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Abstract: Functional organization units of the cerebral cortex exist over a wide range of spatial scales,
from local circuits to entire cortical areas. In the last decades, scale-space representations of neuroimaging
data suited to probe the multi-scale nature of cortical functional organization have been introduced and
methodologically elaborated. For this purpose, responses are statistically detected over a range of spatial
scales using a family of Gaussian filters, with small filters being related to fine and large filters—to coarse
spatial scales. The goal of the present study was to investigate the degree of variability of fMRI-response
patterns over a broad range of observation scales. To this aim, the same fMRI data set obtained from 18
subjects during a visuomotor task was analyzed with a range of filters from 4- to 16-mm full width at
half-maximum (FWHM). We found substantial observation-scale-related variability. For example, using
filter widths of 6- to 8-mm FWHM, in the group-level results, significant responses in the right secondary
visual but not in the primary visual cortex were detected. However, when larger filters were used, the
responses in the right primary visual cortex reached significance. Often, responses in probabilistically
defined areas were significant when both small and large filters, but not intermediate filter widths were
applied. This suggests that brain responses can be organized in local clusters of multiple distinct activa-
tion foci. Our findings illustrate the potential of multi-scale fMRI analysis to reveal novel features in the spa-
tial organization of human brain responses.Hum Brain Mapp 33:1155–1171, 2012. VC 2011Wiley Periodicals, Inc.
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INTRODUCTION

Spatial patterns in images exist over a broad range of
scales. To account for this property, images can be embed-
ded into a family of derived images—the so-called scale-
space representation—with spatial resolution as a parame-
ter [Iijima, 1962; Koenderink, 1984; Witkin, 1983]. In image
processing and computer vision research, the best-studied
scale-space representation is the Gaussian scale-space
model derived through convolution of the original image
with a family of Gaussian filters [Florack et al., 1992;
Koenderink, 1984; Kuijper and Florack, 2003; Lindeberg,
1994]. The width of the Gaussian filter determines scale,
with narrow and broad filters being related to scales with
fine and coarse resolutions, respectively. Depending on the
scale, different spatial patterns of an image may be
enhanced. As illustrated in Figure 1, this is particularly
important for analysis of noisy images, as, according to
the matched filter theorem [Rosenfeld and Kak, 1982], a
signal embedded in (white) noise is optimally detectable
by smoothing with a filter whose size and shape match
those of the signal. Scale selection implies a suitable selec-
tion of observation scales so that the relevant patterns in
an image are represented [Lindeberg, 1999]. Appropriate
scale selection is therefore crucial for obtaining meaningful
and comprehensive image representations.

Functional images of the human brain obtained from
positron emission tomography (PET) or functional mag-
netic resonance imaging (fMRI) that are broadly used to
investigate human brain function also have the scale
dimension. This topic in functional brain imaging was
originally addressed in the work by [Poline and Mazoyer,
1994a,b]. However, scale-space searches in PET or fMRI
research are facing additional challenges, since the aim is
not just to represent functional data on multiple spatial
scales, as is often the objective in computer vision and
image processing, but also to detect brain responses in a
noisy background using statistical methods at multiple
spatial scales. To this end, Gaussian smoothing with filters
of different sizes are typically applied to functional data-
sets before statistical inference. However, due to the non-
linearity involved, statistical results derived from func-
tional data at a coarser scale are not a smoothed version of
the results obtained at finer scales. Therefore, statistical in-
ference must be repeated for each version of functional
data obtained by spatial filtering with filters of different
sizes. These additional statistical tests resulting from
search over scales must be accounted for in the control for
false positive error rates under multiple test conditions.
For this purpose, a number of methods for statistical scale-
space searches in neuroimaging data have been developed
and refined over the last decades [Worsley et al., 1996].

Poline and Mazoyer demonstrated a better sensitivity to
detect brain activation from PET imaging data using a
multi-filter approach considering multiple spatial scales as
compared to a single-filter approach [Crivello et al., 1995;
Poline and Mazoyer, 1994a,b]. Siegmund and Worsley

integrated scale-space searches with Gaussian random
field theory, giving appropriate rejection thresholds when
testing for a signal with unknown location and scale using
a spherical Gaussian kernel in a stationary Gaussian ran-
dom field [Siegmund and Worsley, 1995]. A unified P-
value for local maxima in 4D scale-space searches (three
spatial dimensions and one extra dimension for scale) was
presented [Worsley et al., 1996] and later extended to
higher dimensions and to v2 random fields [Worsley,
2001]. Scale-space searches were further generalized to
rotating filters with a better detection power for ellipsoi-
dally shaped brain responses [Shafie et al., 2003] and to
cortical surface-constrained analysis of fMRI data
[Andrade et al., 2001]. When examining each scale sepa-
rately, multiple clustered peaks may be blurred together
and detected as a single wide peak at a larger scale [Wors-
ley et al., 1996]. This issue has been addressed by analyz-
ing the deep structure of scale-space representations, i.e.,
of all scales simultaneously [Coulon et al., 1997; Lindeberg
et al., 1999; Rosbacke et al., 2001], yielding multi-scale hier-
archical representations. Such representations can make
the behavior of objects in the image through the scales
explicit by providing a comprehensive tree structure of
activated brain regions [Lindeberg et al., 1999]. Such a
structure may, for instance, show how a cluster of sharp
foci detected at a fine image resolution is merged into one
activated area at a coarser resolution [Coulon et al., 2000].

