
Figure S1: Raw and filtered traces are anti-correlated and KA activity shows a shift
in the theta band. Example traces are taken from the activity shown in Figs. 2A and B
in the main part of the manuscript. (A) 1 s cutout of control activity from MEC (raw:
black, 4-8Hz: gray) and DG (raw: red, 4-8Hz: orange). The traces are anti-correlated
but synchronized in the theta band. (B) Same as A with same scalebars for an EA-free
trace from a KA mouse. Traces are also anti-correlated, but in contrast to the control case,
theta band activity in the MEC lags behind theta band activity in the DG. This especially
holds true for high amplitude theta activity (black arrows).



Figure S2: No lag and low correlation after shuffling of 2 s cutouts. Mean of the
correlation from all epochs from one recording session for KA (K116, orange) and control
example (S120, blue) from Fig. 2C after shuffling the 2 s cutouts from the filtered MEC
signal. Note the different y-axis scaling from Fig. 2C, and the vanished difference regarding
∆tpeak between KA and control.



Figure S3: ∆tpeak values are stable across weeks in both animal groups. Each bar
represents the mean and the standard deviation of the average correlation coefficients of
all recordings per mouse as shown for two examples in Fig. 2D in the main text. In both
animal groups, the correlation results were stable across time.



Figure S4: CA1 appears synchronized with the DG in KA mice. (A) Example of a
TRCC in theta band taken from mouse K113 with electrodes in DG and intermediate
CA1. The highest correlation values are close to 0ms lag, suggesting that in contrast to
the MEC and DG relation, DG and intermediate CA1 are synchronized. (B) Mean of all
correlation values in the theta band from all recordings from KA mice with electrodes in
CA1 and DG, confirming that all three mice show a ∆tpeak around 0ms lag. Note the anti-
correlation between these structures, similar to the MEC-DG relation in the main text.
(C) Electrode positions for DG electrodes, superimposed on a Nissl-stained slice (K113,
scale bar is 200µm, Pyr= stratum pyramidale). (D) Same as C but for electrode positions
in CA1, superimposed on a slice from K116. Two positions could be reconstructed in the
stratum lacunosum moleculare, one in the stratum radiatum of CA1. Note, that at this
intermediate hippocampal recording positions no cell loss nor granule cell dispersion appear
because of the distance to the injection site in the septal DG.



Figure S5: The Jansen model of coupled neuronal populations. (A) Block diagram of
the neuronal population model. (B) Example of a simulated signal (LFP), for an oscillatory
activity in theta band. (C) Power spectral density (PSD) of the simulated signal in B.



The Jansen Model of Coupled Neuronal Populations

In our computer simulations, we used Jansen’s neural mass model of coupled neuronal

populations (Jansen and Rit, 1995). In this model, a neuronal population contains two

subpopulations, the excitatory pyramidal cells and inhibitory interneurons, connected with

each other via excitatory and inhibitory synaptic connections. According to the neural mass

modeling approach, each subpopulation is described by its average membrane potential (ν)

and mean firing rate (m). In each subpopulation, the action of the synapses is described

by a linear operator h that transforms m into ν, while the action of the neurons is mod-

eled by a static nonlinear operator S that relates ν to m. The operator h is represented

by a second-order lowpass filter with an impulse response given by he(t) = Aat.u(t).e−at

for the excitatory case, and hi(t) = Bbt.u(t).e−bt for the inhibitory case, where u is the

Heaviside function. Parameters A and B determine the maximum amplitude of the av-

erage excitatory and inhibitory PSPs, and a and b represent the associated average rate

constants (reciprocal of the time constants) of these PSPs. The operator S is described

by the sigmoid function S(ν) = 2e0
[1+er(ν0−ν)]

, where 2e0 is the maximum firing rate, ν0 is

the PSP corresponding to a firing rate e0, and r is the steepness of the sigmoid. Synaptic

interactions between pyramidal cells and inhibitory interneurons are characterized by four

connectivity constants Ci, which account for the average numbers of synaptic contacts be-

tween the subpopulations. Finally, the neuronal population model is driven by a Gaussian

noise input p, which represents the non-specific excitatory input from neighboring or more

distant populations. The Jansen model is summarized in Fig. 5A in the main text and

Fig. S5A in the supporting information.



