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Abstract The cortex exhibits an intricate vertical and
horizontal architecture, the latter often featuring spa-
tially clustered projection patterns, so-called patches.
Many network studies of cortical dynamics ignore such
spatial structures and assume purely random wiring.
Here, we focus on non-random network structures pro-
vided by long-range horizontal (patchy) connections
that remain inside the gray matter. We investigate how
the spatial arrangement of patchy projections influ-
ences global network topology and predict its impact
on the activity dynamics of the network. Since neu-
roanatomical data on horizontal projections is rather
sparse, we suggest and compare four candidate scenar-
ios of how patchy connections may be established. To
identify a set of characteristic network properties that
enables us to pin down the differences between the
resulting network models, we employ the framework of
stochastic graph theory. We find that patchy projections
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provide an exceptionally efficient way of wiring, as the
resulting networks tend to exhibit small-world prop-
erties with significantly reduced wiring costs. Further-
more, the eigenvalue spectra, as well as the structure
of common in- and output of the networks suggest that
different spatial connectivity patterns support distinct
types of activity propagation.
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1 Introduction

The prevailing model for studying cortical network
dynamics is based on randomly connected neurons
(Brunel 2000; Kumar et al. 2008b; Kriener et al. 2008).
More and more studies (Mehring et al. 2003; Kumar
et al. 2008a; Roudi and Treves 2008; Kriener et al.
2009) take spatial network features into account, but
are largely constrained to locally coupled neurons
within the range of a cortical column (for an excep-
tion see Johansson and Lansner 2007). In reality
however, the cortical network exhibits a distinctive
three-dimensional structure: in the vertical direction,
perpendicular to the surface of cortex, it is com-
posed of several layers with layer-specific connectivity
(Thomson and Bannister 2003; Binzegger et al. 2004);
while in the horizontal direction, parallel to the sur-
face, a spatially extended system of connections exists,
incorporating several interconnected columns. The dis-
tance between connected neurons varies from a few
micrometers to centimeters (Schüz and Braitenberg
2002; Lewis et al. 2002).
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In this study, we focus on the two-dimensional
(2D) horizontal structure of the cortex. We consider
specific models for networks with distance depen-
dent connectivity, composed of local and additional
long-range connections. In several species and cortical
areas, the distant synapses are established in ‘patches’
(Gilbert and Wiesel 1983; Kisvarday and Eysel 1992;
Binzegger et al. 2007), i.e. individual axon collaterals
project to several spatially clustered neurons, as illus-
trated in Fig. 1(b). Likewise, the combined projection
pattern of groups of adjacent neurons is often confined
to a limited number of discrete spots in space (Amir
et al. 1993; Lewis et al. 2002; Levitt and Lund 2002). The
details of this peculiar spatial arrangement, together
with its specificity for certain species or cortical regions,
are still a matter of debate.

The aim of this study is to improve the architecture
of cortical network models, based on realistic con-
nectivity patterns adapted from neuroanatomical data.
Therefore, we consider networks with both local cou-
plings and long-range links. We analyze five possibili-
ties for the spatial arrangement of distant synapses: four
different realizations of patchy projections and one net-
work model with homogeneously distributed synapses.
Each of these models reflects specific structural features
which are either derived from neuroanatomical findings
or are ad hoc modeling assumptions. We compare these

networks to each other, as well as to standard network
topologies like random or small-world graphs.

Then, on the basis of their structural differences,
we aim to derive possible functional consequences. For
instance, we seek for indications of different network
dynamics or a preferred method of signal propagation,
depending on the connectivity pattern. The methods we
apply to statistically analyze and compare the various
network models are adapted from stochastic graph the-
ory (Albert and Barabási 2002; Newman 2003; Strogatz
2001). To characterize the topology of a network, one
can calculate characteristic network properties, such as
the average shortest path length, the cluster coefficient,
or the eigenvalues of the coupling matrix. In addition,
we determine the amount of common in- and output
for pairs of nodes. This is an essential property as cor-
relations in network activity are strongly determined
by the sizes of the common input pool (Kriener et al.
2008).

Recently, several studies indicated the importance
of spatial structural features. For instance, consid-
ering spatially embedded neurons leads to distance-
dependent conduction delays. Roxin et al. (2005)
demonstrated that varying conduction delays signif-
icantly affects the dynamical states of regular ring
graphs. We arrive at a similar conclusion for biologi-
cally inspired 2D networks (Voges and Perrinet 2009).
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Fig. 1 Schematic illustration of the distance dependent projec-
tion types of a cortical pyramidal cell (PC): local connections
are shown in red, horizontal long-range projections that remain
within the gray matter (GM) in blue. (a) Schematic represent-
ing a side view including the white matter (WM) projections
in black. (b) Emulated top view representing an extracellular

injection of an anterograde tracer into the GM of a flattened
cortex, with spatially embedded PCs (black dots) and patchy
axonal arborizations. The gray area in the middle represents the
stained halo surrounding the injection site, all other gray areas
represent patchy projection sites. The red and blue lines indicate
the projections of one exemplary PC
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Previously, we have shown that the details of the
spatial embedding indeed influence the characteristic
network properties (Voges et al. 2007). Likewise, in
Voges et al. (unpublished manuscript), we investigate
the consequences of the number of long-range ver-
sus local connections for several graph-theoretic de-
scriptors. Both Roudi and Treves (2004, 2008) and
Koroutchev and Korutcheva (2006) demonstrated im-
portant advantages of including features of real cortical
networks such as local connectivity for the retrieval of
states in associative memory. Moreover, Johansson and
Lansner (2007) present and discuss a large columnar
network model of cortex that includes remote patchy
projections between columns.