In spite of this theoretical and methodological progress,
scale-space searches are rarely used in current functional
brain imaging studies. Typically, functional imaging
results are obtained using only one single Gaussian
smoothing filter. According to a recent review of current
fMRI studies, applied filter widths vary from 2- to 12-mm
full width at half-maximum (FWHM) [Breckel, 2007]. In
particular for fMRI data, few studies have investigated the
effect of spatial smoothing filter width on statistical
response maps. Worsley [2001] investigated data from a
single subject over a broad range of scales and detected
visual stimulation-related fMRI responses at all scales.
In another single-subject study, higher Z-scores for fMRI
responses in cortical regions were found for narrow
(6-mm FWHM) as compared to broader (10- and 14-mm
FWHM) filters, while the opposite was found for subcorti-
cal responses [Friston et al., 1996]. Based on the results
from a small group of six subjects, another fMRI study
came to contrary conclusions, suggesting that narrow fil-
ters were more suitable for detecting subcortical and broad
filters—for cortical responses [White et al., 2001]. Other
studies have emphasized and clearly demonstrated the
unwanted over-smoothing effects on fMRI data in cases
where high spatial resolution was important for data inter-
pretation, both on a single-subject level [Fransson et al.,
2002; Geissler et al., 2005] and for group analysis of a
sample of eight subjects [Fransson et al., 2002]. Thus, for
single-subject fMRI, only limited data is available on the
degree of variability that may be encountered over a range
of spatial scales. Moreover, to our knowledge, there is no

r Ball et al. r

r 1156 r



such data for fMRI group analyses based on a larger sam-
ple of subjects.

Against this background, the major aim of the present
study was to systematically investigate the degree of vari-
ability of fMRI-response patterns over a broad range of ob-
servation scales, based on a larger sample of subjects than
in previous studies. To this aim, fMRI data from a visuo-
motor and an auditory task in a larger sample of subjects
than in the previous studies on filter size effects (18 sub-
jects, see above) were analyzed. The approach of the pres-
ent study was adopted from a recent study investigating
scale-space variability in voxel-based morphometry (VBM)
analyses of diffusion tensor MRI data [Jones et al., 2005].
In this latter study, 3-D Gaussian filter width was varied
from 0 to 16 mm, yielding results that supported com-
pletely different interpretations of the VBM data (the im-

portance of the scale space problem for VBM analysis has
been repeatedly emphasized also by [Ridgway et al., 2008;
Van Hecke et al., 2009]). Taking a similar approach as in
the study by Jones et al., we investigated the effect of ob-
servation scale on fMRI results, on both individual and
group levels.

In contrast to previous studies on the effects of filter
width on fMRI analyses, we based the assignment of
response peaks to cortical anatomy on a probabilistic atlas
system [Amunts et al., 1999, 2003; Choi et al., 2006; Eickh-
off et al., 2005; Geyer et al., 1996; Schenker et al., 2008].
Probabilistic anatomical assignment of response peaks to
cortical and subcortical structures is increasingly used in
current fMRI studies, as it has the advantage of providing
information about location and inter-individual variability
of brain areas in a standard reference space. This approach

Figure 1.
Spatial smoothing effects on a noisy image with structure at
different spatial scales. Three image components—(a) white
noise (b) five Gaussian-shaped signals of a small size (6-pixel
standard deviation), and (c) three Gaussian shaped signals with
larger size (24-pixel standard deviation)—were added to generate
the original image in (d). This image was then smoothed with a
broad and a narrow 2D Gaussian smoothing filter, with the filter
widths matching the large (c) and small (b) signal, respectively, to
generate the two smoothed versions of the image (e) and (f). All
images are scaled to their individual maximum (corresponding to

the yellow color). In line with the matched filter theorem [Rose-
nfeld and Kak, 1982] stating that a signal in white noise is optimally
detected by smoothing with a filter whose size and shape match
those of the signal, the large signal is well recovered using the
matching, broad filter, corresponding to a coarse observation scale,
and the small signal using the matching, narrow filter, correspond-
ing to a finer observation scale. As illustrated, very different spatial
structures may be revealed from the same image if it is repre-
sented at different spatial scales. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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allows for assigning activation sites to histologically
defined brain regions in a probabilistic fashion, even if
these brain regions are not discernible in structural brain
images. To quantify scale effects, we traced the t-values of
response peaks in probabilistically defined anatomical
brain regions over a broad range of scales [Andrade et al.,
2001]. Our findings demonstrate an observation-scale-
related variability of response peak assignment to proba-
bilistically defined cortical areas with a substantial impact
on the functional interpretation. Thus, our study empha-
sizes the importance of multi-scale method application for
future fMRI research.

MATERIALS AND METHODS

Subjects

Eighteen healthy subjects participated in the experiment.
None of the participants had a history of psychiatric or
neurological diseases. According to the Edinburgh hand-
edness questionnaire [Oldfield, 1971], all subjects were
right-handed (mean ¼ 84.95%, range ¼ 75–100%). The
study was approved by the Ethics Committee of the Uni-
versity of Freiburg, Germany. Before participation, the sub-
jects signed a written informed consent and they received
a modest monetary compensation for participation.

Experimental Set-Up and Procedure

During the fMRI experiment, 40 short pieces of piano
music, each of a 24-s duration, were presented to the sub-
jects in a random order, using in-house-developed presen-
tation software, via magnetic resonance compatible
headphones (NordicNeuroLab, Bergen, Norway). After the
presentation, the subjects rated each piece on a bipolar
assessment scale along the dimensions of valence (ranging
from "3 ¼ very unpleasant to 3 ¼ very pleasant) and
arousal (ranging from "3 ¼ very calming to 3 ¼ very
arousing) using an MRI-compatible computer mouse,
which allowed the subjects to move a white box to the left
or the right along the visually presented scale by pressing
the corresponding mouse buttons with the right hand. The
selected level was marked by the white box, and the
remaining six levels were indicated by black boxes. For
each of both valence and arousal ratings, a time window
of 6 s was available. The position of the white box at the
end of the 6-s period was taken as the subjects’ final rat-
ing. All subjects were familiarized with this procedure
before the fMRI experiment.

