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Abstract The Poisson process is an often employed
model for the activity of neuronal populations. It is
known, though, that superpositions of realistic, non-
Poisson spike trains are not in general Poisson
processes, not even for large numbers of superimposed
processes. Here we construct superimposed spike trains
from intracellular in vivo recordings from rat neocortex
neurons and compare their statistics to specific point
process models. The constructed superimposed spike
trains reveal strong deviations from the Poisson model.
We find that superpositions of model spike trains that
take the effective refractoriness of the neurons into
account yield a much better description. A minimal
model of this kind is the Poisson process with dead-time
(PPD). For this process, and for superpositions thereof,
we obtain analytical expressions for some second-order
statistical quantities—like the count variability, inter-
spike interval (ISI) variability and ISI correlations—
and demonstrate the match with the in vivo data.
We conclude that effective refractoriness is the key
property that shapes the statistical properties of the
superposition spike trains. We present new, efficient
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algorithms to generate superpositions of PPDs and of
gamma processes that can be used to provide more
realistic background input in simulations of networks
of spiking neurons. Using these generators, we show in
simulations that neurons which receive superimposed
spike trains as input are highly sensitive for the statisti-
cal effects induced by neuronal refractoriness.
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1 Introduction

Stochastic point processes are widely used in com-
putational neuroscience to model the spiking of sin-
gle neurons and neuronal populations (van Vreeswijk
2010). In simulation studies of neuronal networks, ex-
ternal spike input is commonly modeled as a Pois-
son process (Brunel 2000; Gerstner and Kistler 2002).
However, neurons recorded in many areas of the brain
(Shinomoto et al. 2003; Maimon and Assad 2009) as
well as integrate-and-fire model neurons in a stationary
background show inter-spike intervals that clearly de-
viate from the Poisson assumption. Immediately after a
neuron produces an action potential, ion channel kinet-
ics prohibit the generation of another spike for a couple
of milliseconds, which is addressed as the absolute
refractoriness of the neuron. But even after the period
of absolute refractoriness has passed, eliciting another
spike through further input is rather unlikely, because
following an action potential the membrane potential is
hyperpolarized far below threshold. As the membrane
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Fig. 1 Effective refractoriness and superposition spike trains.
(a) Membrane potential trajectories obtained during an in vivo
intracellular recording (neuron 1). Shown are cutouts of the inter-
spike intervals of the first 15 s of the recording. In the first 40 ms
after each spike hardly any spikes occur, because the membrane

is still recovering from reset. Only when the potential is close
enough to the spiking threshold, excitatory input can trigger a
new spike. We call this phenomenon “effective refractoriness”.
(b) Superposition of three spike trains. Adapted from Cox and
Smith (1954)

potential successively depolarizes, firing becomes more
probable. This leads to a progressive recovery of firing
probability, which takes place on a time scale of tens of
milliseconds after each spike, as illustrated in Fig. 1(a).
We call this time span the effective refractoriness. From
a statistical point of view, the effective refractoriness
and the absolute refractoriness contribute to the statis-
tics of a single spike train in exactly the same way.

A neuron embedded in a cortical network receives
incoming spike trains from thousands of presynaptic
neurons (Binzegger et al. 2004) (for a recent review
on cortical connectivity see Boucsein et al. 2011). In
order to model the summed input a neuron receives
from its presynaptic partners it is therefore required
to study superpositions of spike trains (see Fig. 1(b)).
Refractoriness in a single spike train can be described
in the framework of renewal processes (Cox 1962).
In contrast to the superposition of Poisson processes,
however, the superposition of renewal processes with
refractoriness is not a Poisson process (Lindner 2006;
Câteau and Reyes 2006) nor is it a renewal process (Cox
and Smith 1954), complicating the analysis. The gamma
process is an often employed renewal process that can
model single spike trains with effective refractoriness
(Kuffler et al. 1957). Recently Ostojic (2011) demon-
strated that spike trains of spiking neurons driven by
fluctuating input generally resemble gamma processes.
Superpositions of gamma processes, however, are hard
to analyze and simulation results only provide limited
insights. Thus it is desirable to find a description of the
spiking of cortical neurons at an intermediate level of
detail between the Poisson process, which neglects all
properties of the inter-spike-interval (ISI) distribution
except for the mean, and the gamma process, which
allows a good fit of the neuronal ISI histograms. Here,
we use the Poisson process with dead time (PPD) as

such an intermediate model (Johnson 1996). The PPD
is a simple extension of the Poisson process, which pro-
duces spikes with equal probability at any time, except
for a fixed duration of silence after each event. This
time span is called the dead-time. The PPD has been
used successfully before as a model of the discharges
of auditory nerve fibers (Johnson and Swami 1983).
Note, however, that in the current work the dead-
time is used to model the effective refractoriness of a
cortical neuron, which is on the order of tens of mil-
liseconds. The simplicity of the PPD alone, in contrast
to the gamma process and other renewal processes,
enables us to obtain the analytical results on the sta-
tistics of superimposed processes which are presented
here.

Stochastic point processes can be described by a
hazard function, which defines the stochastic intensity,
typically conditioned on time and the spike history.
Therefore, the hazard function is often also called the
conditional intensity of the process. In the special case
of a renewal processes the hazard function only de-
pends on the time that has passed since the last spike,
which is also called the age. Given a hazard function
that depends only on the age, an ensemble of processes
will tend towards an equilibrium distribution of ages,
which is called the stochastic equilibrium of the process.
However, renewal processes can be generalized to in-
homogeneous renewal process by introducing a time
dependence in the hazard function. For instance, in
case of the PPD, the dead-time can be fixed, while
the rate parameter can be made time-dependent to
model non-stationary input to a neuron. For such time-
dependent input, ensembles of PPDs display stochastic
transients, like overshoots of the firing rate in response
to rapid changes of the input, which are caused by the
dead-time. Due to the changing hazard function this
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point process operates far from its stochastic equilib-
rium, but can still be understood and analyzed quan-
titatively (Deger et al. 2010) because of its relative
simplicity. Stochastic transients caused by refractori-
ness have been found to contribute to the precision
of the neuronal response to fluctuating input (Berry
and Meister 1998). Effective refractoriness is, by means
of a spike history term in the conditional intensity
function, commonly incorporated into nonstationary
point process models (Kass and Ventura 2001; Meyer
and van Vreeswijk 2002) and into generalized linear
point process models of neuronal stimulus encoding
(Paninski 2004; Pillow et al. 2008). Also in multivari-
ate point process models, the spike history was found
to be important for the statistical prediction of spike
times (Truccolo et al. 2010), see Truccolo (2010) for
an overview. In the absence of a stimulus, however,
the spontaneous neuronal activity can often be well
described by stationary point processes. For sponta-
neous activity, the concept of encoding is not applica-
ble since it is unclear which quantities are encoded in
the neuronal activity. But also beyond applications in
neuronal coding, point process theory is instrumental
to characterize neuronal spiking, in particular when it
comes to comparing real brains with network models.
Recurrent networks must be self-consistent: Superim-
posed spike trains constitute the input to a neuron, the
response (output) of which must be compatible with the
properties of its input (Câteau and Reyes 2006).

Here we investigate the statistics of superposition
spike trains with stationary rates, both analytically for
PPDs and numerically for superimposed spike trains
from in vivo recordings. In Section 3.1 we demonstrate
how the parameters of the PPD can be chosen to
accurately reproduce first- and second order statistics
of the spike trains of single neurons recorded in vivo
by the method of moments (Tuckwell 1988). We inves-
tigate second-order statistical properties, in particular
the Fano factor, the coefficient of variation of the
ISIs, and the serial correlations between subsequent
ISIs. These quantities are called second-order statistics
since they involve first and second moments of the
respective probability distributions. In Section 3.2 we
introduce the auto-correlation function of the PPD,
and Section 3.3 presents an analytical expression for
the Fano factor depending on the counting window. In
Section 3.4 we study the pooled spike trains from pop-
ulations of neurons with effective refractoriness. We
compare superpositions of the recorded spike trains
and find that the corresponding superimposed model
spike trains match their statistics remarkably well,
much in contrast to the Poisson process. In models
of recurrent networks, mean field theory can be ap-

plied to theoretically estimate the spike rate in the
network Brunel (2000), but relies on the assumption
that individual neurons spike like Poisson processes. In
Section 3.5 we show that the firing rate of integrate-
and-fire model neurons is in fact sensitive to refractori-
ness in the single spike train and explain the observed
deviation compared to Poisson input.

To date, the superpositions of point processes other
than Poisson had to be generated by superimposing
numerous realizations of the single point process. If
each simulated neuron is to receive independently
generated superposition spike trains (corresponding to
the Poisson spike trains used, for example, in Brunel
(2000)) this generation procedure would slow down the
simulation to an unbearable extent. Here we present
novel algorithms which efficiently generate superpo-
sitions of arbitrary numbers of PPDs (Algorithm 1)
and of gamma processes (Algorithm 2) in discretized
time. The two generators require on the order of 10 to
100 times the number of computations that a Poisson
process generator does. This factor is independent of
the number of superimposed processes, which makes
it feasible to use superpositions of PPD or gamma
processes as population models in contemporary and
future simulation studies.