Furthermore, multiple neuronal population models can be considered and connected to

each other. Inter-population coupling is modeled by excitatory connections between the

pyramidal cell subpopulations (Jansen and Rit, 1995; Wendling et al., 2000). In this study,

we considered a system of N =2 coupled neuronal populations (main text Fig. 5A). Two

gain constants, K12 and K21, are used to characterize the strength of the connection from

population 1 to population 2, and from population 2 to population 1, respectively. The

connection delays are modeled by using linear operators hd. For simplicity, hd function

was chosen similar to he function, i.e. hd(t) = Aat.u(t).e−at.

Each neuronal population model is described by the following set of eight differential equa-

tions (see Jansen and Rit (1995); Wendling et al. (2000) for details):



ν̇i0(t) = νi3(t)

ν̇i3(t) = AiaiS[νi1(t)− νi2(t)]− 2aiνi3(t)− (ai)2νi0(t)

ν̇i1(t) = νi4(t)

ν̇i4(t) = Aiai[pi(t) +
∑

j 6= iKjiν
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6(t) + Ci

2S[Ci
1ν
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0(t)]]− 2aiνi4(t)− (ai)2νi1(t)

ν̇i2(t) = νi5(t)

ν̇i5(t) = BibiCi
4S[Ci

3ν
i
0(t)]− 2biνi5(t)− (bi)2νi2(t)

ν̇i6(t) = νi7(t)

ν̇i7(t) = AiaiS[νi1(t)− νi2(t)]− 2aiνi7(t)− (ai)2νi6(t)

where superscript i denotes the population under consideration (here, i ε {1, 2}). This

set of equations was solved by using the fourth-order Runge-Kutta integration method.

At each population, the output signal, yi(t) = νi1(t) − νi2(t), is the summation of average

excitatory and inhibitory PSPs in the pyramidal cell subpopulation and is analogous to a

local field activity.

The Jansen model has been shown to produce a variety of LFP-like activities (Jansen



and Rit, 1995; Wendling et al., 2000). In this study, we considered the Jansen model in

its oscillatory regime, which is obtained by using the set of parameters given in Table 1.

As described in (Jansen and Rit, 1995), these parameters lead to the generation of alpha

activity. However, it was found that a modification of some model parameters (i.e. the

average synaptic gains, A and B, and rate constants, a and b) could make the model

produce oscillations in the different EEG frequency bands (David and Friston, 2003). In

this study, we were interested in theta oscillations. Consequently, we tuned the kinetics of

the two subpopulations (a−1=14ms; b−1=28ms) so that the neuronal population model

generates oscillatory activity in the theta band, according to the approach described in

(David and Friston, 2003). An example of a simulated signal and its power spectral density

is given in Figs. S5B and C.

References

David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal

dynamics. Neuroimage 20:1743–1755.

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation

in a mathematical model of coupled cortical columns. Biol Cybern 73:357–366.

Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-

parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83:367–378.



Tab. 1: Physiological interpretation and values of model parameters (adapted from Wendling
et al. (2000))

Parameter Physiological interpretation Value
A Maximum amplitude of the average excitatory PSP 3.25mV
B Maximum amplitude of the average inhibitory PSP 22mV
a Rate constant of the average excitatory PSP 100 s−1

b Rate constant of the average inhibitory PSP 50 s−1

C1, C2 Average numbers of synaptic contacts in the excitatory C1 = C,C2 = 0.8C
feedback loop (C = 135)

C3, C4 Average numbers of synaptic contacts in the inhibitory C3 = 0.25C,
feedback loop C4 = 0.25C

ν0, e0, r Parameters of the sigmoid function ν0 = 6mV, e0 = 2.5 s−1,
r = 0.56mV −1


