.33 s). Movement

mismatch event was introduced to study neuronal responses to
execution errors. To make these events noticeable and to also
make them look as part of the natural movement, they were
triggered only when the following conditions were fulfilled:
(i) the spaceship was not close to the paradigm borders, (ii) the
joystick position was between 60% and 70% of the maximum
deflection, (iii) the joystick velocity (first derivative of joystick
deflection) was in the direction of the joystick deflection, and
(iv) the blocks were not too close to the spaceship. Condition
(iv) was introduced to minimize the chance of a block collision
following an unexpected change in the spaceship movement
direction due to the movement mismatch event. For the first
two subjects, condition (iii) was not imposed and a movement
mismatch event was triggered only during joystick movements
to the right.

Points were awarded for moving the spaceship, and
subjects were instructed to gather as many points as possible.
The number of points increased linearly with the distance the
spaceship travelled. To control the attention of the subjects
the colour of the spaceship changed between red and blue at
random instants, events which subjects were asked to orally
report. Subjects correctly reported colour changes except
on a very few occasions. For the last two subjects, screen
freeze events were added where, at a random instant (mean
time between events: S3: 36.67 ± 0.89 s, S4: 36.15 ±
1.09 s), the spaceship and all blocks stopped moving for
2 s in the same manner as after a collision event. We added
screen freeze events to serve as a visual and surprise control
(see section 2.2).

To avoid mixing between neuronal responses to different
events, all triggered events (movement mismatch, screen
freeze and colour change) were triggered at least 2 s away from
the last preceding event of any kind (movement mismatch,
screen freeze, colour change, collision, paradigm restart after
collision and end of screen freeze event). This procedure was
not enough to remove the mixing completely, since the timing
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Table 1. Number of recorded sessions and events for each of the subjects. For subjects S1 and S2 freeze event was not implemented in the
experiment.

Collision events Mismatch events Colour ch. events Freeze events

Sessions All Clean All Clean All Clean All Clean

S1 8 160 120 195 155 101 63 0 0
S2 4 80 38 227 185 125 85 0 0
S3 4 80 51 121 92 139 134 109 109
S4 6 120 87 71 38 71 62 62 62

of the collision events could not be controlled. Therefore,
events were classified after the experiment as ‘clean’ if no
other event was closer than 2 s.

Subjects started the game with 20 ‘lives’. Each time the
spaceship collided with a block, the number of ‘lives’ was
reduced by one. When the number of ‘lives’ reached zero, the
game, together with the recording session, ended. Recording
sessions of all subjects lasted between 5 and 24 min. There
were no auditory stimuli presented during the experiment. A
summary of the number of recorded sessions and the number
of recorded events is given in table 1.

2.2. Error and control events

To play the game as long as possible and, thereby, earn more
points, subjects needed to evade hitting the blocks falling
down from the top. Therefore, every collision event that
occurred presented a clear disadvantage in reaching the goal
of the game. Thus, collision events reflect outcome errors.
During the movement mismatch event, the ongoing motor
command resulted in an unexpected movement due to the
change in movement kinematics. Thus, movement mismatch
events reflect execution errors.

Neuronal responses triggered on collision or movement
mismatch events might also, partly or entirely, be the result
of specific behaviour and/or visual inputs related to the
error event, rather than only the neuronal response to the
errors themselves. Hence, to identify ERNRs, the responses to
collision or movement mismatch events need to be compared
to the neuronal responses during behaviour and visual stimuli
specific to the collision or movement mismatch events, but
without the error context. Any significant deviation between
the two responses may then be assumed to present an ERNR.
We considered the following controls:

(1) Movement control: All subjects in this study had implants
over the motor and the somatosensory-related areas.
Therefore, neuronal responses to collision or movement
mismatch events can be movement related. To minimize
the influence of movement-related neuronal responses
(MRNR), subjects were asked to relax and perform a
minimum amount of movement. The only movements
they had to perform were thumb movements to move the
joystick. Thumb movements were always carried out with
the thumb contra-lateral to the brain hemisphere where the
electrode grid was located. Subjects occasionally made
eye movements to observe what was happening on the
screen. To remove the influence of the eye and thumb
movements from the recorded neuronal signals, MRNR

were removed using the subtraction method described in
section 2.4.3.

(2) Visual control: Specific visual feedback provided by the
paradigm can generate part of the neuronal response
triggered by collision or movement mismatch events.
Screen freeze events presented identical visual stimuli
as collision events, the only difference being that, in the
screen freeze event, the spaceship did not touch one of the
blue blocks on the screen. Therefore, screen freeze events
were used as a visual control for the collision events. This
visual control was implemented for S3 and S4 only.

(3) Surprise control: Great care was taken to make movement
mismatch events look like part of the undisturbed
spaceship movement, unrecognizable from watching the
paradigm only. Therefore, no visual stimulus was specific
to the movement mismatch events. On the other hand,
movement mismatch events could not be predicted by
the subject and, hence, could trigger a surprise-related
neuronal response. Therefore, we used the freeze events,
which could also not be predicted by the subject, as a
control event for the movement mismatch events. This
surprise control was implemented for S3 and S4 only.

2.3. Subjects and recordings

Four subjects (three male, one female) suffering from in-
tractable pharmaco-resistant epilepsy voluntarily participated
in the study after having given their informed consent. The
study was approved by the University Hospital’s Ethics Com-
mittee.

For pre-neurosurgical epilepsy diagnosis, the subjects
were implanted with an 8 × 8 grid of subdural surface
electrodes covering parts of the primary and pre-motor cortex
(figure 3). In addition, S1, S2 and S3 had the following
implanted electrodes: S1 had two strips, with six electrodes
each, implanted subdurally over the prefrontal cortex and
four strips, with four electrodes each, implanted subdurally
in the interhemisphere region touching the left hemisphere. S2
had two strips, with six electrodes each, implanted subdurally
over the bottom of the cerebellum and four strips, with four
electrodes each, implanted subdurally over the temporal and
prefrontal cortices. S3 had two strips, with four electrodes
each, implanted subdurally over the prefrontal cortex. The
sites of all electrode implantations were exclusively based
on the requirements of the clinical evaluation. In S2, the
signals from the top row of electrodes in the grid implant
and from one of the strips over the bottom of the cerebellum
(TBd) were not recorded due to the limited number (128) of
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Figure 3. Locations of implanted electrodes (red, green and black circles). Electrode positions are reconstructed from the post-implantation
MRI scan and positioned over the pre-implantation MRI scan (Kovalev et al 2005). For S1, S3 and S4 red (green) circles represent
electrodes that showed motor (somatosensory) response from electrical stimulation mapping (ESM). For S2 motor and somatosensory
electrodes were determined from sulci reconstruction. Central sulci, Sylvian fissures and, for S2 only, pre- and post-central sulcus are shown
as blue lines. These have been drawn by hand to resemble sulci reconstruction from the post-implantation MRI scan. S1 was implanted with
an 8 × 8 ECoG grid over the parts of frontal and parietal lobe, two 6 electrode ECoG strips over the frontal lobe (FLa and FLb) and four 4
electrode ECoG strips inter-hemispherically (IHa, IHb, IHc and IHd). S2 was implanted with an 8 × 8 ECoG grid over parts of temporal,
parietal and frontal lobe, two 6 and three 4 electrode ECoG strips on the basal temporal cortex (TL, TBa, TBb, TBc and TBd) and two 4
electrode and one 6 electrode ECoG strips on the basal frontal lobe (FL, FBa and FBb). In S2 no recordings were made from the top row of
the 8 × 8 electrode grid and from the TBd ECoG strip. S3 was implanted with an 8 × 8 ECoG grid over the parts of frontal and parietal
lobe and two 4 electrode ECoG strips (FBa and FBb) over the frontal lobe. S4 was implanted with an 8 × 8 ECoG grid over parts of parietal
and frontal lobe. In all pictures the red star marks the edge of the electrode grid corresponding to the top-left corner in the SNR distribution
pictures shown in figure 9.