2 Materials and methods

2.1 In vivo neuron recordings

We use spike train data recorded intracellularly with
sharp electrodes from neocortical neurons in the pri-
mary somatosensory cortex (S1) of Long–Evans rats
in vivo, as published in Nawrot et al. (2007). We es-
timate the time-dependent spike rate with a Gaussian
filter kernel with parameter σ = 2.5 s. From the origi-
nal dataset consisting of the spike trains of eight neu-
rons, we select the three spike trains which show the
lowest rate variability and at least 500 spikes. These
three spike trains are labeled neurons 1, 2 and 3 in the
following. Table 1 lists the parameters characterizing
the spike trains. Neurons 1 and 2 were recorded from
female rats, neuron 3 from a male rat.

To check whether the serial interval correlations
affect the statistical quantities we compute from the
spike trains throughout the manuscript, we also
shuffled the original spike trains, which removes serial
interval correlations (Nawrot et al. 2007). To shuffle the
spike trains, we compute the inter-spike-intervals (ISI),
randomly permute them, and consider the cumulative
sum of the permuted ISI as the shuffled spike train.
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Table 1 Statistical measures
of the spike trains for neurons
1–3, and the parameters of
the matched renewal
processes

For the definition of the
parameters of the PPD see
Eq. (6), for the gamma
process see Eq. (37)

Unit Neuron 1 Neuron 2 Neuron 3
Total number of spikes 1 3,959 989 531
Kernel-estimated rate s−1 12.29 ± 0.64 10.86 ± 0.59 9.45 ± 0.48
Total duration s 321.7 90.2 55.8
Inter-spike-interval: µ̂ ± σ̂ ms 81.3 ± 24.5 91.3 ± 44.5 105.4 ± 36.3
Matched PPD: λ s−1 40.83 22.48 27.56
Matched PPD: d ms 56.79 46.84 69.09
Matched PPD: d̄ = d/µ 1 0.70 0.51 0.66
Matched gamma process: p 1 11.01 4.21 8.43
Matched gamma process: b s−1 135.49 46.14 80.04

2.2 Superposition spike train and surrogate
data generation

To construct superposition spike trains of n component
processes from the recorded in vivo data, we split the
neuron spike trains into n fragments of equal duration.
In each of the fragments, the time of the beginning
of the fragment is subtracted from each spike time.
Then the fragments are superimposed, as depicted in

Fig. 1(b). Thereby we consider the fragments of the
spike train of the neuron as independent realizations
of the same point process in equilibrium. We match
the parameters of three different point processes to the
recorded spike trains: a PPD as described in Section 3.1,
a gamma process as in Appendix A and a Poisson
process, which is defined by the rate of spikes only. In
Figs. 2, 3 and 4 the error-bars denote the standard devi-
ation from the mean across multiple realizations of the

(a) (b) (c)

(f)(e)(d)

Fig. 2 Inter-spike-interval density and auto-correlation function.
(a)–(c) Estimated probability density of the inter-spike-interval
(ISI, kernel density estimation with Gaussian kernel) of a neu-
ron (black), ISI density of the Poisson process (1) with rate
λ = 1/µ̂, d = 0 (blue), ISI density of the PPD matched to the
mean (µ̂) and standard deviation (σ̂ ) of the neural ISI (green)
using Eq. (6), ISI density of gamma process matched to µ̂ and
σ̂ (orange, see Appendix A). The inset shows the same data
on a logarithmic scale. (d)–(f) Auto-correlation functions of

single spike trains. Theoretical result (8) for the PPD (green
curve), numerically computed auto-correlation of gamma process
(8) (blue curve), in vivo data (black crosses), shuffled in vivo
data (black circles), estimate of mean and standard deviation
from repeated realization of PPD and gamma processes of the
same duration as the neural recording (error-bars, colors as
in (a)–(c)). Same parameters and data as in (a)–(c). The left,
middle, and right column correspond to neurons 1, 2, and 3,
respectively
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(a) (b) (c)

Fig. 3 Spike count variability in dependence of the counting
window. Fano factor of neuronal spike trains and associated
point processes as a function of the counting window length l.
Theoretical result (14) (green curve) and simulated data of the
PPD (green dots), neuronal data (black crosses), shuffled neu-

ronal data (black circles), gamma process (orange dots), Poisson
process (blue dots). Black arrows mark the points with l = nd,
n = 1, 2, 3, . . .. (a)–(c) Data of neurons 1, 2, and 3, respectively.
Same data and parameters as in Fig. 2

matched processes. Each of these realizations has the
same duration as the original, unfragmented recording.
Since the recorded spike trains are of finite duration,
all statistical quantities we compute for the spike trains
are estimates. We quantify their variance due to the
finite duration of the recording from the statistics across
many realizations of the matched processes of the same
length.

3 Results

3.1 Inter-spike interval statistics

In this section we match the Poisson process with
dead-time (PPD) to recorded neural spiking activity
by means of the inter-spike interval (ISI) statistics
(Tuckwell 1988). The PPD is a renewal process, which

(a) (b) (c)

(d) (e) (f)

Fig. 4 Variability of the ISI and serial correlations in super-
imposed spike trains. (a)–(c) Coefficient of variation of the ISI
depending on the number n of superimposed neural spike trains
(black crosses, black circles: shuffled neuronal data) and associ-
ated PPDs (green curve), gamma processes (orange error bars)
and Poisson processes (blue error bars). Point processes realiza-
tions have the same duration as the neural recording, error-bars

show standard deviation across realizations. (d)–(f) Total serial
correlation Sn Eq. (22) of the ISI of n pooled neuronal spike
trains (black crosses) and matched processes. Same colors and
symbols as in (a)–(c). Theoretical limit Eq. (23) for large numbers
of superimposed PPDs (dashed green line). The left, middle, and
right column correspond to neurons 1, 2, and 3, respectively.
Same data and parameters as in Fig. 2
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means each ISI is drawn independently from the same
distribution. The three recorded spike trains show serial
interval correlations, as can be seen in Fig. 4(d)–(f) for
n = 1, which has also been reported in Nawrot et al.
(2007). Since renewal processes by definition do not
have serial interval correlations, they can only be an
approximate model of the spike trains’ statistics. We
will evaluate this model a posteriori using surrogate
methods. In Figs. 2, 3 and 4 results computed from the
shuffled spike trains are shown as circles, whereas re-
sults computed from the original spike trains are shown
as crosses. As can be seen in Fig. 4(d)–(f) for n = 1, ISI
shuffling efficiently removed the serial correlations in
the single spike trains.

We define the PPD by its ISI density

f (x) = θ(x − d)λ exp(−λ(x − d)), (1)

where θ(x) = {1 for x ≥ 0, 0 else} denotes the Heavi-
side function, λ ≥ 0 is the rate parameter and d ≥ 0 is
the dead-time for which no spikes can occur. The first
two central moments of the ISI density are

µ = d + 1
λ

(2)

σ 2 = λ−2 , (3)

where µ denotes the mean and σ 2 denotes the variance
of the ISI. The equilibrium rate of the process is

ν = 1
µ

= λ

1 + λd
, (4)

which is generally smaller than the rate parameter λ.
The coefficient of variation (CV) of the ISI is

CV = σ

µ
= 1 − d

µ
. (5)

Since d ≤ µ it follows that CV ≤ 1, which means that
the PPD is generally more regular than the Poisson
process. A PPD can be associated to the stationary
spiking of a neuron given empirical estimates of mean
and standard deviation of the neural ISI, µ̂ and σ̂ . By
matching the central moments of the ISI (Eqs. (2) and
(3)), we obtain the parameters of the PPD as
{

λ = 1/σ̂

d = µ̂ − σ̂
. (6)

Figure 2(a)–(c) show the normalized ISI histogram
of recorded neural spike trains and the ISI density
of the associated point process models, PPD, gamma
process and Poisson process. The matched dead-time
of the PPD accounts for the effective refractoriness

in the spike train. On the level of the ISI density,
the approximation by using a PPD instead of the true
density consists in a relocation of the probability mass
of the neural ISI histogram below the dead-time into
the initial exponential decay of the density of the PPD
just after the dead-time. Typically, the tail of the density
of the matched PPD and of the neuron coincide very
well. The gamma process, on the other hand, properly
fits the density of the ISI.

3.2 Auto-correlation function

The superposition of PPDs is a simple model for the
combined synaptic input a neuron receives in a net-
work. In the following we therefore need to determine
the statistics of the PPD and of superpositions thereof.
The auto-correlation function of a single spike train is
an experimentally observable feature of neural activity.
Furthermore, the auto-correlation function is required
to compute the statistics of superposition spike trains
in later sections. Along with Gerstein and Kiang (1960)
we define the auto-correlation function of a spike train
as the firing rate conditional on a spike at t = 0,

γ (t) def= lim
ε→0

1
ε

P
[
spike in [t, t + ε) | spike at t = 0

]
, (7)

which is also called the renewal density (Cox 1962).
For any stationary point process, the renewal density
is given by

γ (t) =
∞∑

k=0

fk(t), (8)

where fk(t) is the density of the k-th order interval
(Holden 1976). In case of a renewal process the density
of the k-th order interval can be written as fk = f ∗k,
where f is the first-order ISI density which here is given
by Eq. (1) and

f ∗k(t) =
{

δ(t) for k = 0
∫∞

0 f k−1(t − x) f (x) dx for k ≥ 1.