In the present study, we analyzed, separately, the
responses in the visuomotor system related to the rating
task and the responses in the auditory system related to
the music stimuli. Further details and the results related to
music processing can be found in [Ball et al., 2007;
Mutschler, 2007]. These particular tasks were selected
since validated a priori assumptions about the involved

brain areas exist: for example, for visual stimulation, acti-
vation in the visual cortex can be expected, hand move-
ment can be expected to activate the sensorimotor cortex
and the processing of music can be expected to activate
the auditory cortex. The expected activation areas cover
the major portions of the cerebral cortex, i.e., the occipital,
parietal, temporal, and frontal lobe, both on the medial
wall and on the lateral convexity. This wide-spread activa-
tion pattern was useful for the present study to assure that
the found results are not specific to just one region of the
human cerebral cortex.

Data Acquisition

Image acquisition started with a localizer scan and a ref-
erence scan for distortion correction followed by acquisi-
tion of the anatomical T1 whole-brain data set (7-min
duration): subsequently, the fMRI experiment was con-
ducted as described above with a total scanning time of
43 min.

Functional and structural images were acquired on a 3-
Tesla scanner (Siemens Magnetom Trio, Erlangen, Ger-
many): structural T1-weighted images were obtained using
a MPRAGE sequence (resolution: 1 mm isotropic, matrix:
256 # 256 # 160, TR: 2,200 ms, TI: 1,000 ms, 12$ flip
angle). The functional images were obtained using a
multi-slice gradient echo planar imaging method (EPI).
Each volume consisted of 44 sagittal slices (3-mm isotropic
resolution, matrix: 64 # 64, FOV 192 mm # 192 mm, TR
3,000 ms, TE 30 ms, 90$ flip angle). The sagittal slice orien-
tation resulted in significantly lower acoustic noise gener-
ated by the imaging gradients. In addition, this orientation
in combination with the slice thickness of 3-mm reduced
signal loss in the amygdala region, thus allowing for a
more reliable detection of activation [see also Ball et al.,
2007]. An accurate registration of the functional and struc-
tural images was achieved by online correction of the EPI
data for geometric distortions [Zaitsev et al., 2004]. The
distortion field was derived from the local point spread
function (PSF) in each voxel as determined in a 1-min ref-
erence scan. Prior to distortion correction, the data were
motion-corrected by image realignment with the reference
scan using a retrospective 3D algorithm based on the
methods as described in [Thesen et al., 2000].

Pre-Processing and Statistical fMRI Analysis

As mentioned above, motion and distortion correction
were performed online during the reconstruction process.
All functional images were normalized into the standard
space of the Montreal Neurological Institute (MNI) tem-
plate. Subsequently, 13 differently smoothed functional
datasets were generated using 13 3D Gaussian kernels of
different sizes, with kernel FWHM equally spaced in
1-mm steps from 4 to 16 mm. Similar to the study by Jones
et al. [2005], linear sampling along the scale dimension
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was used, because we were interested in the amount of
variability that occurs at all scales in the range typically
used in current fMRI studies [Jones et al., 2005, also see
Introduction and Discussion sections].

For subsequent statistical analysis of the functional
data, the timing information of the piano melodies and
that of the evaluation periods for valence and arousal af-
ter each melody presentation were modeled with a box-
car function convolved with a canonical hemodynamic
response function, resulting in three regressors, one—for
the piano melodies and two—for valence and arousal
ratings, respectively. A high-pass filter with a cut-off
of 1/128 Hz was applied before parameter estimation.
We performed preprocessing and data analysis using
SPM5 (Wellcome Department of Cognitive Neurology,
London, UK).

On the single-subject level, fMRI responses related to
the visuomotor task of the evaluation periods were calcu-
lated for all subjects using a one-sample t test. Group-level
random effect statistics using a one-sample t test were
then computed to reveal significant responses over the
total of 18 subjects. To assure that our results on observa-
tion-scale-related variability were valid across a wide
range of levels of significance, we computed statistical
parametric maps at three significance levels: P < 0.05,
FWE-corrected; P < 0.0001 and P < 0.05, both uncorrected.
The results at this latter threshold were included to test
whether findings of scales without significant responses
were possibly due to just-below-threshold responses at the
more conservative thresholds of P < 0.05 (FWE-corrected)
and P < 0.0001 (uncorrected).

For anatomical assignment, we used probabilistic ana-
tomical maps [Toga et al., 2006]. Due to the visuomotor
nature of the task, we determined the following anatomi-
cal regions of interest (ROIs) using the maximum probabil-
ity map (MPM) algorithm proposed by [Eickhoff et al.,
2005]: Areas 17 and 18 of the visual cortex, Areas 4a and
4p of the primary motor cortex, Area 6, i.e., the premotor
cortex, Areas 1, 2, 3a, and 3b of the primary somatosen-
sory cortex, and Areas 44 and 45 constituting Broca’s area.
The premotor ROI was further subdivided into the supple-
mentary motor area (SMA), the dorsal, and the ventral
premotor cortex (PMd and PMv). Because there are as of
yet no probabilistic maps for these subregions of BA 6
available, we defined the SMA as the part of Area 6 where
the MNI x-coordinate was <10 mm, as the SMA in
humans has been described as extending onto the lateral
cerebral convexity as far as %10 mm [Marsden et al.,
1996]. The remaining lateral part of Area 6 was subdivided
by a plane at z ¼ 50 mm, i.e., PMv was accordingly
defined by z = 50 mm and PMd by z > 50 mm. The results
of our study, however, did not critically depend on the
exact position of this anatomical boundary, and very simi-
lar results were obtained when it was shifted within a
range of &5 mm. As anatomical ROIs for the auditory
task, we defined the bilateral auditory cortex and BA44
and BA45.