available channels in the recording system. In addition to the
subdural surface electrodes, additional intracortical electrodes
were implanted and 22 channels of EEG, two to four channels
of electrooculogram (EOG), and single electrocardiogram
(ECG) and electromyogram (EMG) channels were recorded
simultaneously. Signals from the intracortical, EEG,
ECG and EMG electrodes were not analysed in this
study.

Recordings from all electrodes were digitized at 256 Hz
sampling rate for S1 and S2 and at 1024 Hz sampling rate
for S3 and S4, in all cases using a clinical ac amplifier
(Brainbox EEG-1164 amplifier, Braintronics BV, Almere,
Netherlands). No analogue filters were used during the data
acquisition. Power line frequency was 50 Hz. Experiment
control and paradigm presentation was performed using
our own laboratory software. Subsequent data analysis was
performed using MATLAB (MATLAB version 7.4-7.11,
Natick, MA: The MathWorks Inc., 2007–2011).

2.4. Data analysis

2.4.1. Preprocessing. Common-average referencing for grid
electrodes was made using all grid electrodes that showed
no artefacts (one electrode for both S3 and S4 had to be
excluded). Electrode strips above frontal cortex of S1 were
re-referenced using all electrodes on those two strips. Inter-
hemisphere electrodes for S1 were re-referenced using all
electrodes on those four strips. For S2, electrode strips above
the bottom of the cerebellum, temporal and frontal areas were
re-referenced together. For S3, electrode recordings from two
strips above frontal areas were re-referenced together. To
correct for changes in channel offsets between sessions, the
mean voltage over the entire session was subtracted for every
session and for every channel after re-referencing.

2.4.2. Signal components. We extracted low and high
frequency components of the recorded ECoG signals. To
analyse the low frequency component of the signal, the
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preprocessed ECoG signals were smoothed using a symmetric
Savitzky–Golay filter (Savitzky and Golay 1964, Steinier
et al 1972). The Savitzky–Golay filter is not a filter designed
with a specific cut-off frequency. It is a smoothing filter that
performs least-squares fitting of a polynomial of a certain order
(second order in the case of our study) to the signal in a certain
time window (250 ms of recorded data points in the case of
our study). Even though the frequency domain properties of
a Savitzky–Golay filter do not resemble that of a typical low-
pass filter (Schafer 2011) a nominal 3 dB cut-off frequency
can be determined and was, in our case, 7.85 Hz for S1 and S2
and 7.59 Hz for S3 and S4.

We defined a window around each event (movement
mismatch, screen freeze, colour change, collision), starting
3 s before each event and lasting until 3 s after each event.
The signals outside all of these windows were used as baseline
activity. To enable a clear comparison to baseline, the average
baseline activity was subtracted from the filtered recordings in
each session for each channel. The resulting signal was defined
as the low frequency component of the signal.

To analyse the high frequency component of the
signal, time-resolved Fourier transformation (TRFT) using a
Hamming window (333 ms window width, shifted in steps
of 31 ms) was applied to the preprocessed signals, and the
amplitudes were used for further analysis. To investigate
event-induced changes in amplitudes and to account for the
general decrease in amplitude with increasing frequency,
the amplitudes of every frequency bin were normalized by
dividing them by the average baseline amplitude of the
same frequency bin in the respective session. Afterwards, the
average amplitude across a frequency range was computed for
further analysis: for S1 and S2 over the frequency band from
60 to 128 Hz (Nyquist frequency), for S3 and S4 over the
frequency band from 60 to 200 Hz (figure 4).

MRNR were then subtracted from both signal components
as described in the following.

2.4.3. MRNR subtraction. As described above, we
considered that thumb and eye movements might be correlated
with error events. If so, parts of the neuronal responses,
correlated with error events, might not be evoked by error
events but by accompanying eye and thumb movements.

To remove the movement-related component of the
neuronal response following a mismatch or a collision event,
we derived a model relating the signals to the movements
using only non-event data (i.e. all data that were at least
1 s before and 3 s after any event) and then subtracted the
signals predicted by this model for the movements during the
events from the recorded event-related signals. The required
thumb movements were tracked indirectly through the joystick
movements, while the required eye movements were tracked
through the horizontal and vertical EOG.

Two types of models were considered, linear and nonlinear
models. Linear models assumed a linear relationship between
the neuronal response at time t, YCH(t), and the joystick
position X, the absolute joystick position |X |, the joystick
velocity V, the absolute joystick velocity |V |, the horizontal
EOG heog and the vertical EOG veog at different time points
around t:

!ti =






0 for N = 1
(

i−1
N−1−1

2

)
· L for N > 1

YCH(t) = aCH
0 +

N∑

i=1

bCH
i X (t + !ti) +

N∑

i=1

cCH
i |X (t + !ti)|

+
N∑

i=1

dCH
i V (t + !ti) +

N∑

i=1

eCH
i |V (t + !ti)|

+
N∑

i=1

f CH
i heog (t + !ti) +

N∑

i=1

gCH
i veog (t + !ti),

where N is the number of used data points for each movement
parameter, L is the length of the movement information
provided to the decoder, a0

CH, b1
CH, . . . , bN

CH, c1
CH, . . . , cN

CH,
e1

CH, . . . , eN
CH, f 1

CH, . . . , fNCH, g1
CH, . . . , gN

CH are the model
coefficients and !ti are the time lags relative to the neuronal
response. Time lags !ti were such that the times of the
N movement data points entering the model were spread
equidistantly on a time stretch of length L centred on the
time t.