More often, long-range (patchy) connections are dis-
cussed in relation to wiring costs of biological networks,
i.e. the total length of axonal fiber necessary to establish
any particular network. Since space and energy are
limited resources inside the skull (Attwell and Laughlin
2001), wiring optimization is essential to ensure both
fast and efficient signal propagation (Chklovskii 2000,
2004; Buzsaki et al. 2004; DeLosRios and Petermann
2007). Optimal wiring rules provide a high connectivity
but use little cable length. This is most likely one func-
tion of long-range patchy connections. Furthermore,
several studies on the visual system suggest a relation to
the orientation selectivity of cortical neurons (Bosking
et al. 1997; Gilbert and Wiesel 1989; Buzas et al. 2006;
Chisum and Fitzpatrick 2004). Combined with the pin-
wheel pattern in primary visual cortex (Bonhoeffer and
Grinvald 1991, 1993), this relation in turn implies strong
constraints on the spatial arrangement of the patchy
projections.

In this study, we ask whether patchy connections
are an important feature which significantly affects one
or more of the characteristic network properties. If
so, they should be included in future models of the
cortex. However, there is still a lack of data in terms of
how exactly these patchy projections should be imple-
mented. Thus, the community relies on reasonable as-
sumptions, at best derived from the little data available.
We suggest five possibilities for spatial arrangements
of long-range projections (four of which make use of
patches), identify their characteristics and investigate
the effects of distinct projection patterns. In terms
of possible functional consequences, we discuss their
efficiency with respect to wiring costs and speculate
about their corresponding network dynamics and fa-
vored types of activity propagation. The general goal
is to develop more realistic but nonetheless tractable
cortical network models, and to collect evidence for the
most appropriate ones. Thus, we intend to help to im-
prove future studies on network dynamics by not only

excluding some structural features, but also suggesting
network architectures that more adequately represents
cortical wiring.

In the next two sections, we describe the network
models to be investigated: in Section 2, we give a
qualitative description with a particular focus on the
neuroanatomical data from which they are derived,
while in Section 3, these models are characterized more
quantitatively. In Section 4, we explain the graph the-
oretical tools we employ to analyze the five network
models. We then present the results of calculating the
networks’ characteristic properties. Finally, on the basis
of these results, we discuss and compare in Section 5 the
effects of different spatial arrangements of long-range
connections. We describe which models we expect to
be optimal in terms of cortical requirements and their
relevance with respect to neuroanatomical findings.

2 Models derived from neuroanatomical data

This section describes the network models to be an-
alyzed, as well as their neuroanatomical motivation.
We refer to two types of neuroanatomical experiments
where a tracer injection is taken up by the neural tissue
revealing its complex connectivity patterns. An intra-
cellular tracer injection results in a 2D or 3D recon-
struction of a single nerve cell. Such studies show the
patchy structure of single axon collaterals in pyramidal
neurons (Gilbert and Wiesel 1983; Ojima et al. 1991;
Kisvarday and Eysel 1992; Binzegger et al. 2007). More
often, extracellular bulk injections are employed (Amir
et al. 1993; Lund et al. 1993; Pucak et al. 1996; Schüz
et al. 2005). They reveal that groups of neighboring cells
often project to a number of common spatial clusters, as
indicated in Fig. 1(b). An anterograde (or retrograde)
tracer is taken up by thousands of neurons located
near the injection site. Then, the tracer is transported
from the cell bodies along the axons (or dendrites)
to its terminals. Anterograde stainings indicate where
the neurons project to, while stainings resulting from a
retrograde tracer injection show where they get their
input from.

The neuroanatomical findings in such publications
lead us to consider the following scenario: we study
a 2D square sheet (8 mm side length) of pyramidal
cells located within one cortical area, representing a
flat projection of the cortical surface (Fig. 1(b)). Each
neuron targets both neurons situated within its local
neighborhood and remotely located neurons as illus-
trated in Fig. 1(a). The local connectivity has a range of
0.5 mm (red in Fig. 1), and the intra-areal long-range
connections (blue in Fig. 1) reach up to 4 mm. We
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assume at least 50 % local couplings for each pyramidal
cell (Schüz et al. 2005). Furthermore, in case of patchy
projections, each cell has 3 patches of 0.5 mm diame-
ter (Kisvarday and Eysel 1992; Binzegger et al. 2007;
Ojima et al. 1991). For a detailed explanation of these
assumptions see Voges et al. (unpublished manuscript).