As a next step of analysis, we traced the t values of
response peaks over scales. To this end, we determined,
for each scale, the maximal t value of all significant
response peaks in each of the anatomical ROIs (see Sup-
porting Information Fig. 1). This approach is particularly
useful for the purposes of the present study because it
reflects the information that is often reported in current
fMRI studies (i.e., response peaks and their anatomical
assignment). Therefore, changes in peak assignment may
critically alter the functional interpretation of an fMRI
study (see Discussion for examples). In addition, we also
determined the number of significant peaks for each ROI
and each smoothing step to identify ROIs where multiple
sharp foci converged to a single wide peak at larger
smoothing levels.

We performed an additional analysis using an alterna-
tive criterion to define anatomical ROIs as previously used
in the fMRI literature. This analysis aimed to ensure that
our results did not only hold for one specific ROI defini-
tion, but were, in fact, more general. The alternative ROI
definition was based on the core regions of the probabilis-
tically defined brain areas, requiring an anatomical assign-
ment probability in which a voxel had to belong to a
given area in at least 90% of the brains underlying the
probabilistic anatomical maps. A similar approach was
previously used by [Ball et al., 2007]. In addition to the
threshold of 90%, we also tested other thresholds of 60, 70,
and 80%, yielding very similar results. Thus, only the
results for the 90% threshold are reported. For significant
peaks in the anatomical core regions, the same analyses as
described above for the ROIs defined using the MPM algo-
rithm were carried out.

To test for the generality of our findings, in addition to
the analysis of the visuomotor data sets as described
above, we performed the same multi-filter analysis for
fMRI responses during the processing of the auditory
stimuli presented to the subjects [see Mutschler et al., 2010
for further details].

RESULTS

In the following, the results from the visuomotor data-
sets are described. Both individual and group results
obtained with different filter widths showed, overall, sig-
nificant responses in the brain regions with known visual
and sensorimotor functions. Results from the analysis of
auditory-related fMRI responses (see Supporting Informa-
tion Fig. 2) are mentioned when they provide additional
or different information. Examples of single-subject data
for different smoothing levels are shown in Figures 2–4.
These examples illustrate the effect of different smoothing
filter widths on fMRI-response maps: for instance, multiple
small activation foci can be seen in the left (i.e., contralat-
eral to the side of hand movement) sensorimotor cortex
including both primary motor and somatosensory cortices
at smaller (<8-mm FWHM) filter widths. At larger filter
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Figure 2.
Dependence of voxelwise t values on filter width. In the center
panel, visuomotor fMRI responses in an individual subject (S10)
obtained with 7-mm FWHM spatial smoothing (P < 10"5 uncor-
rected) are shown for an axial slice at the level of the primary
motor hand area. For selected voxel positions, the t values of the
statistical parametric maps are shown as a function of spatial filter
width (FWHM) in the surrounding panels. In each panel, the peak
of the t-trace and the corresponding filter widths are indicated in
red. Where the selected voxel position was a local maximum of
the t-map, the t-trace is plotted in green, else, in black. Filter

widths resulting in maximal t values at the selected voxel positions
ranged from 3 mm (unfiltered data) in the left posterior parietal
cortex (PPC) to 10 mm spatial smoothing in the left primary
somatosensory cortex. Furthermore, some voxel positions such
as in the right premotor cortex (PM) and the left PPC remained a
local maximum across a wide range of resolutions. In other cases,
local maxima remained stationary at a given voxel position only
over a few filter levels, see the example from the left M1. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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widths, however, this cluster of peaks gradually merged
into a single wide peak (see Fig. 3).

To further characterize the effect of the different filter
widths, we traced t values and the number of significant
response peaks in anatomical ROIs of the visuomotor cort-
ical network over scales (c.f. also Supporting Information
Fig. 1). Results for ROIs both in the right and left hemi-
spheres of subject S7 are shown in Figures 4a–d and for
subject S3—in Figures 4e–h. As these examples show, the
maximal t values for different anatomical ROIs were
observed at different filter widths. For example, in S7, the
maximal t value in BA 18 was found at a 4-mm filter

width, at 8-mm filter width—in the left BA 4a, and at 12-
mm filter width—in the right BA 18. In the latter case, sig-
nificant responses were found at narrow filter widths up
to 7 mm, resulting in multiple response peaks within the
anatomical ROI, and, again, at broad filter widths of 12
mm and above—with only a single peak in the ROI but
not at intermediate filter widths.

These different behaviors of the t values in anatomical
ROIs over scales on a single-subject level are summarized
for all subjects in Figure 5. We distinguished three groups
of responses, based on the shape of the curve of t values
as a function of scale. Although different groups could