Nonlinear models try to address a possibly nonlinear
relationship between the neuronal response at time t, YCH(t),
and the joystick position X, the joystick velocity V, the
horizontal EOG heog and the vertical EOG veog at different
time points around t:

YCH(t) = F(X (t + !ti), . . . ,V (t + !ti), . . . , heog

× (t + !ti), . . . , veog(t + !ti), . . .).

Time lags !ti were the same as used in the linear model.
Absolute position and absolute velocity were not used since
nonlinear modelling is able to account for the nonlinear
absolute value transformation. In the case of the linear models,
for a certain value of L and N, the model coefficients can be
fitted by linear least-squares regression. For nonlinear models
more complex algorithms have to be used. Here we used the
epsilon-SVR algorithm, part of the LIBSVM library (Fan et al
2005).

Optimal values of L and N are not known a priori: if many
time lags are used (high value of N), the model might overfit
the data and, therefore, the model predictions might poorly
generalize due to inaccurate model coefficients. If only a few
time lags are used (low value of N), the model predictions
might also generalize poorly as not all available information
for predicting the movement-related neuronal responses is
incorporated into the model. Similarly, if the time stretch (L) is
too small, the information contained in points further away in
time would not be used, whereas nearby points might contain
redundant information. Using large time stretches, on the other
hand, might result in missing information contained between
two time lags. Therefore, we needed to determine the values
of L and N which yield optimal model prediction. To this end,
we split the non-event data into two halves: the first half was
used to estimate the model coefficients for certain values of
L and N. These model coefficients were then used to predict
the signals of the second half of the data. To determine the
performance of the model, we computed r2 values between
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Figure 4. Examples of the averaged normalized spectrograms to collision and to mismatch events for one electrode for each of the subjects.
Channels used as examples are marked in red for collision and green for mismatch events on the small depictions of the subjects’ brains
below the spectrograms. Black horizontal lines indicate the bottom and top frequencies of the band used for the high-frequency component
of the signal. In S1 and S2, the upper boundary of this band was at the Nyquist frequency.

the model predictions and the real neuronal responses in the
second half of the data:

r2 = 1 − V (Y (t) − YMODEL(t))
V (Y (t))

.

This measure was computed for different values of L (62.5,
109.4, 156.2, 203.1, 250, 375, 500, 750, 1000, 1250, 1500,
1750 and 2000 ms) and N (1, 2, 3, 4, 6, 10, 14, 18
and 22) for both linear and nonlinear models and the one
yielding the highest r2 values was then used for the MRNR
subtraction. These optimal values were determined for each
channel individually. Channels yielding an r2 below 0.01 were
considered as being not movement related; for these channels
nothing was subtracted from the event-related signals.

2.4.4. Error-related neuronal responses. To avoid mixing
of neuronal responses to different events only epochs from
clean events (see section 2.1) were used for subsequent
analysis. After the MRNR subtraction, the remaining signal
should predominantly contain the neuronal responses to errors.
Therefore, the neuronal responses to collision and mismatch
events are called outcome and execution ERNRs after MRNR
subtraction.

2.4.5. Signal to noise ratio analysis. To compare the event
triggered neuronal response "EVENT to the baseline activity
"BASELINE (as defined in section 2.4.2) or to the event triggered
neuronal response of another event "EVENT2, the signal to noise
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ratio (SNR) was used. Let n be the event index, t the time within
the event epoch, m the index of the baseline measurement, E the
expectation operator, and std the standard deviation operator.
We defined the SNR as follows:

µEVENT (t) = E ("EVENT (n, t), n)

σEVENT (t) = std ("EVENT (n, t), n)

µBASELINE = E ("BASELINE (m), m)

σBASELINE = std ("BASELINE (m), m)

SNR(t) EVENT
vs

BASELINE

=
|µEVENT(t) − µBASELINE|
σEVENT(t) + σBASELINE

SNR(t) EVENT1
vs

EVENT2

=
|µEVENT1(t) − µEVENT2(t)|
σEVENT1(t) + σEVENT2(t)

.

For limited numbers of trials, the SNR is positively biased
(Mehring et al 2003). To correct for this, we used a bootstrap
bias correction (Efron and Tibshirani 1993), with 1000 times
resampling of the event data to remove this bias.

The above computations yielded, for each type of ERNR,
an SNR against baseline and an SNR against the control event.
Since, to detect ERNRs, we needed to differentiate them from
baseline and control events, we quantified the SNR of an ERNR
by the minimum among these two SNR values. This yielded
one SNR value for each point in time. To describe the strength
of the ERNR by a single number, we introduced the outcome
SNR and the execution SNR as the maximum of these SNR
values between 100 and 800 ms after the trigger.

To be able to differentiate between outcome and execution
error events, outcome ERNRs have to be different from the
execution ERNRs. Since outcome and execution ERNR may
have different delays with respect to the trigger, we cannot
directly compare these two signals. Therefore, we computed
the outcome versus execution SNR as follows:

SNRMAX =
|µO(tO max) − µE (tE max)|
σO(tO max) + σE (tE max)

;
∣∣∣∣∣∣

tO max = max arg
t

(µO(t))

tE max = max arg
t

(µE (t))

SNRMIN =
|µO(tO min) − µE (tE min)|
σO(tO min) + σE (tE min)

;
∣∣∣∣∣∣

tO min = min arg
t

(µO(t))

tE min = min arg
t

(µE (t))

SNR OUTCOME
vs

EXECUTION

= max (SNRMAX, SNRMIN)

where t runs from 100 to 800 ms after the trigger, µO is the
average outcome ERNR, µE is the average execution ERNR,
σ O is the standard deviation of the outcome ERNR across trials
and σ E is the standard deviation of the execution ERNR across
trials.

2.4.6. Classification analysis. To see how well ERNRs can
be differentiated from baseline activity on a single-trial basis,
we performed a binary classification analysis of outcome or
execution ERNRs versus baseline activity using regularized
linear discriminant analysis (RLDA) (Friedman 1989). The
class representing baseline activity contained all baseline

activity recordings as defined in section 2.4.2. The other
class representing either outcome or execution ERNR was
composed of outcome (execution) ERNRs at the time of the
average outcome (execution) ERNR peak (see section 2.4.5).
Only single signal components from single channels were used
as inputs to the RLDA. Trials were shuffled and divided into
a training set, which contained two-thirds of the data, and a
test set, which contained the remaining one-third of the data.
The training set was used to train the RLDA model, which was
then used to classify the test set. The decoding accuracy (DA)
was computed as follows:

DA = 1
Nclass

Nclass∑

i=1

ci

ni
,

where Nclass is the number of classes (in our case—two;
outcome or execution versus baseline), ci is the number of
correctly decoded trials for a given class and ni is the total
number of trials for a given class within the test set. The
regularization parameter of the RLDA was optimized on the
training data by five times five-fold cross validation.