Concerning the spatial arrangement of the long-
range projections, the picture is less clear. For instance,
both Buzas et al. (2006) and Amir et al. (1993) suggest
a preferred long-range projection length or a preferred
patch size which would be specific for one cortical
area of a certain species. A particularly interesting but
still unresolved issue concerns the number of common
projection targets of different neurons. Inspired by
neuroanatomical data, we develop five distinct possi-
bilities for the spatial arrangement of long-range pro-
jections. Some of them are focused on single neuron
properties, while others pertain to extracellular tracer
injections. They differ according to their degree of ran-
domness and with respect to the probability of common
projection targets. Figure 2 shows the corresponding
projection schemes, each of them characterizing one
particular connectivity pattern.

No patches (NP): In this ‘basic’ model we assume
a spatially homogeneous distribution of the distant
synaptic targets of each pyramidal cell (PC). It provides
the baseline to compare with in order to pin down
the effect of spatially clustered connectivity patterns.
Moreover, at a first glance, this model represents the
findings of van Hooser et al. (2006), who claim the
absence of patchy connections in the primary visual
cortex of mammals without orientation maps (see also
Random patches below and Section 5).

Random patches (RP): Here, we include spatially
clustered projection targets. The patch positions are
randomly chosen, independently of the spatial position
of the source node, and independent of each other. This
is the simplest assumption if no further information

about the relation between the neurons and their patch
positions is available. For this model there is only a
small probability that two neurons project onto the
same distant target. In terms of neuroanatomical data,
it corresponds to Johnson et al. (2000) who state that
the PC projections in the piriform cortex of the rat show
very little overlap. Later on, we will discuss why the
results of van Hooser et al. (2006) are probably better
represented by this RP than by the NP model.

Overlapping patches (OP): This rather deterministic
model is based on a systematic relationship between
all patch positions. It assumes a partial overlap of the
termination fields of neighboring neurons. In actual
fact, this is a rather unrealistic assumption. Still, the
combined projection pattern of a cigar-shaped group
of adjacent neurons is similar to the elongated stripes
in the monkey prefrontal cortex (Lewis et al. 2002;
Melchitzky et al. 2001).

Shared patches (SP): Instead of focussing on single
neuron projections, we now consider the collectivity of
all synaptic targets of groups of neurons. This model
is inspired by neuroanatomical findings dealing with
extracellular tracer injections. All neurons in a spatially
confined region (indicated by the boxes in Fig. 2) es-
tablish a common patchy projection pattern, while each
single neuron projects into a subset of all patches. Such
models imply an increased probability that adjacent
neurons project onto the same distant target as, for
example, suggested by Ojima and Takayanagi (2004),
Kisvarday and Eysel (1992).

Partially overlapping patches (PP): This model is also
based on a common patchy projection pattern for neu-
rons situated in a spatially confined region. Compared
to the SP model it provides an additional probability
for common synaptic targets of neurons located at a
larger distance from each other, i.e. situated in different

No patches (NP) Random patches (RP) Overlapping patches (OP) Shared patches (SP) Partially overlapping patches (PP)

Fig. 2 Schematic figures representing five different possibili-
ties of the spatial arrangement of long-range projections: no
patches (NP), random patch positions (RP), overlapping patches
of neighboring neurons (OP), shared patches (SP) where all

nodes in a box project into three out of six possible patches, and
partially overlapping patches (PP) where only three out of six
patch positions change from box to box
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boxes (see, e.g., Kisvarday and Eysel 1992; Ojima and
Takayanagi 2004).

The following section provides a more detailed,
quantitative explanation.

3 Quantitative description of the models

We consider network models that consist of N = 3600
nodes, representing neurons with directed synaptic con-
nections. Thus, our cortical network models are con-
stituted by directed graphs G, which are specified by
non-symmetric adjacency matrices A(G) = (aij). We
set aij = 1 if a link from PC i to j exists, otherwise
aij = 0. Multiple synapses for a pair of neurons are not
allowed in our models. The synaptic connections are
established according to probabilistic rules common to
all neurons. As a consequence, the same distribution of
incoming (in-degree P(kin)) and outgoing links (out-
degree P(kout)) holds for all nodes. In any specific
network realization, however, each node has random
in- and out-degrees. Likewise, all other network prop-
erties assume random values if computed from indi-
vidual networks. To obtain characteristic mean values,
we generated 20 independent realizations for each

network model, and calculated the corresponding
averages.

In particular, we consider 2D spatially embedded
networks. Each neuron is situated in a quadratic do-
main of extent R = 8 mm wrapped around to a torus
to avoid boundary effects, see Fig. 3(a). Therefore, the
maximum radius of a non-overlapping circular neigh-
borhood is rmax = 4 mm. The positions of all nodes are
drawn independently and identically from a uniform
probability distribution. We distinguish between two
separate types of connections (Fig. 3): the local cou-
plings, where each node is connected to all nodes within
a distance of r ≤ rloc = 0.5 mm with uniform probability
ploc (red in Fig. 3), and long-range connections, which
are synapses established between nodes at distances
rloc < r < rmax (blue in Fig. 3).