It can be shown (see also Picinbono 2009) that for the
PPD defined by Eq. (1),

f ∗k(t) = 1
(k − 1)! (t − kd)k−1λke−λ(t−kd)

× θ(t − kd) for k ≥ 1. (9)

The terms Eq. (9) make up the auto-correlation func-
tion (8) when summed up. Due to the factor θ(t − kd)

each of the terms is restricted to t > kd, which explains
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the distinct domains of the function. For t ∈ (0, d) the
auto-correlation is zero, followed by a jump at t = d
to the value λ, from which it decays exponentially
for t ∈ [d, 2d). In the following intervals [kd, (k + 1)d),
k > 1, higher order terms of the type tk−1e−λt are
added sequentially. For large t, the effect of the spike
at t = 0 becomes negligible, therefore limt→∞ γ (t) = ν.
The auto-correlation function of a recorded neuron
and the one of the associated PPD are shown in
Fig. 2(d)–(f). Discrepancies of this model to the actual
shape of the neuron’s autocorrelation are obvious. As
in Fig. 2(a)–(c), the PPD captures the fact that neurons
are refractory and neglects the details how the neuron
returns from refractoriness. The auto-correlation func-
tions of the matched gamma processes are very simi-
lar to the ones of the recorded neuronal spike trains.
Shuffling of the neuronal spike trains resulted in mi-
nor improvements by removing serial correlations. The
matched Poisson processes are not shown in Fig. 2(d)–
(f) since their auto-correlation functions are constant
and equal to ν for t > 0, not showing any refractoriness.

3.3 Count variance and Fano factor

Some statistical measures of spike trains are based on
the spike count in a certain time window. For instance
the Fano factor, a frequently invoked measure to quan-
tify irregularity of neuronal activity, is defined as the
variance over the mean of the spike count. Since elec-
trophysiological recordings are necessarily of limited
duration, a limited length of the counting window must
be chosen. However, the choice of the counting window
can influence the value of the Fano factor. Typically,
the dependence of the Fano factor on the counting win-
dow cannot easily be computed for an arbitrary point
process. Recently Farkhooi et al. (2011) presented a
general formula for the Fano factor of stationary point
processes in dependence of the counting window and
its limit for large windows (Eq. (21)). Here we use a
different method where we consider the spike count
as a shot noise with a rectangular filter kernel and
compute the variance of the count based on Campbell’s
theorem (Campbell 1909; Tetzlaff et al. 2008). By this
approach we obtain the same result as Farkhooi et al.
(2011) for the Fano factor of the spike count. However,
our approach can also be used with other kernels and
will allow us to compute the variance of the membrane
potential of neurons driven by PPDs below. In Nawrot
et al. (2008) the Fano factor of gamma processes has
been computed by the same method, which in that case
required numerical integration. The simplicity of the
PPD enables us to analytically compute this depen-
dence here.

First we compute the mean and variance of the count
variable Xl in a counting window of length l for the
PPD. Counting events is equivalent to evaluating a shot
noise (Papoulis 1991) with a rectangular filter kernel
h(t) = 1t∈[0,l], where 1Z = {1 if Z , 0 else}, driven by the
spike train S(t), such that

Xl(t) = (h ∗ S)(t). (10)

The expected bin count is

E [Xl] = 1
µ

∫ ∞

0
h(s) ds = l

µ
. (11)

We determine the variance of the count via the auto-
covariance function of the counting shot noise, based
on the auto-covariance function of the PPD. See
Appendix C for the explicit derivation. The variance of
the count variable turns out to be

Var [Xl] = l
µ



1 − l
µ

+ 2
)l/d*∑

k=1

ξk



 , (12)

with ξk =−(kd+ k
λ

− l)+(kd − l)z(k, λ(l−kd))+ k
λ

z(k +
1, λ(l − kd)), where z(a, b) = )(a,b)

)(a)
and )(a, b) denotes

the incomplete gamma function. If l < d the count
variance simplifies to

Var [Xl] = l
µ

(
1 − l

µ

)
. (13)

The Fano factor, a measure of the irregularity of a spike
train, for the PPD follows from its definition as

FFl
def= Var [Xl]

E [Xl]
= 1 − l

µ
+ 2

)l/d*∑

k=1

ξk, (14)

for a counting window of length l. For l → 0, Eq. (13)
yields FF0 = 1. Expression (14) is particularly inter-
esting for small counting windows l < d, since in this
case the sum over ξk on the right of Eq. (14) is empty.
As l increases, more terms ξk are added to Eq. (14).
For l → ∞ we use the identity (21) and the property
of vanishing serial interval correlations valid for any
renewal process to obtain

FF∞ = CV2 =
(

1 − d
µ

)2

, (15)

where CV is given by Eq. (5).
The dependence of the Fano factor on the length of

the counting window for neural spike trains compared
to matched PPDs and gamma processes is shown in
Fig. 3. Apart from slight deviations around the kink
of the curve at l ≈ 1.3d, neurons 1 and 3 and their
associated gamma processes follow Eq. (14) exactly.
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For neuron 2 the deviations are larger, but Eq. (14) still
gives a reasonable estimate. We attribute the increased
deviations in neuron 2 to the fact that the inter-spike
intervals of neuron 2 have stronger serial correlations
than those of neurons 1 and 3, as shown in Fig. 4(e)
for n = 1, which is incompatible with a renewal process
model.

3.4 Superpositions

Superpositions of PPDs are a model of the summed
synaptic input of neurons in neuronal networks. From
the assumption that each presynaptic neuron spikes
according to a PPD, the statistics of the summed input
follow. Consider the superposition

∑n
i=1 Si(t) of n inde-

pendent and identically distributed renewal processes
Si(t). The variance of the superposition’s count in the
window l is by Eq. (10) Var[∑n

i=1(Si * h)] = nVar[Xl],
and the mean count is nE[Xl]. It follows that the Fano
factor of an independent superposition does not de-
pend on n, so it is identical to the Fano factor of the
component processes. This, however, does not hold for
all statistics of the superimposed spike train.

Here we compute the distribution of inter-spike-
intervals (ISI) for the superposition of n PPDs, from
which we obtain the coefficient of variation of the ISI,
enabling us to determine the serial correlations in the
superposition as well. The ISI density f of a component
process is given by Eq. (1). According to Cox (1962) the
ISI density of an n-fold superposition of independent
and identically distributed renewal processes in equi-
librium is

g(x) = − d
dx

[

F(x)

{∫ ∞

x

F(u)

µ
du
}n−1

]

, (16)

where F is the survivor function of each component
process. For superpositions of PPDs we evaluate this
formula and obtain

g(x) =






n − 1
µ

(
1 − x

µ

)n−2

for x < d

1
µn−1

1
λn−2

ne−nλ(x−d) for x ≥ d

. (17)

The detailed computations can be found in Appen-
dix B. As one would expect, the mean ISI of the su-
perposition is

µn =µ

n
. (18)

The variance of the ISI of the superposition is

σ 2
n = µ2

n2(n + 1)

(

n − 1 + 2
(

1 − d
µ

)n+1
)

. (19)

We obtain the coefficient of variation of the superposi-
tion as

CVn
def= σn

µn
=

√√√√ 1
n + 1

(

n − 1 + 2
(

1 − d
µ

)n+1
)

. (20)

Equation (20) shows that the CVn of the superposition
only depends on the relative refractoriness d/µ and the
number of component processes. As is easily seen, in
the limit of large numbers of component processes,

lim
n→∞

CVn = 1,

in accordance with the Palm–Khintchine theorem
(Heyman and Sobel 1982). Figure 4(a)–(c) show the CV
as a function of the number of superimposed processes
for three different single spike train statistics; gamma,
PPD and the experimentally measured data. Appar-
ently the CV for the neuron data, the gamma process
and the PPD show the same dependence on the number
of processes, with only slight deviations in the range
of the expected standard deviation. This suggests that
Eq. (20) describes a rather universal property of su-
perpositions of independent and identically distributed
point processes with refractoriness.

The superposition of n renewal processes is, in gen-
eral, not a renewal process, because serial correlations
of subsequent ISIs occur. We can use the previous
results to quantify the magnitude of serial correlations
in the superposition spike train: The sum over serial
correlations of all orders is accessible through the re-
lation (Cox and Lewis 1966)

lim
l→∞

FFl = CV2 ·
(

1 + 2
∞∑

k=1

ρk

)

, (21)

where ρk is the correlation coefficient of k-th neighbor
ISIs. Relation (21) is valid for any stationary point
process. With Eqs. (20) and (15) this yields for the total
serial correlation in the superposition of PPDs

Sn
def=

∞∑

k=1

ρk(n) = 1
2

(
FF∞
CV2

n

− 1

)

. (22)

A plot of this quantity in comparison to neuronal
data and matched process realizations is shown in
Fig. 4(d)–(f). For n = 1 the figures show the total serial



J Comput Neurosci

correlation of the single neuronal spike train. For neu-
ron 1 this is small and negative but non-zero, neuron 2
has larger negative serial correlations, and neuron 3 has
small positive serial correlations (Nawrot et al. 2007).
The matched renewal processes have independent sub-
sequent ISIs and hence for these S1 = 0 by construc-
tion. Nonetheless, for n > 1 the data for neuron 1 and
the matched gamma process agree with the analytical
result for the PPD (22) within two standard errors or
better. For neurons 2 and 3 the larger serial correlations
of the recorded spike trains introduce systematic devia-
tions, but the data still follow Eq. (22) approximately.
In order to investigate to what extent serial interval
correlations of the single spike trains cause these de-
viations we shuffled the intervals of the original spike
trains, removing serial interval correlations altogether
(Nawrot et al. 2007). For the shuffled spike trains the
serial correlations of the superpositions are now closer
to the analytical result for the PPD for all three neu-
rons. These results show that the superposition of PPDs
is an appropriate model for serial correlations of super-
positions of spike trains with small serial correlations.
In contrast, for the Poisson process model these serial
correlations do not exist, since a superposition thereof
is again a Poisson process.