Additionally, we classified outcome versus execution
ERNR using the same classification procedure as above.
Instead of using only one time point to differentiate between
two signals, we allowed for 1–4 points cantered around the
time of the ERNR peak. The number of time points and the
temporal distance between the first and the last time point
(between 31 and 281 ms) together with the regularization
parameter of the RLDA were optimized on the training set
using five times five-fold cross validation.

2.4.7. Significance testing of neural responses. To confirm
that ERNRs were significantly different from neural responses
during baseline and to freeze events the Mann–Whitney–
Wilcoxon test was applied between an ERNR at every time
point and the baseline activity. To avoid the autocorrelation
of the low frequency component arising from the filtering
procedure, we sampled low frequency component baseline
activity every 250 ms and high frequency component
baseline activity every 333 ms. To confirm that ERNRs were
significantly different from freeze events the Mann–Whitney–
Wilcoxon test was applied between an ERNR and the neuronal
response to freeze events at every time point after the event
trigger. Since ERNR had to be present within a limited time
after the trigger, we tested the epoch of the neural response
from 100 till 800 ms after the event trigger. To reduce
the calculation time of the significance testing, we tested
significance of the neural responses every 31 ms (roughly
32 Hz) instead of testing for every recorded time point.

Due to the large number of statistical tests, correction for
multiple testing was necessary to control the number of falsely
rejected null hypotheses. We used the Benjamini–Hochberg
procedure (Benjamini and Hochberg 1995) with a correction
for dependent statistics (Benjamini and Yekutieli 2001) to set
the false discovery rate for one subject at the level of 5% for
all tests. A neuronal response from a single channel/frequency
component was declared significant if there was at least one
time point for which the ERNR was significantly different

8
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from the baseline and significantly different from the freeze
neuronal response after the correction for multiple testing was
made.

To test whether the used statistical test for the significant
event responses was not detecting large number of false
positives, we made 100 repetitions of the procedure for
significance testing. In each repetition, we assigned random
time to every event (collision, movement mismatch, freeze and
colour change), respecting the rule that all paradigm triggered
events (movement mismatch, freeze and colour change) have
to come at least 20 s after any event (movement mismatch,
screen freeze, colour change, collision, paradigm restart after
collision and end of screen freeze event). To remove the
MRNR, we used the same models that were used in the analysis
of data using non-shuffled triggers.

2.5. Neuroanatomical analysis

To determine whether the motor or the somatosensory
cortex played a more distinctive role in generating ERNR,
we classified electrodes into motor cortex electrodes,
somatosensory cortex electrodes and other electrodes.
Classification was performed combining the results of sulci
identification on the post-implantation MRI scans with the
results of direct cortical electrical stimulation mapping (ESM;
Foerster 1931, Uematsu et al 1992).

Electrical cortical stimulation through the electrode
grid was performed using an INOMED NS 60 stimulator
(INOMED, Germany). Trains of 7 s duration consisted of
50 Hz pulses of alternating polarity square waves of 200 µs
each. The intensity of stimulation was gradually increased
up to 15 mA or to the induction of sensory and/or
motor phenomena. The patients were unaware of the timing
of stimulation unless motor symptoms or somatosensory
sensations occurred.

Electrical stimulation of by-passing paths may indeed
lead to functional responses that are not directly related to the
cortex under a given electrode contact. To reduce such effects,
we have carried out electrical stimulation against different
reference electrodes, such as directly neighbouring ones or
electrodes with a large distance from the stimulated ones. As
stimulation against different reference electrodes will cause
different current distributions, such effects may be reduced,
albeit not completely excluded, in this manner. Only effects
that were consistently observed, independently of the choice
of the reference electrode, were used to generate the maps
shown in the paper.

Data from post-implantation MRIs provided us with the
positions of central sulcus and Sylvian fissure with respect to
the electrodes. The central sulcus was used to generate a border
between motor and somatosensory cortex, while the Sylvian
fissure was used to generate a border between the temporal
lobe and the frontal and parietal lobe, containing motor and
somatosensory cortex, respectively. Results of ESM were used
to define a border between motor cortex and the remainder of
the frontal lobe on the one hand, and somatosensory cortex
and the rest of the parietal lobe on the other. S2 did not go
through the ESM. Therefore, in that case, we used the pre- and

postcentral sulci, as derived from post-implantation MRI, to
define the borders of the motor and the somatosensory cortex.

In addition, we used the ESM results to further classify
motor and somatosensory electrodes into hand, arm, leg, ocular
and oro-facial subgroups. This classification was performed
solely on the basis of ESM results. S2 was excluded from
this analysis since ESM was not carried out for this subject.
Leg motor electrodes only existed in S1 and, for the other
three subjects where ESM was performed, ocular and leg
somatosensory electrodes were not found.

3. Results

We present our results in the following order. First we show
that significant outcome and execution ERNR can be found
in all subjects and that these ERNRs are widespread over
the part of the cortex that we recorded from. Second, temporal
distribution of ERNR peaks is presented and the reason for our
choice of the time analysis window, from 100 ms after the event
until 800 ms after the event, is shown to be plausible. Third,
we provide the evidence that, for every subject, ERNRs can be
differentiated from baseline and between each other. Next, we
show the spatial distribution of the ERNRs and look whether
there is a clear focus of outcome or execution ERNRs over
motor or somatosensory cortex. Finally, we present the results
of the classification analysis, showing that both outcome and
execution ERNRs can be classified from baseline and between
each other with high DA.

3.1. Widespread ERNRs

For the outcome error, 63% (397 out of 632; S1: 161 out of
184, S2: 92 out of 176, S3: 72 out of 144, S4: 72 out of
128) and for the execution error, 41% (259 out of 632; S1:
117 out of 184, S2: 73 out of 176, S3: 53 out of 144, S4:
16 out of 128) of channels/signal components had significant
ERNR. When using shuffled times of the events, none of the
channels were found significant for any of the errors and any
of the signal components in all shuffles for S1 and S2. For
S3 and S4, 0.03 and 0.0025 channels were found significant
for any error/signal component on average. This shows that
out statistical test is highly conservative and that the expected
number of falsely detected ERNRs is very low.