Throughout all networks studied here, we consider
a constant global connectivity c = k̄/N = 0.0123 which
leads to a mean in-degree (and out-degree) of k̄ ≈ 44.1.
This global connectivity is composed of separate local
and long-range terms c = cloc + clr, where

cloc = plocπr2
loc/R2 (1)

Assuming that all synapses are locally established
this equation yields c = 0.0123 for ploc = 1. The ratio
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Fig. 3 Schematic model of spatially embedded neurons with sep-
arate local (red) and long-range (blue) connectivity, surface view
of a 2D sheet of cortex. Projections shown for one exemplary
neuron, represented as the black dot in the center. (a) Homoge-
neous distal projections, synapses are represented by open blue

circles. (b) Clustered long-range connectivity, filled cyan disks
represent patches. Their size is characterized by the patch radius
rp. Spatial positions relative to the projecting cell are given by a
radial distance dp and an angle �
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between the number of local versus the number of
long-range links enters our model as a parameter. We
consider networks with 50 % up to 100 % local connec-
tions. (Specifically, the values ploc = 0.5, 0.6, 0.7, 0.8,

0.9, 0.95, 0.98, 0.99, 1 are used.)
As indicated in Fig. 3, we distinguish two different

possibilities for the spatial arrangement of the long-
range projections. For the no patches (NP) model we
assume a homogeneous connection probability for all
nodes located within rloc < r < rmax (Fig. 3(a)). This
equates to randomly selected distant projection targets.
Such networks are constructed in a similar way as small-
world networks (Newman 2003; Strogatz 2001). The
latter are based on a regular ring graph with neighbor-
hood couplings. In a so-called rewiring procedure, the
local links are replaced by randomly selected new ones.
For a rewiring probability ϕ = 1, one obtains a purely
random graph.

Regarding the other four models, we construct
spatially clustered projection patterns. Here, we im-
pose additional restrictions on the selection process.
The long-range links of each node are confined to a
small number of localized termination fields or patches
(Fig. 3(b)). For each PC we assume three patches
of radius rp = rloc/2. The position of each of these
patches is parameterized by its radial distance dp to
the presynaptic node and an angle � (Fig. 3(b)). To
be compatible with periodic boundary conditions, and

to avoid overlap between local and patchy connections,
dp is confined to rloc + rp ≤ dp < rmax − rloc (although
rmax − rp would have been sufficient).

The four patchy network models we analyze in this
study were introduced and motivated in Section 2.
In the following, we give a quantitative parametric
description of these networks. Figure 4 shows exem-
plary representations of the corresponding projection
patterns.

Random patches (RP): For each node, the patch po-
sitions are randomly drawn from a uniform probability
distribution.

Overlapping patches (OP): Due to nearly identical
patch parameters dp and � for each node relative to its
position, the termination fields of neighboring neurons
partly overlap. We choose dp = 2.5 ± 0.0625 mm and
� = nπ/3 ± π/20 for n = 1, 2, 3 where the given ranges
indicate small, again uniform variations we permit.

Shared patches (SP): The 2D plane is subdivided into
16×16 non-overlapping boxes of side length 0.5 mm.
For each box six patch positions are randomly selected.
Each node is forced to project to three out of the
six patches assigned to its box, resulting in shared
termination fields. In case of patches determined for
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No patches (NP) Random patches (RP) Overlapping patches (OP) Shared patches (SP) Partially overlapping patches (PP)

Fig. 4 Exemplary realizations of the five network models char-
acterized in Fig. 2. The gray dots in the (x,y) plane show the
spatial positions of the nodes, the colored symbols indicate their
connectivity patterns. In the upper row, red squares represent
locally established synapses, while blue, light blue, and cyan
squares represent long-range projection targets of either three
selected nodes (black stars in the NP, RP and OP model) or for all

neurons in a box (SP and PP model). In the bottom row, each plot
depicts two simulated tracer injections (0.5 mm diameter) in the
corresponding network model: green stars indicate the injection
sites, blue symbols represent an anterograde tracer (postsynaptic
projection targets), and red symbols a retrograde tracer injection
(presynaptic neurons)



J Comput Neurosci (2010) 28:137–154 143

boxes, dp is restricted more strongly to 2.5 rloc ≤ dp <

rmax − 2 rloc.

Partially overlapping patches (PP): Going from one
box to its neighbor in the x-direction, three patches are
maintained, while for the others dp and � are changed.
In the y-direction, the patches are again independently
selected.