For large n, which is the case of superpositions of
many component processes, we obtain from Eq. (22)

S∞ = lim
n→∞

S(n) = d
µ

(
d

2µ
− 1

)
, (23)

which, in particular, means that there are the bounds
−1/2 ≤ S∞ ≤ 0 on the total serial correlation of super-
imposed PPDs. The lower bound of S∞ ≥ −1/2 follows
immediately from Eq. (21) since FF∞, CV2 ≥ 0. The
upper bound might be a specific property of super-
positions of PPDs. These bounds are confirmed in
Fig. 4(d)–(f), where we observe that the limiting value
Eq. (23) is approached quite fast. A neuron in a cor-
tical network receives about n ≈ 5,000 synaptic inputs
(Binzegger et al. 2004; Boucsein et al. 2011). The serial
correlation magnitude of the superimposed spike trains
can be well approximated by Eq. (23) in these cases.

3.5 Effects on integrate-and-fire neurons

As we have shown, superpositions of PPDs show sev-
eral statistical properties that are not shared by Poisson
processes (and by superpositions of Poisson processes,
because these remain Poisson processes). Nonetheless,
in simulations of cortical neuronal networks, exter-
nal input is typically modeled as a Poisson process
(Brunel 2000). The study Câteau and Reyes (2006)

has shown that the statistics of the single input spike
trains influences the neuronal activity. Here we demon-
strate that choosing an appropriate superposition of
PPDs instead of the Poisson process affects the sta-
tistics of the membrane potential and the firing rate
of the neurons. Consider the leaky integrate-and-fire
(LIF) neuron with exponential post-synaptic potentials
(Gerstner and Kistler 2002). The membrane potential
obeys the differential equation

τ
dU
dt

(t) = −U(t) + RI(t), (24)

with the membrane time constant τ and resistance R.
Whenever the membrane potential reaches the thresh-
old Uθ , the neuron elicits a spike and the membrane
potential is reset to Ur = 0. After producing a spike
the neuron cannot receive input for the duration of
absolute refractory period τr. The input current I(t)
is brought about by excitatory and inhibitory point
events. Each input spike elicits a δ-shaped postsynap-
tic current, which leads to a jump of the membrane
potential that relaxes back exponentially. The jump
amplitude of excitatory input spikes is w, of inhibitory
input spikes it is −gw,

RI(t) = τw
∑

i

δ(t − ti) − τgw
∑

j

δ(t − t j), (25)

where i and j index the excitatory and inhibitory input
spikes that the neuron receives, respectively. The input
is scaled by τ to let the membrane potential jump by w

or −gw, respectively, upon each input spike.
If we neglect the spiking and the reset for a moment,

the membrane potential described by Eq. (24) is a
linear system. The trajectory of the potential U(t) upon
the impulse input RI(t) = δ(t) is called the impulse
response h(t), which in this case evaluates to

h(t) = θ(t)
1
τ

e− t
τ . (26)

Equivalent to Eq. (24) the impulse response Eq. (26)
fully describes the system, such that

U(t) = R(I ∗ h)(t), (27)

which is the convolution of the input with the impulse
response of the membrane. In fact, the membrane po-
tential is a shot noise driven by the input spike train just
as the counting process we considered earlier. Analo-
gously, the variance of the membrane potential driven
by a superposition of n PPDs with mean ISI µ, dead-
time d and synaptic amplitude w follows from a similar
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calculation as in the case before (see Appendix D for
details)

Var [U] = nw2 τ

µ

[
1
2

+
(

e
d
τ

(
µ−d

τ
+1
)

−1
)−1

− τ

µ

]

,

(28)

which takes its maximum value 1
2 nw2 τ

µ
in the case of

d = 0. So relative to a membrane potential U ′ driven
by a superposition of n Poisson processes, with the
same mean ISI µ, the dead-time in the input processes
reduces the variance by a factor of

r(d, µ, τ ) = Var [U]
Var [U ′]

= 1+2
(

e
d
τ

(
µ − d

τ
+1
)

− 1
)−1

−2
τ

µ
. (29)

Note that here we only considered uniform synaptic
weights w corresponding to g = 0 in Eq. (25). A mix-
ture of inputs with different synaptic weights is consid-
ered below in Eq. (34).

In order to understand the dependence of the vari-
ance reduction on the rate of the single component we
consider the limits of Eq. (29) for large and small input
component rates 1/µ, while keeping the relative dead-
time d̄ = d/µ constant, with d̄ ∈ [0, 1], to obtain

lim
µ→0

r =
(
1 − d̄

)2 (30)

lim
µ→∞

r = 1 . (31)

Both limits are independent of the membrane time
constant τ . Another interesting limit of Eq. (29) is the
completely regular process with d = µ for which we
obtain the relative variance

r(µ, µ, τ ) = 1 + 2
(

e
µ
τ − 1

)−1
− 2

τ

µ
. (32)

In the following we consider a neuron receiving
excitatory and inhibitory synaptic input, as illustrated
in Fig. 5(a). We used two PPD superposition gener-
ators (as described in Algorithm 1) for each neuron
to produce excitatory and inhibitory input, and two
populations (named 1 and 2) of 1,000 LIF neurons each.
In population 1 we disabled the spike mechanism to
be able to record the free membrane potential. The
input rates νe and νi were chosen to bring the neu-
ron into the fluctuation driven regime (van Vreeswijk
and Sompolinsky 1996), see also Table 2. Given these
parameters, in case of Poisson process inputs and in
the absence of a spiking threshold, the free membrane
potential has the moments E[U] = τw(νe − gνi) =
10.0 mV and Var[U] = τ

2 w2(νe + g2νi) = 12.5 mV2 in
equilibrium.

To realize the input rates νe and νi as superpositions
of PPD components, each with rate 1/µ and dead-time
d, we choose superpositions of

ne = )νeµ* , ni = )νiµ* (33)

PPDs, respectively, where )* denotes rounding down
to the next integer. The remaining rates νrem.

e = νe −
ne/µ and νrem.

i = νi − ni/µ were additionally injected as
Poisson processes to have the same total input rates for
all choices of µ and d. In the absence of a spiking mech-
anism (Fig. 5(a), population 1) of the receiving neu-
ron, refractoriness in the input spike trains decreases
the variance of the membrane potential. Driving input
composed of independent excitatory and inhibitory su-
perpositions of PPDs results in the membrane potential
variance

Var [U]e,i = Var [U]e + Var [U]i , (34)

where Var [U]e = 1
2w2τ (ner(d, µ, τ )/µ + νrem.

e ) and
Var [U]i = 1

2 g2w2τ (nir(d, µ, τ )/µ + νrem.
i ). The relative

reduction of the variance compared to the case of
Poisson input is shown in Fig. 5(d). The analytical
results agree very well with direct simulation of the
free membrane potential.

To determine how the refractoriness in the input
spike trains affects the spiking of neurons, we simulated
LIF neurons that emit an action potential if the voltage
reaches a threshold Uθ as defined above (Fig. 5(a),
population 2). Figure 5(c) shows the dependence of the
firing rate of the LIF neurons on the relative dead-time
d/µ of the input processes, keeping the total input rate
and the rate 1/µ of a single process constant. Data are
shown for six different values of the component process
rate 1/µ, indicated by the colors of the curves. The
case of d = 0 here reflects the commonly used Poisson
process. With increasing dead-time the firing rate of the
LIF neurons first rapidly decreases. This corresponds to
a decrease in variance of the free membrane potential
as can be seen in Fig. 5(d). The initial decrease in firing
rate of the LIF neurons is followed by a slight increase
that saturates (for all but the yellow and cyan curves,
see below) as the component spike trains become com-
pletely clock-like as d → µ.