3.2. ERNR latencies

To quantify the response strength we computed the SNR at
the peak of the outcome or execution ERNRs within the
time window from 100 to 800 ms after the error event. To
verify that this window captured the majority of the responses
we calculated the temporal distribution of the peaks of the
ERNRs (figure 5). This distribution clearly peaks within our
time window (100–800 ms). Furthermore, 90% of all ERNRs
significant between 500 ms before and 1500 ms after the event
were also significant within our time window. Thus, our time
window captured essentially all ERNRs.
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Figure 5. Temporal distribution of the ERNR peaks of channels/signal components with significant response when significance was
checked on a window between 500 ms before till 1500 ms after the error event. Number of the outcome ERNR peaks is shown in blue, while
the number of the execution ERNR peaks is shown in red. Green background depicts the time interval (100 ms after the error event until
800 ms after the error event) used to calculate the outcome and execution SNR.

3.3. Differentiating ERNRs from baseline and between each
other

Every channel and signal component can either have a strong
response to both error types (outcome and execution), a strong
response to either one of the errors and a weak or no response
to the other one, or a weak or no response to both errors. If a
signal is strongly responsive to both errors, the outcome versus
execution SNR shows whether the response to both errors is
similar or dissimilar. To fully utilize all information from the
ERNR, one needs to find a combination of channels/signal
components for every subject that can be used to detect
execution and outcome ERNRs and to differentiate between
the two. This would be possible if one of the following three
conditions is met: (1) separate signals with strong outcome
ERNR and weak execution ERNR and with strong execution
ERNR and weak outcome ERNR co-exist in the same subject,
(2) one or more signals with strong but dissimilar ERNRs to
execution and outcome errors co-exist in the same subject, (3)
one or more signals with strong and similar ERNRs for both
error events co-exist in the same subject with at least one other
signal with a strong ERNR for only one of the error events.

For all subjects at least one of the required conditions
was met, even when a very high threshold of SNR ! 0.5 was
applied. Condition 1 was met for S3 only, condition 2 was met
for all of the subjects and condition 3 was met for all subjects
except S1 (see figures 6 and 7 for examples).

To be able to detect and differentiate outcome and
execution errors from only one channel/signal component,
high outcome SNR and high execution SNR are required
simultaneously with highly different responses to both errors.

Figure 8(a) shows the outcome versus execution SNR against
the minimum between outcome SNR and execution SNR for all
channels and signal components for each of the subjects. Points
far from the origin with regard to both axes indicate channels
that can be used to detect and differentiate ERNRs. For each
subject such channels/signal components were found.

In addition, information from multiple channels and signal
components can be used to improve the detection of outcome
and execution errors and the discrimination between the two.
Figure 8(b) shows the distribution of the execution SNR
against the outcome SNR of all channels/signal components
for each of the subjects. Note that each of the subjects had
several channels/signal components with both strong outcome
SNR and strong execution SNR. On average, the outcome SNR
was significantly higher than execution SNR for all subjects,
except for S4 (S1 p < 10−17, S2 p < 10−18, S3 p < 10−3,
S4 p = 0.94, all subjects pooled p < 10−38, Mann–Whitney–
Wilcoxon test). For every subject, at least one channel could be
found with outcome SNR of 0.93 or higher (highest SNRs—
S1: 1.26, S2: 1.18, S3: 1.02, S4: 0.93) and with execution
SNR of 0.50 or higher (highest SNRs—S1: 0.54, S2: 0.84, S3:
0.63, S4: 0.50). Importantly, for each subject a large number
of electrodes with high execution SNRs and/or high outcome
SNRs could be found: on average, 68% of channels exhibited
a significant ERNR for at least one signal component (average
calculated over subjects and signal components). Interestingly,
we found strong ERNRs in the low as well as in the high
frequency component. For the outcome error, SNR of the low
frequency component (0.36 ± 0.01) had a tendency to be
higher than the SNR of the high frequency component (0.35
± 0.01; p = 0.054, Mann–Whitney–Wilcoxon test). In the case
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Figure 6. Example of two channels for S1 and two channels for S2 that could be used to detect both execution and outcome errors and
differentiate between them. Channels selected as examples are shown as red dots on the small depictions of subjects’ brains on the right side.
Left panels show outcome ERNR (blue) and execution ERNR (red) as mean ± sem. Right panels show outcome versus baseline SNR
(blue) and execution versus baseline SNR (red) for both channels. For both subjects the channel shown in the top panel exhibited a strong
outcome ERNR, while the channel in the bottom panel exhibited a strong outcome ERNR and a strong execution ERNR.

of the execution error, SNR of the low frequency component
(0.207 ± 0.005) was significantly higher than the SNR of
the high frequency component (0.206 ± 0.007; p < 0.05,
Mann–Whitney–Wilcoxon test).

Differences between outcome and execution ERNRs on
the single channel and signal component were investigated
by looking at the outcome versus execution SNR. For every
subject we found at least one channel and signal component
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Figure 7. Example of two channels for S3 and two channels for S4 that could be used to detect both execution and outcome errors and
differentiate between them. Channels selected as examples are shown as red dots on the depictions of the subjects’ brains on the right. Left
panels show outcome ERNR (blue), execution ERNR (red) and freeze neuronal response (black) as mean ± sem. Right panels show
outcome versus baseline SNR (blue), execution versus baseline SNR (red), outcome versus freeze SNR (black) and execution versus freeze
SNR (green). For S3, the channel shown in the top panel exhibited a strong outcome ERNR, while the channel in the bottom panel exhibited
a strong outcome ERNR and a strong execution ERNR. In the case of S4, the channel in the top panel exhibited a strong outcome ERNR,
while the channel in the bottom panels exhibited a strong outcome ERNR and a strong execution ERNR.

that showed outcome versus execution SNR of 0.70 or higher
(maximum outcome versus execution SNR—S1: 1.05, S2:
0.83, S3: 0.81, S4: 0.70).

We also investigated whether low and high frequency
components from the same electrode contained independent
information about errors. Figure 9 shows scatter plots of the
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outcome, execution and outcome versus execution SNR. (b) A scatter plot showing execution SNR against outcome SNR. Red dots depict
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Figure 9. A scatter plot showing the low-frequency component SNR against the high-frequency component SNR. Results are shown
separately for outcome ERNR (a) and for execution ERNR (b). One dot represents one channel.

low frequency component SNR versus the high frequency
components SNR of the same channel. For every subject one

can find channels that are far from the diagonal, indicating that
low and high frequency components can be used as partially
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Figure 10. Spatial distribution of outcome SNR and execution SNR for low- and high-frequency components in relation to the individual
anatomy of the subject. Purple lines depict the central sulcus, the Sylvian fissure and, for S2 only, the pre- and post-central sulci. Letters in
the squares mark the functional subarea (A - arm, H - hand, L - leg, E - ocular, O - oro-facial) in motor (purple) and somatosensory (black)
cortex as determined by ESM. Every small square represents one electrode. Colours of the square depict the SNR according to the colour
bar; white squares represent channels/signal components that did not show a significant response. As no recordings were made from the top
row of grid electrodes for S2, this row is also shown in white. The TBd ECoG strip from S2 was also not recorded from and is, therefore, not
shown. The top-left square in the ECoG grids corresponds to the electrode closest to the red star in figure 3. In the case of the ECoG strips,
the bottom square corresponds to the first electrode of the strip.

independent sources of information for the purpose of ERNR
detection and differentiation.