The upper row of Fig. 4 shows an exemplary realiza-
tion of the nodes’ projections for each of the five net-
work models. For the SP and the PP model, all links of
all nodes in two neighboring boxes are shown, resulting
in 12 and 9 patch positions for two boxes, respectively.
To build a bridge between these theoretical network
models and ‘real-world’ neuroanatomical data we simu-
lated tracer injections. The resulting plots are presented
in the bottom row of Fig. 4. One node in a network
is randomly selected. Then, in case of simulating an
anterograde tracer injection, the projection targets of
all nodes located at a radial distance r ≤ 0.25 mm (cor-
responding to an injection site of 0.5 mm diameter)
are marked by blue symbols. The red symbols indicate
a retrograde injection which is always applied to one
(blue) region of the postsynaptic projection targets.
Each plot in Fig. 4 demonstrates one network model
where both tracer types are injected at two different
sites.

4 Statistical network analysis

In the following we first describe the tools of graph
theory we use to analyze the network models presented
in the previous sections and then present the results
of calculating the characteristic network properties. On
the basis of these results, we compare the effects of
the differences in the spatial arrangement of long-range
connections.

4.1 Methods of statistical analysis

The following descriptors are used to characterize and
compare the different network models (Albert and
Barabási 2002; Newman 2003): (1) Histograms of the
numbers of incoming or outgoing links for all nodes
of a graph give an estimate of the distribution of in-
degrees P(kin) and out-degrees P(kout), respectively.
(2) The shortest path Lij is the minimal number of
hops necessary to get from node i to node j respecting
link directions. We consider here the average shortest
path length L = 1

N(N−1)

∑
i �= j Lij for all pairs of dis-

tinct nodes, referred to as ‘characteristic’ path length.
(3) The cluster coefficient Ci is the fraction of all

potential links established between any two nodes re-
ceiving a link from node i. Again, we consider the
mean cluster coefficient C = 1

N

∑
i Ci. (4) For any graph

G with N nodes, we numerically determine the N
(complex) eigenvalues λ of its adjacency matrix A(G)

and estimate the eigenvalue density P(λ) based on 20
samples of graphs of the same type. (5) The corre-
sponding eigenvectors v of A(G) are also numerically
determined (Albert and Barabási 2002). To quantify
the spatial spread of a normalized eigenvector v, we use
the weighted 2D circular variance

V = 4 − 2
∣
∣
∣
∑

k

|vk|2 e2π ixk/R
∣
∣
∣ − 2

∣
∣
∣
∑

k

|vk|2 e2π iyk/R
∣
∣
∣ (2)

where vk are the components of v satisfying
∑

k v2
k = 1,

and (xk, yk) denotes the spatial coordinates of node
k. Complex numbers are used here to conveniently
account for the fact that the neurons in our model
are arranged on a torus. The circular mean (Batschelet
1981; Fisher 1993) of x-coordinates across all neu-
rons μc = ∑

k e2π ixk/R is used to obtain the average
x-coordinate in a consistent manner. The circular vari-
ance σ 2

c = 2(1 − |μc|) provides a measure of dispersion
of the x-coordinates, small values of σ 2

c indicate a
high concentration on the circle. For any eigenvector
v, we consider here the sum of the circular variances
for x- and y-coordinates, respectively, each weighted
according to the “participation” of individual nodes
k given by the coefficient |vk|2. This definition gives
values for 0 ≤ V ≤ 4. Small values of V indicate that
the ‘mass’ encoded by the squared components of v is
concentrated in a compact spatial region, while larger
values of V imply that it is more uniformly spread over
the whole domain. Similar results can be obtained by
calculating the entropy of the spatial distribution of
the v (Voges et al. unpublished manuscript). (6) The
Euclidean distance Dij between two nodes i and j is
the length of the shortest cable or connection necessary
to establish a physical link. The total pairwise distance
D = ∑

i �= j aij Dij is a measure of the total cable length
that is necessary to realize a given network. In addition,
to account for common axonal projections in patchy
arrangements we calculate a modified wiring length Dp:
for the long-range links of every node we evaluate the
spatial distances between their targets Di1,i2 . If they
are located near each other (D j1, j2 < 2 rp) we assume
they belong to a common patch (each target of each
node may only belong to a single patch). For a patch
containing np projection targets we assume only one
long-range link amounting to a cable length Di, j1 , plus
an additional cable length of (np − 1) rp to account for
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patch-local connections. Thus, Dp approximates the
wiring length of patchy connections.

Additionally, in order to obtain a quantitative mea-
surement for the mutual overlap of the pre- and
postsynaptic populations, we calculate the pairwise sim-
ilarity in the input and output of every pair of nodes.
For any pair of nodes (k, l) the number of common
input and output nodes, respectively, is given by the
inner product of the associated columns/rows of the
adjacency matrix

common input:
∑

i

aik · ail,

common output:
∑

j

akj · alj. (3)

In addition, we cluster the nodes in any particular
network according to this pairwise similarity measure,
i.e. the number of common in- or output nodes. If the
in- or output similarity of a pair of nodes is greater than
a given threshold θ , the pair is considered to belong
to a cluster. Thus, a cluster for a certain threshold is
defined by the corresponding amount of pairwise com-
mon input or output connections, respectively.