Figure 5(b) shows the estimated probability density
of membrane potentials in simulations with fixed 1/µ

for five values of d. We observe that d changes the
shape of the stationary distribution of the membrane
potentials, most visible around the peak of the distribu-
tion and at the threshold. The distribution of membrane
potentials determines the rate and response properties
of the neuron (Helias et al. 2010b), ultimately giving
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Fig. 5 Effect of refractoriness in the input activity on integrate-
and-fire model neurons. (a) Scheme of the simulation. PPD su-
perposition generators produce excitatory and inhibitory input to
the neurons. Neurons in population 1 do not have a spiking mech-
anism, we record the free membrane voltage without threshold
and reset. Neurons in population 2 are spiking LIF neurons
used to simulate the firing rate and the membrane distribution
in the presence of the threshold. (b) Estimate of the stationary
distribution of the membrane potential of population 2 (kernel
density estimation with Gaussian kernel) with 1/µ = 14 s−1.
Color denotes dead-time d̄ = d/µ of input component processes,
(back, blue, green, red, yellow): d̄ =(0, 0.2, 0.4, 0.6, 0.8) (ms). The
inset shows how the value of the density at the spiking threshold
depends on d̄. (c) Firing rate ν of the LIF neurons (population 2)
depending on the effective dead-time d of the component input

processes, keeping the mean ISI and the total input rate constant.
Simulation results are obtained using PPD superposition gener-
ators (diamonds) and gamma process superposition generators
(circles). The colors distinguish different rates 1/µ of the input
component processes, (blue, green, red, yellow, cyan, orange):
1/µ =(5, 8, 11, 14, 17, 20) (s−1). To maintain the same total rate of
input spikes for different rates of the component input processes,
the number of superimposed processes was adjusted accordingly,
see Eq. (33) and text. Error-bars denote the standard deviation
of the rate across simulated neurons. (d) Reduction r of the
variance of the free membrane potential (population 1) relative
to the case of Poisson input. Theoretical result (29) as solid curve.
Limits for infinite component rate (dotted line, Eq. (30)) and for
fully regular input components (dashed lines, Eq. (32)); color and
symbol code as in (c). Remaining parameters are given in Table 2

Table 2 Parameters of the
simulation of leaky
integrate-and-fire (LIF)
model neurons and their
input

Symbol Unit Value
Excitatory input rate νe s−1 35,757.6
Inhibitory input rate νi s−1 6,464.6
Synaptic weight w mV 0.1
Relative inhibitory weight g 1 4.5
Membrane time constant τ ms 15
Threshold potential Vθ mV 15
Reset / equilibrium potential Vr mV 0
Simulation time step -t ms 0.05
Refractory period of neurons τr ms 1
Number of neurons each (1,2) N 1 100
Simulation duration T s 1,000
Duration of recording of V TV s 100
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rise to the rate dependence shown in Fig. 5(c). From the
inset in Fig. 5(b) it can be seen that close to the spiking
threshold, the distribution of membrane potentials does
not go to zero linearly, as a diffusion approximation
would predict (Gerstner and Kistler 2002). This is also
the case for Poisson input with d = 0 (blue curve)
and can be explained by the time-discretization of the
simulation (Helias et al. 2010a) and the small but non-
vanishing synaptic weight (Helias et al. 2010b). Apart
from this phenomenon, all three curves with d > 0 show
a decreased probability density close to threshold. The
firing rate of the neuron depends strongly on the values
of the distribution in this range, as we recently illus-
trated in a focused review article (Helias et al. 2011).

The changes of the shape of the probability density
close to threshold explains the significant decrease in
the firing rates in Fig. 5(c). However, the yellow and
cyan curves in Fig. 5(c), where 1/µ = 14 s−1 and 17 s−1,
deviate from the other three since they do not satu-
rate after the initial decrease, but continue to rise. A
similar trend can also be seen in the green (8 s−1), red
(11 s−1) and orange (20 s−1) curves, which ultimately
saturate, but rise a little at first. This effect is related
to the auto-covariance function of the input process,
cf. Fig. 2(d)–(f), and will be discussed in detail based
on Fig. 6 below.

The relative variances shown in Fig. 5(d) can fur-
ther be related to the asymptotics of Eq. (29) derived

(a) (b)

(c) (d)

Fig. 6 Oscillations in input due to refractoriness and resonance
of integrate-and-fire model neurons. (a) Power spectral density
(PSD) of the superposition of exc. and inh. PPDs which are used
as input, theoretical curves Eq. (46) computed analogously to
Eq. (34). Subplots correspond to different relative dead-times
d̄ = d/µ of the input components as indicated on the left. Colors
distinguish the rate of component input PPDs as in Fig. 5(c).
(b) PSD of the membrane potential of population 1 in units
of mV2 s−1 driven by PPD superpositions. Error-bars show the
standard deviation of the estimate across LIF neurons. Solid
line shows the analytical power spectrum computed via Eq. (47),

computed analogously to Eq. (34). Subplots and colors as in
(a). (c) Estimated PSD of the output spike trains of population
2 in units of s−1 driven by PPD superpositions. Subplots and
colors as in (a). Error-bars display standard deviation of the
estimate across neurons. (d) Interval statistics (mean ISI µn and
coefficient of variation CVn) and matched PPD parameters (λn,
dn) of population 2 neurons’ output spike trains for several d̄
(blue, green, red, cyan, orange: 0.0, 0.2, 0.4, 0.6, 0.8) as a function
of the rate 1/µ of the component input PPDs. Same parameters
and simulation setup as in Fig. 5
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above. All four curves show the same maximum of
the variance for d = 0, which also corresponds to the
limit of small rates of the input processes (Eq. (31)).
For small d the curves then follow the limiting case of
infinite component rate Eq. (30) (dotted line), but the
slopes soon decrease in magnitude to saturate at their
respective limiting value Eq. (32) (dashed lines). Note
that the PPDs matched to the recorded neurons above
have d/µ ≈ 0.6 (see Table 1), which is well described
by the limiting case Eq. (32). The parameters of the
neuron model and the input processes are shown in
Table 2.

In both the Fig. 5(c) and (d) we also included the
results we obtained by using a gamma process superpo-
sition generator instead of the PPD one. Here we used
gamma processes with integer shape parameter p which
ranged from 1 to 10. When matched to the moments
of a PPD, this corresponds to a relative dead time of
d̄ = 1 − p−1/2 irrespective of the scale parameter of the
gamma process. The results for the ten different gamma
process superposition inputs are displayed as circles in
the figures, showing a very similar trend both concern-
ing the membrane potential variance and the firing rate
of the stimulated neurons. Because the gamma process
has a different auto-correlation function than the PPD,
the analytical result for the reduction of the membrane
potential Eq. (29) is not valid for the superposition of
gamma processes. Still the variance reduction follows
a similar law in this case. The error bars in Fig. 5(c)
display the standard deviation of the firing rate estimate
across simulated neurons in population 2.

To better understand the non-monotonous effect of
increasing dead-time of the component input processes
on the firing rate of LIF neurons which is displayed
in Fig. 5(c) we investigated the power spectral densi-
ties (PSD) of input, membrane potential and neuronal
output spike trains, for five values of d̄ = d/µ and
the previously chosen input component rates in Fig. 6.
The PSD of the PPD, of independent superpositions of
PPDs and of the membrane potential driven by them,
is known analytically as described in Appendix D.
Figure 6(a) shows the PSD of the superpositions of
excitatory and inhibitory PPDs which are used as input
to the simulated LIF neurons. For d̄ = 0 the PSD is flat,
as it should be for a Poisson process. As d̄ increases,
peaks emerge in the power spectrum at frequencies
which are roughly multiples of 1/d. These correspond
to the oscillations in the auto-correlation function,
shown in Fig. 2(d)–(f), because the auto-covariance
Eq. (38) is the Fourier transform of the PSD according
to the Wiener–Khintchine theorem. The colors of the
six curves correspond to different component process
rates 1/µ as in Fig. 5(c) and (d). Note that the maximum

value of the PSD is identical for all rates at a fixed d̄.
Figure 6(b) displays the PSD of the membrane poten-
tial of neurons in population 1 (which do not spike).
The membrane acts as a low-pass filter with a gain
decreasing as ∼ 1/ f 2 beyond cutoff frequency 2π/τ .
Accordingly, the peaks in the input PSD (Fig. 6(a)) are
diminished more and more for larger frequencies.

The output spike trains of the LIF neurons in pop-
ulation 2, however, show a different characteristic, as
can be seen from their PSD shown in Fig. 6(c). For
the Poisson input case d̄ = 0 the PSD of the spike
trains is low for small frequencies and gradually ap-
proaches the stationary firing rate, which is a sign of
the effective refractoriness of these neurons. As the
oscillatory components in the input signal increase for
rising d̄, the peaks in the input PSD (Fig. 6(a)) become
visible in the neuronal spike trains (Fig. 6(c)), indicating
that the oscillatory input modulates the outgoing firing
rate. However, although the input amplitude at peak
frequency is invariant, the output amplitude at peak
frequency depends on the peak frequency, showing
maximum transmission at about 15 Hz in the red curve
in subplot d̄ = 0.6 and in the yellow curve in subplot
d̄ = 0.8. This effect might be at least partly explained
by linear response theory of the LIF neuron (Ledoux
and Brunel 2011), which has shown that in the regime
of sufficiently low fluctuations of the membrane, reso-
nances of the transmission gain appear near the firing
rate of the neuron.

The resonance of the LIF neuron, however, coin-
cides with an increase of the mean firing rate (Fig. 5(c))
when the position of the peak of the input PSD comes
close to the resonance frequency. An increase in mean
rate generally cannot be a linear effect of oscillatory
input—there the mean input is unchanged by the oscil-
latory components in the input. Still a qualitative expla-
nation can be given here by considering the PPD with a
time-dependent hazard function (sine-modulated) and
dead-time dn as a simple model for the LIF neuron. In
Deger et al. (2010) this model system has been analyzed
for general periodic inputs, revealing multiplicative
couplings of input frequency components in the output
rate. In particular Fig. 3(c) of Deger et al. (2010) shows
that the mean rate (β0) of a PPD with sine-modulated
hazard has a local maximum at frequencies of about
0.41/dn and 0.88/dn. For a more quantitative argument,
in the following we need to relate the statistics of the
modulated PPD to the spiking of the LIF neurons.