Figure 3.
Example of single-subject visuomotor-task-related fMRI
responses. Responses obtained in an individual subject (S10)
with spatial smoothing filters ranging from 4- to 16-mm FWHM,
P < 10"5. Results on the top left are from analysis of the
unsmoothed functional data at the original 3-mm isotropic reso-
lution. All results are shown for the same axial slice at the level
of the primary motor hand area. Multiple small responses in the
left (i.e., contralateral to the side of hand movement) sensori-
motor cortex, including the primary motor and the somatosen-
sory cortex, can be seen when using smaller (<8-mm FWHM)

filter widths, as exemplarily marked by a blue circle for the
results obtained with 5-mm FWHM filtering (top center). When
applying larger filter widths, this cluster of peaks gradually
merged and became a single wide peak. Additional responses
at this axial level were found bilaterally in the region of the
intrapariatal sulcus (green circles), the supplementary motor
area (SMA, black circle), and the right dorsal premotor cortex
(magenta circle). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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Figure 4.
Single-subject result examples. (a) Effects of filter width on
response peak t-values in regions of interest in visual and sensori-
motor cortex, results for the left hemisphere of subject S7 (P <
0.0001). T-values are color-coded. If no significant peaks were
detected for a given ROI and filter width, the corresponding bin is
shown in gray. Compare Supporting Information Figure 1 for the
procedure used to determine t-values for ROIs/scales. (b) Number
of significant peaks (‘‘N.o.P.’’) for each ROI and filter width. We
determined the number of significant peaks for each ROI and each
smoothing step to identify ROIs where multiple sharp foci found
with small filters converged to a single wide peak at larger smooth-

ing levels. The corresponding results for the right hemisphere of
S7 are shown in (c) and (d), for S3 in (e)–(h). In different ROIs, the
maximal t-value was observed at different filter widths, for
instance, at 4-mm smoothing for the left BA 18 in S7, at 8 mm for
the left BA 4a in S7, and at 12 mm for the right BA 18 in S7. In the
latter case, significant responses were found for narrow filters up
to 7 mm, resulting in multiple response peaks within the anatomi-
cal ROI, and again for broad filters of 12 mm and above, with only
a single peak in the area, but not for intermediate filter widths.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]



have been defined, these three groups were sufficient and
well suited to illustrate the variability of the behavior of t
values over scales. The three groups are: (1) t value traces
with maximal values in the unsmoothed data or for nar-
row filters (4- and 5-mm FWHM) shown in Figure 5a for
results at a threshold of P < 10"5 and in Figure 5d, for

FWE-corrected results (P < 0.05); (2) t-value traces with
maximal values at intermediate filter widths (6- to 8-mm
FWHM); and (3) t-traces with significant values both for
narrow (defined as before) and broad (9-mm and above
FWHM) filters. Generally, it is assumed that FWE
correction requires filtering with at least two times the

Figure 5.
Single-subject result summary. For each anatomical ROI in each
subject, the dependence of response peak t values on scale was
determined as illustrated in Supporting Information Figure 1,
resulting in a ‘‘t-trace’’ for each ROI in each subject. These t-
traces were sorted into three groups as described below and a
mean and standard error was calculated over all t-traces. (a)
shows the resulting mean t-trace for the first group of t-traces
showing the maximal t-values either for the unsmoothed data or
for narrow filters (4- and 5-mm FWHM) and no second maxi-
mum for broad filters. A total of 156 traces, corresponding to
77.6% of all traces detected at this threshold, fell into this group.
The anatomical ROIs where these t-traces were found are indi-
cated by the pie chart (color legend at the bottom of the

figure). In (b) the average trace is shown for all ROIs where
t-values where maximal at intermediate filter widths (6- to
8-mm FWHM, this range is indicated by the light gray box).
About 25 (12.4%) of all traces were of this type, which occurred
in most of the investigated anatomical ROIs. (c) shows traces
which had significant t-values for narrow filters as in (a) and also
for broad filters (9-mm FWHM and above). This type of traces
occurred 20 times (10.0%) of all detected traces in various brain
regions. The minimal significance level for response peaks in (a)–
(c) was P < 10"5, uncorrected (u.c.). In (d)–(f) the correspond-
ing results are shown for P < 0.05, FWE-corrected. [Color fig-
ure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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functional voxel size [Friston et al., 1996], therefore the
FWE-corrected results in (Fig. 5d) have to be interpreted
with caution and are only included for completeness.
Interestingly, in none of the 18 individual datasets did we
observe an instance where, for a given anatomical ROI,
significant peaks were only found for broad filters
(=9 mm), without any significant peak for narrow filters.
Examples from each of the three groups were found in a
wide range of cortical areas (Fig. 5, small insets in a–f). In
the FWE-corrected results obtained from analyzing the
auditory datasets, however, for the left BA45 and the right
BA44, significant responses were only found for filter
width =10 mm FWHM (Supporting Information Fig. 3).

Group results for all 18 subjects at different statistical
thresholds and filter widths are shown in Figures 6–8. As in
the single-subject analyses, clear responses in the expected
visual and sensorimotor brain regions are evident, includ-
ing visual, motor, and somatosensory cortices, as well as
premotor and cerebellar regions. The same tracing proce-
dure of t values in anatomical ROIs over filter widths as for
the individual data (Figs. 4 and 5) was applied for the group
response maps. Results for the ROIs in the left and right
hemispheres are shown in Figures 7 and 8.

In Figures 7 and 8, the results obtained using the often
used 8-mm filter width are outlined in black. In the FWE-
corrected results for the right- and left-hemisphere ROIs,
responses were bilaterally detected in the visual areas BA

17 and BA 18 and also—in the SMA of both hemispheres.
In addition, responses in the left hemisphere were
detected in the primary motor, somatosensory, and premo-
tor areas. All these latter responses were, however, only
detected using 7-mm smoothing. Using an 8-mm filter
width, neither primary motor nor premotor responses
were detected in the FWE-corrected data. Similarly, the
right primary visual cortex responses were not detected
at 8-mm smoothing (Fig. 8a), but they were detected with
both narrower and broader filters (Fig. 8a,b). For narrow
filters, multiple peaks were identified in the right BA 17
(Fig. 8b,d). Interestingly, the right BA 17 responses could
not be recovered by lowering the statistical threshold to
P < 0.05, uncorrected (Fig. 8e). A similar behavior was
found in the left BA 44 (see Fig. 7), where no significant
response was detected using a 7-mm filter, even at the
lowest investigated threshold (P < 0.05, Fig. 7e), but mul-
tiple peaks were found for narrower filters, and a highly
significant response was evident when using broader
filters.

