Warning: The NCBI web site requires JavaScript to function. more...
Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany.
Alternating epochs of activity and silence are a characteristic feature of neocortical networks during certain sleep cycles and deep states of anesthesia. The mechanism and functional role of these slow oscillations (<1 Hz) have not yet been fully characterized. Experimental and theoretical studies show that slow-wave oscillations can be generated autonomously by neocortical tissue but become more regular through a thalamo-cortical feedback loop. Evidence for a functional role of slow-wave activity comes from EEG recordings in humans during sleep, which show that activity travels as stereotypical waves over the entire brain, thought to play a role in memory consolidation. We used an animal model to investigate activity wave propagation on a smaller scale, namely within the rat somatosensory cortex. Signals from multiple extracellular microelectrodes in combination with one intracellular recording in the anesthetized animal in vivo were utilized to monitor the spreading of activity. We found that activity propagation in most animals showed a clear preferred direction, suggesting that it often originated from a similar location in the cortex. In addition, the breakdown of active states followed a similar pattern with slightly weaker direction preference but a clear correlation to the direction of activity spreading, supporting the notion of a wave-like phenomenon similar to that observed after strong sensory stimulation in sensory areas. Taken together, our findings support the idea that activity waves during slow-wave sleep do not occur spontaneously at random locations within the network, as was suggested previously, but follow preferred synaptic pathways on a small spatial scale.
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on