3.4. Spatial distribution of ERNRs

Next we investigated in which cortical areas ERNRs could
be found (figure 10). Electrodes were classified as motor,

somatosensory or other using the ESM (described in
section 2). For outcome error, 70% of the motor, 70% of the
somatosensory and 60% of the electrodes from other areas
showed a significant ERNR (table 2). For execution errors,
the proportions were: 50% for motor, 44% for somatosensory
and 38% for other areas (table 3). There were no significant
differences in the proportions of the electrodes with significant
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Table 2. Number and proportion of electrodes with significant
outcome ERNR (see section 2 for details of significance criteria).
For each of the subjects, electrodes were pooled across two signal
components (low and high frequency bands). In the bottom row,
electrodes were additionally pooled across subjects.

Motor Somatosensory Other

S1 93% (41/44) 89% (32/36) 85% (88/104)
S2 50% (3/6) 50% (2/4) 52% (87/166)
S3 61% (22/36) 55% (12/22) 44% (38/86)
S4 45% (10/22) 61% (17/28) 58% (45/78)
Pooled 70% (76/108) 70% (63/90) 59% (258/434)

Table 3. Number and proportion of electrodes with significant
execution ERNR. See table 2 caption for details.

Motor Somatosensory Other

S1 68% (30/44) 72% (26/36) 59% (61/104)
S2 50% (3/6) 50% (2/4) 41% (68/166)
S3 50% (18/36) 41% (9/22) 30% (26/86)
S4 14% (3/22) 11% (3/28) 13% (10/78)
Pooled 50% (54/108) 44% (40/90) 38% (165/434)

ERNR between the motor and somatosensory areas for both
error types (p > 0.47, Fisher’s exact test) and between
somatosensory and other areas (p > 0.07, Fisher’s exact
test). Proportion of electrodes with significant ERNR was
significantly higher for motor area compared to other areas
for both error types (p < 0.05, Fisher’s exact test). For
both error types, the average SNRs of electrodes showing
significant responses (outcome error: motor SNR 0.46 ± 0.02,
somatosensory SNR 0.46 ± 0.03, SNR of other areas 0.40 ±
0.01; execution error: motor SNR 0.29 ± 0.02, somatosensory
SNR 0.28 ± 0.02, SNR of other areas 0.24 ± 0.01) was not
significantly different (p > 0.81, Mann–Whitney–Wilcoxon
test) between motor and somatosensory areas for both error
types and was significantly higher for motor compared to
other areas (p < 0.05, Mann–Whitney–Wilcoxon test) and
for somatosensory compared to other areas (p < 0.05, Mann–
Whitney–Wilcoxon test).

In motor (somatosensory) cortex outcome SNR was above
0.62 (0.65) while execution SNR was above 0.18 (0.18) for at
least one electrode in each subject. S2 had a poor coverage
of motor cortex with only three electrodes recording from
that area (see figure 2). Disregarding this subject increased
the minimum SNR values to 0.62 (0.73) for outcome error
and 0.40 (0.41) for execution error. Therefore, it was always
possible to find electrodes with significant ERNR with SNR
above 0.40 in motor cortex for both outcome and execution
error if the electrode grid had a good coverage of the motor
cortex.

In addition, we found outcome versus execution SNR of
0.53 or higher for at least one channel and signal component
in the motor cortex (S1: 1.05, S2: 0.65, S3:0.76, S4: 0.54) and
0.50 or higher for at least one channel and signal component
in the somatosensory cortex (S1: 0.81, S2: 0.54, S3: 0.81,
S4: 0.50) for every subject. Therefore, outcome and execution
ERNRs in the motor cortex are not only different from baseline,
but one can also find electrodes where these ERNRs are
different from each other.

Table 4. Number, percentage and SNR (average ± standard
deviation) of electrodes with significant responses, separately for
electrodes recording from different subareas of motor cortex (see
section 2 for details of significance criteria). Anatomical
information was gained from ESM (see section 2 for details).
Electrodes were pooled over subjects and frequency components.

Outcome error Execution error

Per cent SNR Per cent SNR

Hand 61% (11/18) 0.42 ± 0.12 61% (11/18) 0.29 ± 0.11
Arm 80% (16/20) 0.50 ± 0.19 60% (12/20) 0.28 ± 0.12
Ocular 93% (13/14) 0.42 ± 0.25 57% (8/14) 0.29 ± 0.12
Oro-facial 68% (38/56) 0.40 ± 0.20 38% (21/56) 0.26 ± 0.09
Leg 100% (6/6) 0.63 ± 0.36 83% (5/6) 0.27 ± 0.09

Table 5. Number, percentage and SNR (average ± standard
deviation) of electrodes with significant responses, separately for
electrodes recording from different subareas of somatosensory
cortex. See table 4 caption for details.

Outcome error Execution error

Per cent SNR Per cent SNR

Hand 72% (36/50) 0.49 ± 0.19 58% (29/50 0.33 ± 0.13
Arm 79% (11/14) 0.37 ± 0.06 14% (2/14) 0.27 ± 0.08
Oro-facial 61% (17/28) 0.44 ± 0.18 25% (7/28) 0.24 ± 0.06

We also compared the ERNR strength of different
functional subareas of the motor and somatosensory cortex. To
this end, the percentage of electrodes exhibiting a significant
ERNR and the average SNRs of these electrodes were
computed for the different subareas (tables 4 and 5). Responses
were pooled over frequency components. Therefore, each
electrode was counted twice. For motor and somatosensory
cortex no significant differences in the SNRs or in the electrode
proportions between the subareas were found, neither for
outcome nor for execution error (Fisher’s exact test to compare
proportions; Mann–Whitney–Wilcoxon test to compare SNRs)
after the correction for the multiple testing (Benjamini–
Hochberg procedure with false discovery rate of 5%).

3.5. Classification analysis

We investigated how well outcome or execution ERNRs can be
differentiated from baseline activity on a single trial basis (see
section 2.4.6 for methodological details). Signals from single
electrodes were already information-rich enough to obtain
high classification accuracies (figure 11). For each subject
and both errors at least one electrode existed which yielded
an accuracy of 80% or higher (outcome error—S1: 0.85, S2:
0.91, S3:0.85, S4: 0.80; execution error—S1: 0.88, S2: 0.86,
S3: 0.83, S4: 0.88; figure 11). When signals from all motor
electrodes were used, decoding accuracy remained high, 77%
or higher, except for execution ERNRs for S2 (outcome error—
S1: 0.97, S2: 0.79, S3:0.79, S4: 0.86; execution error—S1:
0.77, S2: 0.60, S3: 0.92, S4: 0.80).