Results of the analysis of the inter-spike-intervals of
the LIF neurons for several d̄ (colors) as a function
of input component rate 1/µ are shown in Fig. 6(d).
As the input component rate 1/µ increases, the mean
neuronal ISI µn grows. This general trend is due to
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the continuous decrease in relative variance of the
membrane potential (Eq. (29)) with increasing 1/µ.
In the range between 8 and 20 Hz, shown in the in-
set, there are local minima of µn for larger d̄, which
corresponds to the rise of ν = 1/µn with growing d̄ in
Fig. 5(c). The second subplot shows the coefficient of
variation of the neurons. For the larger values of d̄, 0.6
and 0.8, it changes non-monotonically. In the region
1/µ < 10 s−1, the CVn decreases, presumably because
the variance of the input is continuously reduced. The
mean integration time of the LIF neuron here is µn ≈
0.1 s, so on average it integrates less than one spike
of each component input process. However, for 1/µ >

10 s−1, the LIF neuron integration period µn, which also
grows slowly, covers an increasing number of spikes of
each input PPD on average, which seems to gradually
increase the CVn.

Matching a PPD to the LIF neurons’ spike trains via
Eq. (6) yields the parameters λn and dn shown in the
bottom two subplots of Fig. 6(d). The matched value
of dn hence depends on d̄ and 1/µ. Local maxima of
the output spike rate are expected around frequencies
of 0.41/dn and 0.88/dn. Given the range of values of dn

which are matched to the LIF neurons, the resonances
of the mean rate are located in the frequency ranges
between 8.1 and 17.4 Hz and between 17.3 and 37.4 Hz,
respectively. The peaks of the input PSD (Fig. 6(a))
lie well within these frequency ranges. Hence the ex-
istence of resonances of the mean firing rate in Fig. 5(c)
can be explained by the resonance properties of the
non-stationary matched PPD. The same arguments ex-
tends to the resonance observed in the first harmonic
(Fig. 6(c)) and higher harmonics, which also show local
maxima of the transmission gain for certain frequencies
in the PPD model (Deger et al. 2010). Further studies,
which investigate the effects of component dead-time in
the input spike trains on the dynamics of LIF neurons
in more detail, are necessary to quantitatively explain
this phenomenon.

4 Discussion

We have demonstrated how a PPD can be associated to
a stationary neuronal spike train by matching of mean
and variance of the ISI (Tuckwell 1988). The PPD is
the simplest possible extension of the Poisson process
to capture effective refractoriness. Due to the simplicity
of the PPD, we uncovered the functional dependence of
the Fano factor (FF) on the length of the counting win-
dow. Our analytical result for the PPD is in good agree-
ment both with the gamma process and the neuronal
data, which suggests that effective refractoriness is the

key issue in understanding this functional dependence.
In contrast to the Poisson process which has FF = 1,
the FF of the PPD, and of independent superpositions
of PPDs, is generally smaller than unity. As a model
for a population of independently spiking neurons the
independent superposition of PPDs is therefore more
accurate in terms of count variability.

Considering the ISI density of a superposition of
PPDs, we find that it converges rapidly to the expo-
nential distribution. Correspondingly, the coefficient of
variation (CV) of the ISI converges to 1 for large num-
bers of superimposed processes. This, however, does
not mean that the process becomes a Poisson process.
The superposition of PPDs still differs from the Poisson
process with respect to its FF, its auto-correlation func-
tion and its serial interval correlations. For large count-
ing windows, the deviations of the FF can be explained
by the serial interval correlations through Eq. (21). But
already for small counting windows the FF of PPDs
differs from the Poisson process, see Eq. (14). More-
over, the analytical dependence of the CV on the num-
ber of superimposed processes agrees with the neuronal
spike data and the gamma realizations, which hints
again at effective refractoriness being the key issue to
understand second order statistics of the process.

Finally, the total serial interval correlation between
subsequent ISIs in superpositions of neural spike trains
are accurately predicted by our analytic result. Se-
rial correlations in neuronal spike trains have been
reported frequently (see Farkhooi et al. 2009 for an
overview). As has been shown by Muller et al. (2007)
and Schwalger et al. (2010) they can result from spike-
frequency adaptation. However, in superimposed spike
trains the total serial correlation is due to another
effect, which can be illustrated by the example of the
superposition of two spike trains: Given the spike train
of one neuron, superimposed spikes of another neuron
will divide an ISI of the first neuron in two parts that
add up to a fixed length. Because one of the parts
is generally longer than the other, the two intervals
have negative serial correlation. For a superposition of
n spike trains, a similar argument holds. The detailed
mechanisms of how serial correlations and effective
refractoriness in the input spike train affect the mem-
brane potential dynamics of LIF neurons remain to
be investigated. Our simulation results show that the
variance and the shape of the equilibrium distribution
of membrane potentials and the stationary firing rate
of integrate-and-fire neurons with balanced excitatory
and inhibitory input are significantly affected.

We have applied the PPD as a model for the spike
trains of three somatosensory cortical neurons with a
coefficient of variation CV < 1. This means that the
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modeled spike trains are more regular than Poisson
processes. Only neurons with this property can be mod-
eled with a stationary PPD. In contrast, neurons in the
prefrontal cortex of monkeys typically show CV > 1
(Shinomoto et al. 2003), which can not be achieved
with the stationary PPD according to Eq. (5). It might
be possible, though, to capture such increased irregu-
larity by a PPD with a time-dependent rate parame-
ter, see for example (Turcott et al. 1994; Deger et al.
2010). Regularly spiking neurons with a CV < 1, for
which the presented results apply, are the majority in
motor and premotor regions (Shinomoto et al. 2003)
and somatosensory regions (Nawrot et al. 2007) of the
cortex.

Another vividly debated topic is the ability of spik-
ing neurons to transmit correlations in the input spike
trains to output spikes (De la Rocha et al. 2007;
Rosenbaum and Josic 2011; Renart et al. 2010). It has
been shown that correlation transmission depends on
the auto-correlation functions of the input spike trains
(Tetzlaff et al. 2008). Generally, the auto-correlation
function of a superposition of independent spike trains
is the sum of the auto-correlation functions of the single
processes. The latter are, as we demonstrated, closely
linked to the effective refractoriness of the neurons.

In models of recurrent networks, mean field theory
can be applied to theoretically estimate the spike rate
of leaky integrate-and-fire (LIF) neurons in a recurrent
neuronal network (Brunel 2000). Thereby the spike
rate of each neuron is assumed to be the same and is
obtained as the self-consistent solution of the input to
output rate mapping of a single neuron. Obviously, in
the analytical derivation of the firing rate of a neuron
given its input rates, several assumptions are made
(Brunel 2000). One of them is that the spike trains of
the neurons in the network have Poisson statistics. In
fact, it has been shown that the choice of a particular
point process as an input to a neuron has impact on
the dynamics of the membrane potential of neurons
(Câteau and Reyes 2006). In Section 3.5 we have shown
that the firing rate of LIF neurons is sensitive to the
refractoriness in the single spike trains and we explain
the observed deviation compared to Poisson input.
Theoretical estimates of the self-consistent mean-field
firing rate of recurrent neuronal networks could thus
be improved by taking into account the refractoriness
of the single neurons.

Refractoriness in the input processes of LIF neurons
can also be interpreted as a “colored-noise” problem.
As can be seen in Fig. 6(a), the PSD of the input
to the neurons is not flat (“white”) as for driving
Poisson processes. For small dead-time in the input
(d̄ = 0.2) the PSD is reduced for small frequencies

and gradually increases towards 1/d, which is a similar
PSD as that of a high-pass filtered white noise (also
called “green” noise) . The complementary case of
LIF neurons driven by low-pass filtered “white” noise
(“red” noise) has been dealt with previously (Brunel
and Sergi 1998; Lindner 2004; Moreno-Bote and Parga
2010). An extended Fokker–Planck equation to treat
the case of “green” noise effectively as “white minus
red” noise has been suggested in Câteau and Reyes
(2006). For larger input dead-time (d̄ ≥ 0.4), however,
the oscillatory character of the input signal becomes
more influential and a description based on “green”
noise alone does not suffice, since the PSD of “green”
noise does not contain the pronounced peaks in the
input PSD of PPD superpositions (Fig. 6(a)).

We found that the spike trains of LIF neurons driven
by superpositions of PPDs show resonances to certain
frequency components of the input (Fig. 6(c)). When
the input power at the resonance frequency becomes
large (for large d̄ = d/µ) the mean firing rate of the
neurons also increases (Fig. 5(c)). This effect cannot
be explained by linear response theory of the LIF
neuron. Qualitatively, we explained the change of the
mean firing rate by regarding the LIF neuron itself
effectively as a PPD with a time-dependent hazard
function, which transmits signals non-linearly (Deger
et al. 2010). However, this effect might be visible here
only since the PSD of the input contains high power at
a narrow frequency band. If the dead-time of the input
component processes is heterogeneous, the input PSD
is less concentrated and might not provoke this non-
linear transmission effect. For neurons in cortical net-
works, it is more reasonable to assume heterogeneous
as opposed to homogeneous input processes, suggesting
that the change of the mean firing rate for large d̄ that
we see here is a hallmark of a rather extreme scenario.