Each of the three different types of t value traces over
scales identified in the individual data sets (Figs. 4 and 5)
was also present in the group data: (1) t-value traces with
maximal values in the unsmoothed data or for narrow fil-
ters (4- and 5-mm FWHM) such as the left area 4p or the
right BA 18; (2) t value traces with maximal values at in-
termediate filter widths (6- to 8-mm FWHM) such as in

Figure 6.
Group results (18 subjects) of the visuomotor task at different statistical thresholds (indicated on the
left, u.c. ¼ uncorrected) and filter widths (FWHM, indicated at the bottom of the figure) rendered on a
standard brain surface of the left hemisphere. Each map of the t-values was individually scaled to its max-
imum. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the left SMA; and (3) t-traces with significant values both
for narrow and broad (9-mm and above FWHM) filters,
such as in the right BA 17. In addition, the left BA 17

showed increasing t values over the whole investigated
range of filter widths, i.e., a type of t-value dependence on
filter width that was not observed in the individual data.

Figure 7.
Group results for the left hemisphere. (a) Effects of filter width
on response-peak t-values and the number of significant peaks in
the group results for probabilistically defined anatomical ROIs in
the left hemisphere. Results obtained using an 8-mm filter, i.e.,
the filter width most commonly used in group statistics in cur-
rent fMRI studies [Breckel, 2007], are marked by a black box.
All conventions as in Figure 4. (a,b): Results at a significance
threshold of P < 0.05, FWE-corrected (note that it is generally

assumed that FWE correction requires filtering with at least
two times the functional voxel size [Friston et al., 1996], thus
the FWE-corrected results for the unsmoothed data and filter
widths of 4- and 5-mm FWHM are only shown for complete-
ness). (c) and (d): Results at a significance threshold of P <
10"5. (e) and (f): Results at a significance threshold of P < 0.05.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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Figure 8.
Group results for the right hemisphere. (a) Effects of filter
width on response-peak t-values and the number of significant
peaks in the group results for probabilistically defined anatomical
ROIs in the right hemisphere. All conventions as in Figure 7.
(a,b): Results at a significance threshold of P < 0.05, FWE-cor-

rected. (c) and (d): Results at a significance threshold of P <
10"5. (e) and (f): Results at a significance threshold of P < 0.05.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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Finally, we performed an additional analysis using an al-
ternative criterion for defining anatomical ROIs. The analy-
ses were performed to assure that our results did not only
hold for one specific ROI definition, but were more general.
In our alternative definition, the ROI was restricted to the
core regions of the probabilistically defined anatomical area
with an anatomical assignment probability of at least 90%
(see Methods). We found that the observation-scale-related
variability was not abolished when using the anatomical
core regions as ROIs for the analysis (see Fig. 9).

DISCUSSION

In the present study, we investigated scale-related vari-
ability of the assignment of fMRI-response peaks in a
visuomotor task to cortical areas defined using a probabil-
istic cytoarchitectonically-based atlas system, both for indi-
vidual subjects and at a group level. According to the
scale-space framework [Iijima, 1962; Koenderink, 1984;
Witkin, 1983], observation scale is determined by a spatial
smoothing filter applied to imaging data. Our results
clearly show that observation-scale-related variability can
have a substantial impact on fMRI brain mapping results:

depending on the observation scale, significant peaks in
different constellations of cortical areas can be found. This
is true for both single-subject and group analyses, for
different levels of significance (FWE-corrected, as well as
uncorrected results using both high and low statistical
thresholds), for different definitions of anatomical regions
of interest (ROIs), and for both small (e.g., filters below 8-
mm FWHM, Figs. 7 and 8) and large filters.

Previous studies have compared single-filter and multi-
filter analyses, in particular for PET imaging data, in terms
of their sensitivity to detect activated brain regions [e.g.,
Poline and Mazoyer, 1994b]. In contrast, the aim of the
present study was to document the amount of variability
that ensues from single-filter analysis with different filter
widths. This approach was adopted from the study by
[Jones et al., 2005], who investigated observation-scale-
related variability for VBM analyses of diffusion tensor
data. Because of the different aims, there are two major
methodological differences between the present study or
the previous study by [Jones et al., 2005] and studies using
scale search for brain responses [Crivello et al., 1995]. First,
in scale search for brain responses using multi-filter analy-
sis, multiple statistical tests are performed for different
spatial scales, these multiple tests need to be taken into
account to control the false-positive rate. To this aim,
scale-space searches have been integrated with Gaussian
random field theory [Shafie et al., 2003; Siegmund and
Worsley, 1995; Worsley, 2001; Worsley et al., 1996, 1997].
In contrast, in the present study, we performed correction
for multiple tests only for the spatial but not for the scale
domain because we aimed not to actually perform a scale
search, but rather investigate the differences between typi-
cal single-scale fMRI analyses when performed at different
spatial scales, i.e., using different filter widths. Second, for
scale-space searches, logarithmic sampling of the scale
dimension is optimal [Siegmund and Worsley, 1995]. In
the present study, we used linearly-spaced filter widths in
order to cover the range of filters commonly used in cur-
rent fMRI studies.