Next, we classified outcome versus execution ERNR on a
single-trial basis (see section 2.4.6 for methodological details).
Again, high classification accuracies could be obtained with
signals from single electrodes (figure 12), where for each
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Figure 11. Spatial distribution of DA of classifying outcome SNR against baseline and execution SNR against baseline for low- and
high-frequency components in relation to the individual anatomy of the subject (see the caption to figure 10 for details). Colours of the
squares depict the DA according to the colour bar.

subject at least one electrode yielded an accuracy of 83%
or higher (S1: 0.87, S2: 0.88, S3: 0.83, S4: 0.85; figure 12).
When signals from all motor electrodes were used, decoding
accuracy remained high, at 76% or higher (S1: 0.97, S2: 0.76,
S3: 0.83, S4: 0.80).

4. Discussion

In this study we showed that neural correlates of outcome
and execution errors can be found in ECoG recordings from
the motor, somatosensory, parietal, temporal and pre-frontal

cortex. For each subject we found channels which can be used
to differentiate outcome and execution errors from the baseline
activity and to differentiate between the two error types.

We observed neuronal responses to errors both in the
low pass filtered ECoG signal and in the high gamma
activity. ERNRs in low pass filtered signals have been found
before in a large number of EEG (for review see Bechtereva
et al 2005, van Veen and Carter 2006, Jocham and Ullsperger
2009), MEG (Koelewijn et al 2008) studies. Jung et al
(2010) discovered ERNRs in high frequency activity. In that
study intracortical stereoencephalography (SEEG) was used a
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method that measures field potentials in the cortex, in contrast
to our method (ECoG) which records field potentials from the
cortical surface.

In addition, we showed that the low and high frequency
signal components of the same electrode can carry partially
independent information about the errors, as for many
electrodes only one of the components showed a strong
response to one of the errors, while the other component did
not. Therefore, low and high frequency components of the
ERNR might be used in conjunction for error detection and
discrimination. Moreover, we observed a wide distribution of
error response strength across different cortical areas. For both
error types, there was at least one electrode per subject yielding
a high SNR (0.93 or higher for outcome error and 0.50 or
higher for execution error) and more than half of the recorded
electrodes exhibited a significant ERNR. In addition, decoding
analysis revealed that, based on signals from single electrodes,
one can decode outcome or execution ERNR from the baseline
activity at the level of 80% or higher. This implies widespread
neuronal responses to error events. However, not all responses
were specific to only one type of error. Reconstruction of the
electrode locations demonstrated that, for every subject and
for both error types, at least one electrode exhibited a strong
(SNR > 0.40) ERNR over the motor cortex. Furthermore,
decoding outcome or execution ERNR from the baseline
activity, using only channels over the motor cortex, was
possible with DA of 77%. An exception was the execution error
for S2 where, due to the placement of the implant and more
conservative electrode selection criteria, only three electrodes
were located over the motor cortex and a DA of only 60% was

reached. An implant position similar to those of other subjects
would have provided more electrodes over the motor cortex
and, thus, might have provided recordings of more informative
signals.

We also investigated the differences between outcome and
execution ERNRs. For every subject, it was possible to find
an electrode with outcome versus execution SNR of 0.53 or
higher. In addition, for every subject, outcome and execution
ERNRs could be decoded with DA of at least 76%. If we
exclude S2, which had a poor coverage of motor cortex, each
subject had a channel with DA of 80% or above. These results
show that it is possible to decode outcome and execution
ERNRs between each other and against baseline activity.

Screen freeze events were used as a control for specific
visual stimuli in the case of outcome ERNR and as a control
for the surprise in the case of execution ERNR. This control
was not present for the first two subjects. Thus, one might
speculate that outcome and execution average SNR for the
first two subjects would not be as high, had the freeze event
been included as a control event, as it was for the last two
subjects. This was, however, not the case: for the outcome error
no significant differences were found between the average
SNRs (first two subjects: average SNR 0.48 ± 0.04, last
two subjects: average SNR 0.43 ± 0.03, p = 0.41, Mann–
Whitney–Wilcoxon test). In the case of execution error the
average SNR of the last two subjects was even significantly
higher than for the first two subjects (first two subjects: average
SNR 0.26 ± 0.02, last two subjects: average SNR 0.34 ±
0.03, p < 0.01, Mann–Whitney–Wilcoxon test). Therefore, we
conclude (1) that including the freeze event control improved
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the sensitivity of ERNR detection and (2) that the SNRs of
outcome and execution error of the first two subjects were
representative as well, even though the freeze control was
missing.

4.1. Spectro-temporal characteristics of neuronal error
responses

Following an error event, one can observe stereotypical
spectral responses in which the amplitude in very low
frequencies (0–4 Hz) and in high gamma frequencies (above
40 Hz) is increased in relation to the baseline (figure 4).
We found that changes in the low frequencies can better
be described using the low pass filtered signal, since in
that case phase information is included as well. The high
gamma response was present in a wide frequency band where
amplitudes changed across many frequencies homogeneously.
Therefore, computing the average amplitudes over these
frequencies yields a less noisy response. We chose a frequency
band from 60 to 200 Hz because this band exhibited
common behaviour across subjects, channels and error events
(supplementary figure 2 available from stacks.iop.org/JNE/
9/026007/mmedia). For subjects S1 and S2 the upper boundary
of the high frequency band was limited to 128 Hz due to the
sampling frequency of the recording amplifier.

Jung et al (2010) studied intracortical SEEG signals
in a reaction time task where negative feedback was given
if timing requirements were not met. They reported high
gamma neuronal responses with similar spectro-temporal
characteristics as we found in response to outcome and
execution errors in our continuous control task. Even though
task and recording method were both different, neuronal
responses are, in essence, error event neuronal responses and
could, therefore, be related.

On the other hand, neuronal responses to non-error events
can also exhibit similar spectro-temporal characteristics: onset
of arm movements (Ball et al 2009b), self-paced individual
finger movements (Kubanek et al 2009, Miller et al 2009,
Wang et al 2009), thumb button press (Crone et al 2006),
hand movements (Leuthardt et al 2004, Wisneski et al 2008),
tongue, fist and foot isometric contraction (Crone et al 1998a,
1998b), onset of auditory stimuli (Crone et al 2001, Ray
et al 2008, Boatman-Reich et al 2010), tactile stimulus (Ray
et al 2008), face recognition (Lachaux et al 2003), attention
and short-term memory (Jensen et al 2007), mental calculation
(Vansteensel et al 2010) and word recognition (Jerbi et al
2009). To test how well ERNRs can be differentiated from
all such non-error events, further ECoG experiments with
freely behaving subjects, where ERNRs can be compared
to neuronal responses to other events, have to eventually be
conducted. Such differentiation may be possible as ERNRs
could be evoked on different electrodes and exhibit different
time courses compared to neural responses to non-error events.
This is supported by our finding of different ERNRs to
different types of errors (outcome and execution) and by
different responses to different non-error events in some of
the before-mentioned studies (Ball et al 2009b, Wang et al
2009, Boatman-Reich et al 2010).