To summarize, the PPD is a reasonable approximate
model for the spike train statistics of stationary sin-
gle neurons in vivo, and a very good model for the
pooled spike trains of homogeneous neuronal popu-
lations. This is in contrast to the established Poisson
process (without dead-time), which does not account
for the correct auto-correlation, count variability, ISI
variability, and serial interval correlations. We showed
that these properties indeed affect the dynamics of the
membrane potential of LIF neurons. For simulations
in discrete time, homogeneous superpositions of PPDs
and of gamma processes can be efficiently generated
by the methods we present in Algorithms 1 and 2. The
PPD and gamma superposition generators have been
implemented in the Neural Simulation Tool (NEST,
Gewaltig and Diesmann 2007), which was used to ob-
tain the simulation results presented in this work.
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Algorithm 1 Generating superpositions of PPDs
The PPD, alternatively, can be defined by its hazard function h(t, τ ) = λ(t)θ(τ − d), where θ(x) = {1 for
x ≥ 0, 0 else}, λ(t) is called the input rate, and d is the dead-time. This hazard function depends on the time t
and the age τ of the process, where τ = t − t0, and t0 is the time of the last spike. Note that in this framework
the input rate λ(t) is not necessarily constant. Once the process generates an event, τ ← 0. The state of a single
PPD is given by its age τ ∈ R+. The state of a superposition of n PPDs can be represented as a population of
ages τ ∈ Rn

+. In this representation, we have to take care of each component process separately: if component i
produces an event, τi ← 0, and otherwise its age grows with unit slope as time progresses. The required memory
and the amount of random numbers obviously both grow linear in the number n of superimposed processes, making
this representation computationally expensive for large numbers of superimposed processes. In the following we
therefore present an algorithm whose computational and memory costs are independent of n.

On a time grid with steps -t, the state of the superposition is given as a vector of integer ages a ∈ Nn
0 , such

that τ = a · -t. We restrict ourselves to dead-times that are integer multiples of -t and define D = d/-t. The
hazard of a component process does not depend on the exact age, but merely on the decision whether the age
τi is above d or below. This enables us to represent the state of the superposition by the occupation vector n
instead of a as

n(a) = (n0, n1, ..., nD),

where ni ∈ N0 is the occupation number of the age i-t,

ni =
{

#{ j ∈ {1, . . . , n} : a j = i} for i < D

#{ j ∈ {1, . . . , n} : a j ≥ D for i = D .

This representation has the advantage that all components with ai ≥ D are collected in nD, which is reasonable
since these components have identical hazard rate h(t, τi) = λ(t), independent of their respective age.

Then the number of events emitted in one time step is a binomially distributed random number Q ∼
B(nD, λ(t)-t), because each of the nD processes older than the dead-time may produce an event with probability
λ(t)-t. The evolution of the occupation numbers in a time step is then

Q drawn from B(nD, λ(t)-t)

nD ← nD + nD−1 − Q

ni+1 ← ni , i = D − 2 . . . 0

n0 ← Q ,

since all components’ ages increase by one time step, and Q of them produce an event and enter n0. The explicit
update in lines 3 and 4 of the scheme above can efficiently be implemented by a ring buffer with a cyclic pointer to
the element n0.

To avoid stochastic transients at the start of a simulation, the generator should be initialized to its equilibrium
state. In the case of constant λ(t) = λ, this equilibrium can be determined easily (for periodic input, see Deger et al.
2010). In the stationary state, the equilibrium occupation follows a certain distribution. As an approximation, we
replace this distribution by its mean value here. This approximation becomes exact in the limit of large numbers
of processes and is sufficient to suppress stochastic transients also for small numbers of components. The average
occupation derives from the rate ν0, which must equal the rate at which processes enter their refractory period. So
picking any process at random, the probability that the chosen process is in the dead-time is ν0d, while conversely it
is active with probability 1 − ν0d. So the number of components that enter the dead-time in one time step is given
as n0 = ν0-t. Because of stationarity, ni = n0 for i ∈ [0, D − 1]. It follows that initially nD = n − n0 D.

Typically, n0 will not be an integer. In this case we propose the following approximate procedure: Set ni ← )n0*
for i ∈ [0, D − 1]. The remainder of processes assigned to the inactive states is then nrem = (n0 − )n0*)D. Assign
z = )nrem* components to a random selection of states, n ji ← n ji + 1, ji ∈ [0, D − 1], i = 1, . . . , z. The remaining
processes go to the active state, nD ← n − )n0*D − )nrem*.

An implementation of this generator only needs to store D + 1 integer occupation numbers to represent an
arbitrary number of component processes. It is particularly useful to simulate superpositions of large numbers of
independent component PPDs.
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Algorithm 2 Generating superpositions of gamma processes
We define the gamma process as in Appendix A by its inter-spike interval (ISI) density fp,b (t) as given in Eq. (36).
With integer shape parameter p ∈ N, an ISI of the gamma process is identical to the sum of p independent
exponentially distributed intervals with rate b . This can be seen by observing that

fp,b (t) = (ub ∗ ub ∗ · · · ∗ ub )︸ ︷︷ ︸
p terms

(t) = u∗p
b (t), (35)

where ub (t) = b exp(−bt) is an exponential distribution and ∗ denotes the convolution.
Similar to the generator of a superposition of PPDs described in Algorithm 1, we make use of a representation

in terms of occupation numbers. If a component process makes a transition from one state in a chain of states to
the next with rate b , then the time between any two transitions is exponentially distributed. Traversing a whole
Markov chain of such states with the identical transition rate b from the previous to the next state thus takes a
gamma distributed time interval. To employ this idea for a generator of superpositions of gamma processes, we use
p states with occupation numbers ni, 1 ≤ i ≤ p. At each point in time, the configuration of occupation numbers n
defines the state of the superposition, whereby n = ∑p

i=1 ni is the constant, total number of component processes.
Between the state i and the state i + 1 a transition occurs with rate b . Furthermore, the transition from state p to
state 1 also occurs with rate b and turns the chain of states into a closed loop. This transition will be called a spike.
Now consider discretized time with time steps of -t, with b-t ≤ 1. Then the number of components that make the
transition from state i to state i + 1 or from state p to state 1, is a binomially distributed number Qi ∼ B(ni, b-t),
because each of the ni processes makes a transition independently with probability b-t. The evolution of the
occupation numbers in a time step is then

Qi drawn from B(ni, b-t)

ni+1 ← ni+1 − Qi+1 + Qi, i = 1 . . . p − 1

n1 ← n1 − Q1 + Qp .

The number of spikes that the generator emits in the time step is given by Qp. To initialize the generator to
its equilibrium state, all the component processes have to be uniformly distributed over the states 1, . . . , p. An
implementation of this generator needs to store the vector of integers n, and needs to draw p binomially distributed
random variables at each time step. For large numbers of component processes, this is far more efficient than
generating independent gamma processes and then superimposing them.
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Appendix A: Matching of the gamma process

The stationary gamma process is defined by its inter-
spike-interval (ISI) density

fp,b (t) = b p

)(p)
tp−1e−bt, (36)

with parameters p > 0 (shape) and b > 0 (1/b : scale).
The mean ISI is µ = p/b and the variance of the ISI is

σ 2 = p/b 2. Hence the gamma process can be matched to
the ISIs of a neuron by plugging in empirical estimates
µ̂ and σ̂ ,

{
p = µ̂2/σ̂ 2

b = µ̂/σ̂ 2
. (37)

The auto-correlation function of the gamma process
that is shown in Fig. 2(d)–(f) has been computed nu-
merically by truncating the series Eq. (8) after 25 terms,
with f given by Eq. (36).

Appendix B: ISI density of homogeneous
superpositions

Consider a component process at a random point in
time. Then the probability density of the waiting time
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x to the next spike is given by the forward recurrence
time (Cox 1962),

F(x)

µ
= 1

µ

∫ ∞

x
f (u) du,

F(x) =
∫ ∞

x
θ(u − d)λe−λ(u−d) du = − e−λ(x−d)

∣∣∞
max{x,d}

= θ(d − x) + 1
λ

f (x),

with f (t) as defined in Eq. (1). Here F(t) denotes the
survivor function. In the following we will also need

f ′(x) = −λ f (x) + δ(x − d)λe−λ(x−d)

∫ ∞

x
F(u)du =






∫ d
x 1du +

∫∞
d e−λ(u−d)du

= d − x + 1
λ

= µ − x for x < d
∫∞

x e−λ(u−d)du = λ−2 f (x) for x ≥ d

where we used µ as defined in Eq. (2). We obtain the
probability density function for the inter-spike-interval
of an n-fold superposition by the general formula
(Cox 1962)

g(x) = − d
dx

[

F(x)

{∫ ∞

x

F(u)

µ
du
}n−1

]

.

Plugging in what we computed above we find

g(x) =






− d
dx

[(
1 − x

µ

)n−1
]

x < d

− d
dx

[
µ−n+1λ−2n+1 f n(x)

]
x ≥ d

.

Hence the inter-spike-intervals generated by the super-
position of n Poisson processes with dead-time obey the
probability density function

g(x) =






n − 1
µ

(
1 − x

µ

)n−2

for x < d

1
µn−1

1
λn−2

ne−nλ(x−d) for x ≥ d

.