Generally, there are several reasons motivating spatial
smoothing of fMRI data: to improve the signal-to-noise ra-
tio (SNR); to fulfill Gaussian field theory requirements
(i.e., to ensure that the statistical parametric maps are rea-
sonable lattice representations of underlying continuous
Gaussian fields); and to increase the overlap of individual
activations in group-level statistics [Lowe and Sorenson,
1997; Worsley et al., 1996]. The filter widths typically
applied in fMRI studies range from 2- to 12-mm FWHM
[Breckel, 2007]. However, there are examples of fMRI stud-
ies using filters in the 12- to 15-mm range [Birbaumer
et al., 2005; Schlosser et al., 1998; Tyler et al., 2003; Tyler
et al., 2004]. We therefore included large filter widths up
to 16-mm FWHM in the present study. The most com-
monly used filter width in a sample of fMRI studies was
8-mm FWHM (used in 34.4% of studies), followed by
6-mm FWHM (used in 23.0% of studies), while 7 mm
smoothing was rarely used, i.e., only in 4.9% of studies

Figure 9.
Peak assignment to anatomical core regions of the primary and
secondary visual cortex (FWE-corrected, P < 0.05). In this anal-
ysis, we tested for observation-scale-related variability using an
alternative criterion for definition of anatomical ROIs with
assignment probability of at least 90%. In the inset, these core
areas are shown on a coronal anatomical slice for the example
of the primary visual (V1, green) and secondary visual (V2, red)
cortex. The border areas of V1 and V2 with lower anatomical
probabilities are, together, shown in black. The bar plot shows t
values of all significant response peaks in V1 (green), V2 (red),
and in the border region of V1 and V2 (black) in a stacked man-
ner. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

r Variability of fMRI-Response Patterns r

r 1167 r



[Breckel, 2007]. In the same study, filter widths were
investigated in terms of their ratio to the voxel size of the
functional data, to which the filter was applied. About
45.9% of studies used a filter width that equaled twice the
voxel size of the functional data, possibly following [Fris-
ton et al., 1996] statement that the least degree of smooth-
ing large enough to ensure the validity of the statistical
inference in family-wise error correction is twice the voxel
size of the functional images.

On the basis of the results of the present study, we sug-
gest that, in addition to the above-mentioned statistical con-
siderations, scale selection for fMRI studies should take
into account the possibility of substantial observation-scale-
related variability of response-peak assignment to anatomi-
cal regions of interest. Thus, one anatomical region of inter-
est in the present study was the primary motor cortex
consisting of two subareas, Areas 4a and 4p [Geyer et al.,
1996]. Previous fMRI studies assigning response peaks to
the probabilistically defined Areas 4a and 4p used filter
widths of 4 mm [Wilson et al., 2004], 6 mm [Sharma et al.,
2008], 7 mm # 7 mm # 10 mm [Loubinoux et al., 2007], and
‘‘8–10 mm’’ [Binkofski et al., 2002]. Within this range of fil-
ter widths, we found different results with respect to the
question in which of these two areas responses were detect-
able: at a statistical threshold of P < 10"5, significant peaks
in the Area 4p were present for a 4-mm filter width and in
the unsmoothed data, while significant peaks in the Area
4a were present for 5- to 7-mm filter widths (Fig. 7c). Thus,
in this example, contradictory conclusions about the
involvement of Areas 4a and 4p might have been drawn,
depending on the filter width used. A similar effect was
also observed in the group results where, for small filter
widths, responses were found in both the right primary
and secondary visual areas (BA 17 and BA 18) and in the
right SMA. Using the commonly applied 8-mm filter width,
however, no significant BA 17 responses were detected,
even at a low statistical threshold. BA 17 responses reap-
peared for large filter widths (Fig. 8a). A third, similar
example was found in the left BA 44, where no responses
were detectable at 7-mm smoothing, even at a low thresh-
old, but there were highly significant response peaks in this
area both with smaller and larger filter widths (see Fig. 7).
These examples illustrate that the response pattern
observed in an fMRI study when using peak assignment
to probabilistically-defined anatomical areas may substan-
tially change as a function of filter width. Such changes in
the observed response pattern may lead to profoundly dif-
ferent functional interpretations, which points to the neces-
sity for multi-filter analyses. In the study on VBM analysis,
[Jones et al., 2005] came to a similar conclusion. They varied
filter widths from 0 to 16 mm and observed that the change
of this parameter strongly influenced the results. Thus, for
small-to-medium filter widths, significant patient-control
differences occurred in the cerebral cortex, whereas for
large filter widths they were found in the cerebellum.

Interestingly, in the visuomotor data sets analyzed in
this study, we did not observe any instance where, for a

given anatomical ROI, significant peaks were only found
for broad filters (in the FWE-corrected visuomotor data-
set), without any significant peak for narrow filters. Anal-
ysis of the auditory datasets in the present study
revealed cases where, for FWE-corrected data, significant
responses could be only revealed with filter sizes =10
mm FWHM (Supporting Information Fig. 3). Therefore,
there appears to be no general guarantee that restricting
analyses to smaller filters will reveal all responses present
in fMRI data.

The mechanisms underlying such variability may be
understood through a deep-structure analysis, as in the
work by Lindeberg et al. based on gray-level blobs param-
eterizing the extent of activated brain regions at each scale
level [Lindeberg et al., 1999]. In this concept, the generic
‘‘blob’’ events in scale space are (a) annihilation, i.e., acti-
vation vanishes as scale is increased, (b) merging of multi-
ple blobs into a single blob, (c) splitting of a single blob
into multiple blobs, and (d) creation of a new blob, not
present at smaller scales [Lindeberg et al., 1999]. Such
scale-space events may also explain the scale-related vari-
ability observed in the present study. For instance, the
aforementioned scale-related variability effects in Areas
4a/4p might be explained by annihilation and creation
effects in the Area 4p and 4a, respectively. Alternatively,
shifts in peak location may have contributed to the
observed variability of the results. Deep-structure analyses,
as by [Lindeberg et al., 1999], are a way to further investi-
gate these different scenarios and, hence, would be an im-
portant subject for future research.