4.2 Results of statistical analysis

We now compare the results of the statistical analysis of
the five network models presented in Section 2, based
on numerical experiments. The motivation is to identify
which properties of networks with patchy connections
offer an interesting alternative or even make them a
requirement in studying cortical dynamics. Another
aim of this work is to substantiate the distinctions of
networks with different long-range connection patterns

and to identify possible consequences for the corre-
sponding activity propagation.

Due to random node positions, the in-degree dis-
tributions are binomial (Fig. 5(a)), independent of the
network model and the specific value for ploc (Voges
et al. 2007). Likewise, P(kout) for the NP, RP, and OP
models is approximately binomial. However, as shown
in Fig. 5(b), for the SP and the PP models in case
of ploc < 1, the out-degree distribution deviates from
a binomial case: with an increasing number of long-
range links, P(kout) becomes broader and flatter. Thus
the two network models where the projections of all
nodes in a box are confined to certain patch positions
have more nodes with exceptionally high or low out-
degrees, respectively. The heterogeneity of degrees in a
network presumably affects its dynamics (Denker et al.
2004; Tetzlaff et al. 2005, 2009; Kriener et al. 2008): a
broad degree distribution enhances fluctuations in the
spike rates, and it shapes the power spectrum of the
population activity by partially destroying the global os-
cillations in certain frequency bands. Compared to the
other network models, we therefore expect a broader
spike rate distribution and reduced global oscillations
for the dynamics of the SP and PP model.

Moreover, in SP and PP models k̄out decreases with
decreasing ploc. The reason is an increase in the proba-
bility of the overlap between local and patchy connec-
tions, as well as an increase in the overlap between the
patches of a single node. In particular, in the example
of the PP model with many long-range links, there is an
increased chance of hitting an already occupied entry in
the adjacency matrix. Generally, the differences in the
results for our five network models are largest for the
networks with fewest local connections (ploc = 0.5) as
our models differ only in their long-range connectivity.
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Fig. 5 (a) In-degree distribution of all network models for ploc = 0.5 and ploc = 1. (b) Out-degree distribution of the SP and PP
network models for ploc = 0.5, 0.7, 1. In both plots the corresponding binomial distribution (BD) is indicated by black open squares
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This holds for all measurements that will be discussed
in this study.

Figure 6 shows the dependency of the cluster co-
efficient, the characteristic path length and the wiring
length on the parameters of the model networks. The
panels (a), (b) and (e) prove that all our network
models exhibit a strong ‘small-world effect’: a very
small number of long-range connections is sufficient
to dramatically decrease the characteristic path length
L. However, the cluster coefficient C remains rela-
tively high, due to the dominance of local connec-
tions (Strogatz 2001; Newman 2003). In Voges et al.
(2007) we discussed the small-world effect of spatially
embedded networks, but not for patchy connections.
The NP model with homogeneously distributed remote
connections shows the strongest decrease in L, as well
as in C, followed by the RP model, while the OP model
exhibits the highest L. Compared to the NP model,
the assumption of clustered remote projections gives
rise to a weaker reduction of L and C. An explanation
is that the targets of a patchy projection are more
likely connected to each other. This effect is much
smaller than expected, as only very few short-cuts are
sufficient to induce a strong reduction of L. A similar
argument holds for the effect of overlapping patches.
Thus, despite small variations across models, our ex-
periments confirm that patchy projection patterns do
not interfere with the small-world property. In Fig. 6(e)
the curves representing networks with 70% up to 99%
local connections are all above the diagonal, indicating
high clustering combined with small characteristic path
lengths.

Similarly, the total wiring length D shown in Fig. 6(c)
is largely independent of the spatial arrangement of
the long-range links. The small reduction for patchy
networks is a result of the different spatial constraints
in the case of patches (Section 3). However, as shown
in panels (d) and (f), the modified wiring length Dp
behaves differently: non-local connections decrease the
characteristic path length L but increase the total
wiring length (red curve in panel f), when it is based
on pairwise Euclidean distances. In contrast, assuming
a single long-distance link to each group of spatially
clustered synapses significantly decreases the wiring
length. Thus, patchy networks are wired in a much
more efficient way. Figure 6(f) depicts the relation
between the topological distance L and the Euclidean
distance Dp: to realize a given characteristic path length
L only a very small amount of cable is needed, provided
patches are used. In such an optimally wired network
only a few steps are sufficient to reach any node. We
find that all patchy models perform equally in this
respect.

The eigenvalue spectrum of the adjacency matrix can
be considered as a graph invariant (Farkas et al. 2001).
However, different graphs may have similar spectra.
The eigenvalues and eigenvectors of the networks’ ad-
jacency matrix A(G) play a distinguished role for the
analysis of the (linearized) activity dynamics of the
network. We numerically calculated the eigenvalues
and eigenvectors of all A(G) in this study but we only
present the results for ploc = 0.5. These networks are
dominated by long-range links which is the focus of
our study. We find remarkable differences among the
eigenvalue distributions of the models considered here,
see Fig. 7(b–f). As expected, the NP model exhibits a
distribution very similar to that of a small-world net-
work (Voges et al. 2007; Farkas et al. 2001). The bulk
of eigenvalues λ covers a disk-like structure centered
at the origin, while some exist with real parts Re(λ) >