The mean inter-spike-interval (ISI) of the superposi-
tion is accordingly

E [X] =
∫ ∞

0
x g(x) dx

=
∫ d

0
x

n − 1
µ

(
1 − x

µ

)n−2

dx

+
∫ ∞

d
x

1
µn−1

1
λn−2

ne−nλ(x−d)dx

= µ

n
.

The variance of the ISI of the superposition is

Var [X] = −E2 [X] +
∫ ∞

0
x2g(x) dx

= −E2 [X] +
∫ d

0
x2 n − 1

µ

(
1 − x

µ

)n−2

dx

+
∫ ∞

d
x2 1

µn−1

1
λn−2

ne−nλ(x−d)dx

= µ2 (n − 1)

n2 (n + 1)
+

2µ (µ − d)
(

1 − d
µ

)n

n2 (1 + n)

= µ2

n2(n + 1)

(

n − 1 + 2
(

1 − d
µ

)n+1
)

.

Appendix C: Variance of the spike count

The auto-correlation function γ (t) of the PPD is given
by Eq. (8). Consequently (Holden 1976) its auto-
covariance is

cPPD(x) = 1
µ

γ (|x|) − 1
µ2

. (38)

The count X in a window of length l is the shot
noise X(t) = (S * h)(t), given the stationary spike train
S(t) and the rectangular kernel h(t) def= 1t∈[0,l] with 1Z =
{1 if Z , 0 else}. In the following we decorate mean-
subtracted random variables with a bar, x̄ def= x − E[x],
for all random variables x. The auto-covariance func-
tion of the shot noise X(t) is, analogous to computa-
tions in Nawrot et al. (2008) and Tetzlaff et al. (2008),

cX(t) =
∫ ∞

−∞
X̄(s)X̄(t − s)ds

=
∫ ∞

−∞

(∫ ∞

−∞
S̄(s − u)h(u) du

)

×
(∫ ∞

−∞
S̄(t − s − v)h(v) dv

)
ds

=
∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
S̄(s)S̄(t − s − v + u)ds

)

× h(u) h(v) du dv

=
∫ ∞

−∞

∫ ∞

−∞
cPPD(t − v + u)

× h(u) h(v) du dv ; x = v − u

=
∫ ∞

−∞

∫ ∞

−∞
cPPD(t − x) h(u) h(u + x) du dx

=
∫ ∞

−∞
H(x) cPPD(t − x) dx, (39)
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where in the third step we identified the auto-
covariance function of the PPD

∫∞
−∞ S̄(s)S̄(t + s − v +

u) ds = cPPD(t − v + u), and in the last step we intro-
duced the symbol H(x) for the correlation of the kernel
with itself. In case of the rectangular (counting) kernel
h(t) this evaluates to

H(x) =
∫ ∞

−∞
h(u) h(u + x) du = (l − |x|) 1|x|≤l .

So we obtain

cX(t) =
∫ l

−l
(l − |x|) cPPD(t − x) dx

cX(0) = 2
∫ l

0
(l − x) cPPD(x) dx,

where we used the convention
∫ t

0 δ(x)dx = 1
2 for t > 0

and the symmetry of the auto-covariance function (38).
We insert cPPD which yields

cX(0) = 2
∫ l

0
(l − x)

(
1
µ

∞∑

k=0

f ∗k(|x|) − 1
µ2

)

dx

= 2
µ

∫ l

0
(l − x)

∞∑

k=1

(
f ∗k(|x|

)
dx

+ 2
µ

∫ l

0
(l − x) δ(x) dx − 2

µ2

∫ l

0
(l − x) dx

= 2
µ

∞∑

k=1

∫ l

0
(l − x) f ∗k(x) dx

︸ ︷︷ ︸
def=χk

+ l
µ

− l2

µ2
.

We evaluate the χk using Eq. (9)

χk =
∫ l

0
dx

l − x
(k − 1)! (x − kd︸ ︷︷ ︸

=u

)k−1λke−λ(x−kd)θ(x − kd)

=
∫ l−kd

0−kd
du

l − u − kd
(k − 1)! uk−1λke−λuθ(u)

= θ(l − kd)

∫ l−kd

0
du

l − kd − u
(k − 1)! uk−1λke−λu

= θ(l − kd)

×
(

−
(

dk + k
λ

− l
)

+ (kd − l)

× )(k, λ(l − kd))

)(k)
+ )(k + 1, λ(l − kd))

λ )(k)

)

= θ(l − kd)ξk,

where we defined

ξk = −
(

dk + k
λ

− l
)

+ (kd − l) z(k, λ(l − kd))

+ k
λ

z(k + 1, λ(l − kd)). (40)

Here we used z(a, b)
def= )(a, b)/)(a) and )(a, b) =∫∞

b ta−1e−tdt, which is the incomplete gamma function.
Finally the count variance is

Var [X] = cX(0) = l
µ



1 − l
µ

+ 2
)l/d*∑

k=1

ξk



 . (41)

Appendix D: Variance of the membrane potential

We consider a shot noise U(t) = R(I * h)(t) with the
kernel h(t) = θ(t) 1

τ
e− t

τ (Eq. (26)), the membrane’s im-
pulse response, driven by the input process RI(t) =
τwS(t). Here S(t) is a superposition of n indepen-
dent and identically distributed PPDs Sk(t), S(t) =∑n

k=1 Sk(t). The auto-covariance function of Sk is given
as cPPD in Eq. (38). The auto-covariance function of the
superposition S then is

Cov
[
S(t), S(t + x)

]
=

n∑

k,l=1

Cov
[
Sk(t), Sl(t + x)

]

=
n∑

k=1

cPPD(x) = n cPPD(x),

where we used the mutual independence of the Sk in
the second step. This relation generally holds for in-
dependent superpositions of stationary point processes
with auto-covariance function cPPD.

As in Appendix C we obtain the variance of the
membrane potential U(t) from its auto-covariance
function. We write out Eq. (39) and find

cU (t) = n
w2τ

2

∫ ∞

−∞
e− |x|

τ cPPD(t − x)dx. (42)

where we used

H(x) =
∫ ∞

−∞
h(u) h(u + x) du = 1

2τ
e− |x|

τ .
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Using Eqs. (38) and (8) we can write

cU (t) = n
w2τ

2

∫ ∞

−∞
e− |x|

τ cPPD(t − x)dx

= n
w2τ

2

(
1
µ

∫ ∞

−∞
e− |t−x|

τ γ (|x|)dx− 1
µ2

∫ ∞

−∞
e− |x|

τ dx
)

= n
w2τ

2µ

(∫ ∞

−∞
e− |t−x|

τ

∞∑

k=0

f ∗k(|x|) dx− 2τ

µ

)

= n
w2τ

2µ

(

e− |t|
τ +

∞∑

k=1

∫ ∞

−∞
e− |t−x|

τ f ∗k(|x|) dx− 2τ

µ2

)

,

(43)

which, although we used the symbol cPPD above, holds
for superpositions of any renewal process with ISI
density f . We evaluate Eq. (42) at t = 0 given the ISI
density of the PPD (9) to obtain the variance

Var [U] = cU (0)

= n
w2τ

2µ

[

1 + 2
∞∑

k=1

∫ ∞

0
e− x

τ f ∗k(x) dx − 2τ

µ2

]

,

= n
w2τ

µ

(
1
2

+
∞∑

k=1

∫ ∞

0

λk

(k − 1)!

× yk−1e−(λ+ 1
τ
)y−k d

τ dy − τ

µ

)

= n
w2τ

µ



1
2

+
∞∑

k=1




(

λ e− d
τ

λ + 1
τ

)k
)(k)

(k − 1)!



− τ

µ





= n
w2τ

µ

[
1
2

+
(

e
d
τ

(
µ − d

τ
+ 1

)
− 1

)−1

− τ

µ

]

.

(44)

From Eq. (42) we may also compute the power
spectrum of the membrane potential. According to the
Wiener–Khintchine theorem it is given by the Fourier
transform c̃U (ω) of the auto-covariance function. So we
obtain

c̃U (ω) = n
w2τ

2
F(ω) c̃PPD(ω) (45)

with the Fourier transform of the membrane kernel

F(ω) =
∫ ∞

−∞
eiωte− |t|

τ dt

=
∫ ∞

0
e−iωte− t

τ dt +
∫ ∞

0
eiωte− t

τ dt

= 1
iω + τ−1

− 1
iω − τ−1

= 2τ

1 + τ 2ω2

and the power spectrum of the PPD c̃PPD(ω). It can be
shown (Gerstner and Kistler 2002) that

c̃PPD(ω) = 1

µ
(

1 + 2 λ
ω

sin(dω) + 2 λ2

ω2 (1 − cos(dω))
) ,

(46)

Thus the power spectrum of the membrane potential
Eq. (45) is

c̃U (ω) = nw2

µ
(
τ−2 + ω2

)

× 1

1 + 2 λ
ω

sin(dω) + 2 λ2

ω2 (1 − cos(dω))
. (47)

We have used this formula to compute the power spec-
trum displayed in Fig. 5(d), weighted by the contribu-
tion of excitation and inhibition and remaining Poisson
input analogous to Eq. (34).
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