A notable aspect of the present results are the apparent
discrepancies between the individual and group results,
e.g., in the case of BA17 (Fig. 4 vs. Figs. 7 and 8). Along-
side with the effects arising from noise spatial structure,
the size and shape of fMRI responses can be expected to
be the dominant factor that determines the effects of filter
size on the t-values of fMRI responses in the individual
results. Inter-individual anatomical variability is an addi-
tional factor that influences group results and refers to the
size and shape of responses as well as to their exact loca-
tion. A larger inter-individual variability of response loca-
tions would require larger filter sizes to achieve spatial
overlap of the individual responses. Thus, inter-individual
variability may explain the divergent results on the group
level, as compared to the individual level observed in this
study.

The results of the present study were obtained by
assigning response peaks to probabilistically defined ana-
tomical brain areas. A similar variability is likely to occur
with other atlas systems—this would be a topic for further
research. Another important further step would be to
investigate observation-scale-related variability in studies
that use not peak assignments but average responses from
anatomical ROIs [e.g., Ball et al., 2007]. Furthermore, it
might also be of interest to investigate to what extent the
findings on scale effects in the present study generalize to
other tasks and to differences between experimental
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conditions. Scale effects in the present study were found
across a wide range of different cortical areas. We antici-
pate that similar effects will be also observed in other task
conditions. In respect to differential contrast, it is possible
that if responses in one condition were spatially more
localized than in the other, the outcome of the differential
contrast might critically depend on the observation scale.
In an extreme case, one condition might show increased
responses compared to another condition at one scale, and
the other way round at another scale. Similarly, in studies
comparing patient samples to healthy controls, the out-
come might be scale-dependent if the spatial extent of
brain responses is influenced by pathology. A prominent
example where the size of cortical representations is
modulated by pathological processes and therapeutic
interventions is the effect of brain lesions and that of reha-
bilitation training on motor representations [e.g., Eisner-
Janowicz et al., 2008; Traversa et al., 1997].

Scale-space searches in functional brain imaging data
may also allow to infer information about the extent
and shape of brain responses [Poline and Mazoyer,
1994b; Shafie et al., 2003; Worsley, 2001; Worsley et al.,
1996], as well as about the spatial structure of brain
response maps obtained with the help of deep structure
analysis [Lindeberg et al., 1999]. In the present study,
both in individual and group results, we found exam-
ples where responses in probabilistically defined areas
were significant when both small and large filters, but
not intermediate filter widths were applied (Fig. 5c,f).
This finding might be explained by the presence of local
clusters of distinct cortical responses. In this case,
responses are well-detectable using either small filters
that match individual small foci within a cluster, or
large filters covering the entire cluster. At some interme-
diate scales, however, the size of the filter would match
neither the fine activations nor the result of their
merges. Such an effect might lead to wrong results—or
absence of results—with single-scale studies. Similarly,
visual stimulation-related fMRI responses have been pre-
viously detected over a broad range of scales by Wors-
ley et al. This was interpreted as a presence of a cluster
with sharp foci embedded in a ‘‘penumbra’’ of lesser
activation [Worsley, 2001]. Alternatively, analyses with
small filter widths might be biased toward signals from
draining veins [Nencka and Rowe, 2007; Turner, 2002],
as narrow filters of only few-mm FWHMs could be
expected to match the similar diameter of draining veins
better, as compared to broad filters. It is therefore
unclear whether our results are due to a spatial organi-
zation principle of brain responses or, alternatively, they
are influenced by vascular effects. We anticipate that
further research into this direction might particularly
profit from restricting scale-space searches to the cortical
surface as proposed by [Andrade et al., 2001] using
cortically constrained 2D filters to avoid partial volume
effects with the adjacent white matter or draining veins.
Such analyses might eventually reveal novel spatial or-

ganization principles of neuronal activity in the human
cerebral cortex.

Practical Consequences

By demonstrating substantial observation-scale-related
variability of fMRI response maps, our findings strongly
emphasize the importance of multi-scale methods as sug-
gested and elaborated in a series of previous studies
[Coulon et al., 2000; Lindeberg et al., 1999; Poline and
Mazoyer, 1994a,b; Worsley, 2001; Worsley et al., 1996,
1997]. Alongside with previous work on scale-space anal-
yses, our study may encourage the implementation of
methods for scale-space searches and of reliable multiple
comparison methods for scale-space analyses in existing
fMRI software packages. Such a valuable addition would
facilitate widespread application of these methods by the
fMRI community. Owing to theoretical groundwork laid
during the last decades, such an implementation is likely
to face no substantial obstacles other than the time and
effort required.

Our findings indicate that the range of useful filter
widths to be considered for scale selection in fMRI brain
mapping appears to be broader than previously assumed.
In many cases, large filter widths resulted in maximal t
values within anatomical ROIs in the present study. Our
results indicate that it is generally useful to check whether
results obtained with a single filter size also hold with
other filter sizes. In practice, the range of useful filter sizes
may be limited by the spatial scale of the anatomical target
structures of a study—such as to small filters for investiga-
tion of small subcortical nuclei. For analysis of cortical
responses, it might be especially useful to combine scale-
space approaches with cortically constrained analyses/fil-
tering [Andrade et al., 2001; Chung et al., 2005; Operto
et al., 2008]. 3D filters merge gray and white matter
voxels—a particularly important problem using larger 3D
filters. Therefore, cortically constrained filtering can be
expected to be practically useful to gain the full advantage
of scale-space searches for exploring the spatial structure
of activity in the cerebral cortex.
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