6 and small imaginary parts Im(λ) forming a narrow
tail. In addition, there is a single real-valued outlier
at λ ≈ 44, which is directly related to the average in-
and out-degree of the network (Albert and Barabási
2002; Farkas et al. 2001). Apart from the narrow tail,
such a spectrum is typical of a purely random graph.
The patchy networks also show a high concentration
of eigenvalues around zero (|λ| < 6), but compared to
the NP model, they exhibit in all cases larger imaginary
parts for most eigenvalues with Re(λ) > 6. The OP
model shows the most peculiar eigenvalue distribution:
There are some eigenvalues with Im(λ) > 5, even for
Re(λ) < 0, and the tail-like structure has several dis-
connected parts. This distribution is most dissimilar to
that of a random graph, most likely due to the quasi-
deterministic rules of its generation. Figure 7(a) shows
the probability density function (p.d.f.) of the real part
of the eigenvalues. Here, the variations between our
five models are less pronounced, only the NP model
is well separated by a lower and broader p.d.f. similar
to that of a random graph. It is followed by the RP
model, while the other three are nearly indistinguish-
able. As the real part of the eigenvalues is informative
with respect to the stability of network dynamics (see
Section 5), the influence of the spatial arrangement of
patches on the system stability is presumably negligible.

The results regarding the localization of the eigen-
vectors in dependence of ploc are presented in Fig. 8.
Considering only the averages V̄1/2 (panel a) obtained
from all eigenvectors of each network, all models ex-
hibit surprisingly non-localized eigenvectors V1/2 � 2.
This is even the case for ploc = 1, i.e. if all synapses
are local ones. However, panels (b) and (c) indicate
that these nearly identical curves are just a result of
averaging. In case of ploc = 0.5 the distributions of
V1/2, shown in panel (b), are clearly separated: The NP
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(e) Small-world property: C plotted versus L. (f) Wiring effi-
ciency: Dp plotted versus L. The dashed lines are the diagonals.

All values are normalized to their corresponding maxima: Cmax =
0.59, Lmax = 7.22, Dmax = 241 m. Different colors indicate the
five network models, see legend in (e). Standard deviations over
20 network realizations were too small to be shown
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Fig. 7 (a) Distributions of the real part of the eigenvalues for
ploc = 0.5. Different colors indicate the five network models.
(b–f) Eigenvalue distributions in the complex plane for the five

network models, each plot is a superposition of 20 individual
spectra calculated from 20 independent network realizations with
ploc = 0.5

model shows the strongest peak for large values, but
it also produces the smallest ones. In contrast, the SP
and PP models show lower and broader distributions
with a peak located at smaller values. Likewise, the data
displayed in panel (c) allow a rough distinction between
our five models, mainly in the spatial spread of the
eigenvectors in dependence of Re(λ). For Re(λ) ≈ 20
some of the eigenvectors of the NP and the RP model
are spatially concentrated (V1/2 < 1.5), while this is
rarely the case for the OP, SP and PP models.

The last part of our analysis deals with the amount of
common in- and output for pairs of nodes, respectively
(again, this analysis is only performed for networks
generated with ploc = 0.5). In Fig. 9, the upper two
rows reveal that the various models are quite distinct
with respect to their in- and output similarity. Note that
the distributions of common in- and output are gener-
ally not identical, due to the fact that the connectivity
matrix A(G) is not symmetric. The output distribution
results from the construction of the networks, whereas
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the input distribution is only implicitly constrained. In
the NP model the highest number of common projec-
tion targets of a pair of nodes is 22, for the RP and
OP model there are up to twice as many, while for the
SP and PP model up to 70 common targets are possi-
ble, see panel (a). There are only two types of input
similarity, see Fig. 9(b): first, in the NP and RP model,
the common input pool contains at most 25 presynaptic
neurons. Secondly, in the OP, SP and PP networks
any two nodes can have more than 40 common input
nodes.

Surprisingly, with respect to the mean in- or output
similarity values the differences across our five network
models are rather small. These mean values are calcu-
lated by averaging across the common input or output,
respectively, of every pair of nodes in a particular net-
work. All models have an average output similarity of
0.54 ± 0.0086, which is also the value of the average
input similarity for the NP, RP and OP model, while
for the SP model the latter is 0.57 ± 0.0022, and for the
PP model it is 0.6 ± 0.0004.

These in- or output similarity measures may be rele-
vant to assess favored strategies of signal transmission
in the networks. For example, a high amount of com-
mon input together with a large number of common
outputs can facilitate synchronous signal propagation.
In particular, the amount of common input offers im-
portant information concerning the correlation analysis
of the networks’ activity, see Section 5.