4.2. Comparison to previous ERNR studies and widespread
ERNR

ERNRs have previously been reported over motor cortex in
the low frequency range (0–4 Hz; van Schie et al 2004) using
EEG recordings and in the beta (15–23 Hz) range (Koelewijn
et al 2008) using MEG recordings. In addition, increased brain
activation correlated with execution errors has been reported in
the motor cortex using fMRI (Diedrichsen et al 2005). In line
with these studies, we found strong outcome and execution
ERNR in both low and high frequency components of the
signal. To the best of our knowledge, our study is the first
showing high gamma ERNRs in the motor cortex.

Increased fMRI activation correlated with execution
errors has also been reported in the somatosensory cortex
(Diedrichsen et al 2005). We showed that correlates of
execution errors and, moreover, outcome errors are present in
electrophysiological signals from somatosensory cortex both
in low and high frequency signal components.

Besides in motor and somatosensory cortex, we also
found widespread ERNRs to outcome and execution errors
in other brain areas, including frontal, parietal and temporal
cortex. This is consistent with previous studies. Increased
fMRI activation in response to negative feedback was found in
dorsolateral pre-frontal cortex (Zanolie et al 2008, Jung et al
2010), medial pre-frontal cortex (Ullsperger and von Cramon
2003, Zanolie et al 2008), orbito-frontal cortex (Walton et al
2004, Zanolie et al 2008, Jung et al 2010), pre-supplementary
motor area (Jung et al 2010) and insula (Zanolie et al 2008,
Jung et al 2010). Diedrichsen et al (2005) found fMRI
activations in response to execution errors in multiple parietal
areas. In the lateral temporal cortex, responses to errors in
identification and memory tasks were found in single-unit
activity (Ojemann 2003, Ojemann et al 2004). Our task did
not have any identification or memory component but it is
possible that there are areas in the temporal lobe responsive to
errors in general.

Most of the earlier ERNR studies concentrated on the
activation of anterior cingulate cortex (ACC) and its functional
meaning (for reviews see Bechtereva et al 2005, van Veen and
Carter 2006, Jocham and Ullsperger 2009). In only one of our
four subjects did we have electrodes (N = 2) in the vicinity
of the ACC. Therefore, we did not investigate the activation
of ACC. Involvement of ACC in error processing in our task
deserves further clarification by future studies.

We measured the strength of ERNRs of different cortical
areas (motor, somatosensory and pooled data from all other
areas) by computing the proportion of electrodes exhibiting
significant ERNR and the average SNR of these electrodes.
Our results show that, for both error types, the proportion
of channels with a significant ERNR and their response
strength (as quantified by SNR) is not different between motor
and somatosensory cortex. Compared to all other cortical
areas that were investigated, the response strength of motor
cortical ERNRs is significantly higher. By further evaluating
ERNRs in different functional subareas of the motor and
the somatosensory cortex, we showed that significant ERNRs
were present in different functional subareas that we recorded
from (hand, arm, ocular, oro-facial). We also found significant

18

http://stacks.iop.org/JNE/9/026007/mmedia
http://stacks.iop.org/JNE/9/026007/mmedia


J. Neural Eng. 9 (2012) 026007 T Milekovic et al

ERNRs in the leg area of the motor cortex. As the leg electrodes
were in immediate vicinity of arm electrodes this finding
might be explained by ERNRs originating in the arm area and
being also picked up on leg electrodes due to spatial spread
of the electrical signals. Furthermore, ERNRs on leg motor
electrodes were found only in one subject. This makes the
statistics of the ERNR activity in the leg motor area much
more unreliable than the statistics for the other subareas,
where electrodes were available from several patients. Within
motor cortex, all functional subareas exhibited the same
response strength to outcome errors. For execution errors the
response strength was also not different among different motor
cortical subareas. The same result was found for the functional
subareas of the somatosensory cortex.

One might suspect that some of these ERNRs were
caused by movements correlated with error events and, thus,
did not directly reflect error-related neuronal responses. To
distinguish ERNRs from movement-related responses, we
subtracted responses evoked by eye and thumb movements
using the best out of linear and nonlinear models relating
ECoG signals to these movements (see section 2). Therefore,
we conclude that these movements cannot explain the ERNRs
we observed.

On the other hand, due to technical and clinical limitations,
movements of other parts of the body or the respective
muscle activations could not be tracked. Even though such
movements did not play a role for the task and, thus, there is no
a priori reason to expect these movements to be correlated
with error events, we cannot completely disprove that parts of
the observed neuronal error signals were confounded by such
movements.

4.3. Relevance for brain machine interfaces

One motivation for this study was to investigate whether
ERNRs can be used to improve the performance of continuous
movement BMIs (Serruya et al 2002, Taylor et al 2002,
Carmena et al 2003, McFarland and Wolpaw 2005, Hochberg
et al 2006, Kim et al 2008, Velliste et al 2008). Our study
provides a significant first step in this direction, showing
that strong error-related neuronal responses could be found
in ECoG recordings during a continuous control paradigm
which mimicked a continuous BMI control task. In addition,
we demonstrated that it is possible to differentiate between
execution (Diedrichsen et al 2005) and outcome (Krigolson
et al 2008) errors. These two types of errors provide
independent sources of information. Moreover, both of them
can be used to improve the performance of the BMI in different
ways. An outcome error can be used to correct an error after it
has been made (Blankertz et al 2003, Parra et al 2003, Buttfield
et al 2006, Ferrez and del R Millan 2008) and as a critic for a
reinforcement learning adaptive algorithm (DiGiovanna et al
2009). An execution error, on the other hand, can be used as
a direct indicator of when the decoded trajectory was decoded
improperly, thereby providing useful information for adaptive
decoding algorithms (Rotermund et al 2006).

Motor cortex is one of the primary target areas for the
implantation of electrodes for invasive BMIs. We showed

that strong ERNRs for both error types can be found in
motor cortical signals. Therefore, movement decoding and
error detection may be implemented using the same electrode
implants. Consequently, no additional implants over other
cortical areas would be required for BMIs employing such
neuronal error signals. This would substantially reduce the
burden of implantation for such BMIs.
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