Figure 9(c) and (d) show the results of the clustering
procedure with a threshold imposed on the pairwise

�Fig. 9 Pairwise similarity measure describing the mutual overlap
of the postsynaptic (left) and presynaptic (right) populations,
respectively. (a, b) Relative frequency P of the number of (a)
common output targets and (b) common input nodes, for pairs of
nodes (semilogarithmic plots). (c, d) Number of clusters (single-
link clustering) obtained by evaluating pairwise similarities in the
(c) output and (d) input depending on the imposed threshold θ .
Standard deviations are not shown as they are not significant at
this scale. (e, f) Mean (solid lines) ± standard deviation (shaded
regions) of the clustering threshold θ in dependence of the cluster
size. Different colors indicate the five network models
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common input and output, respectively. For very small
thresholds θ < 3, all nodes end up in one large cluster
as each node shares at least two input or output nodes
with at least one other node in the network. In contrast,
for large thresholds θ > 70, every cluster contains just
one node, as no pair has more than seventy common
pre- or postsynaptic nodes. In between these two ex-
tremes, the number of clusters in dependence of the
threshold is characteristic of the respective network
model. They are determined by the similarity measures,
the distribution of which is shown in panels (a) and (b).
There is only one crossing: For θ ≤ 21 the SP and PP
models have more clusters (i.e., less similarity), while
for θ > 21 the RP and OP models are more clustered.
This analysis confirms the similarity categories dis-
cussed above: the NP model with the smallest amount
of common in- and output; the RP model with an
equally small amount of common input but a medium
output similarity; the OP model with a medium output
similarity and a comparably large number of common
inputs; and the SP and PP models that exhibit both a
high input and output similarity.

So far, we only have discussed the number of clus-
ters, but not their size. Figure 9(e) and (f) show the
mean clustering threshold θ̄ in dependence of the clus-
ter size, in the range between 2 and 45 nodes. For
each network, we collect all clusters of a certain size,
independent of the threshold for which they were gen-
erated. We compute the average of these θ values,
resulting in a cluster size specific θ̄ . Therefore, these
plots describe the pairwise similarities between the
nodes belonging to clusters of different sizes. Analyzing
the structural base of a signal propagation by neuronal
groups, this information helps to asses the appropriate
group size together with the expected number of com-
mon projection targets. Generally, θ̄ slightly decreases
with increasing cluster size, indicating a reduction of
common input and output for the nodes classified in
larger clusters. However, for the NP and RP model
the pairwise similarities are independent of the clus-
ter size. Besides these cluster size specific features,
Fig. 9(e) and (f) validate the in- and output similarity
categories discussed above. The NP model in panel (e)
is well separated, while the RP and OP model are very
alike in this respect. In panel (f), each of the NP, RP
and SP models shows its own characteristic clustering
threshold, as opposed to the OP and PP models with
overlapping standard deviations.

In addition to the analysis described above, we
checked whether our findings are still valid under
slightly more general conditions. As it was estab-
lished that the local connection probability smoothly
decreases with increasing distance (Hellwig 2000;

Kalisman et al. 2003; Stepanyants et al. 2008), we also
considered models with an appropriate distance de-
pendence. Instead of assuming a uniform value of ploc

we used a Gaussian probability profile for the local
links (p0 = 1 with σ = 0.28, 0.33, 0.4 instead of ploc =
0.5, 0.6, 0.7, respectively). For these modified networks,
we observed that the distribution of eigenvalues in the
complex plane showed a slightly different shape with
a more disk-like distribution around zero than for the
networks with uniform local connectivity. For all other
characteristic network properties the differences were
negligible.

5 Discussion & conclusions

We developed and compared the topology of various
types of parametric models for networks with local
couplings and additional non-local links. The main new
feature of the models is their horizontal connectivity,
including patchy projection patterns. Our comparative
analysis shows that the spatial arrangement of long-
range connectivity indeed has a strong influence on sev-
eral characteristic network properties. Now, we discuss
these results in more detail, particularly with respect to
the neuroanatomical studies mentioned in Sections 1
and 2. We also speculate about possible consequences
on functional aspects, such as network dynamics or
preferred types of signal propagation.

It is to be expected that cortical networks exhibit a
small-world topology (Sporns and Zwi 2004; Buzsaki
et al. 2004; Bassett and Bullmore 2006) as they are
based on highly clustered local connections in combina-
tion with few long-range projections. This leads to low
characteristic path lengths (Watts and Strogatz 1998;
Strogatz 2001; Newman 2003). These features support
fast distributed communication: every neuron directly
interacts with most of its neighbors, while remotely
located targets are reached within a few synaptic steps.
In terms of cortical connectivity one has to account
for another important constraint: space is limited in
the brain. Many studies discuss optimality principles
in cortical wiring (Chklovskii 2004, 2000; Kaiser and
Hilgetag 2004; Bassett and Bullmore 2006) but up to
now, the situation is still unresolved at the level of
intrinsic gray-matter connectivity. We found that the
assumption of long-range patchy projections does not
interfere with the small-world effect. The strong reduc-
tion of the necessary cable length in the case of patchy
networks suggests that the use of patches could be part
of a strategy to minimize the volume used by the cable.
In our view, patchy networks are a special realization
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of a small-world topology with strongly reduced costs
of wiring.

The eigenvalue spectrum of the adjacency matrix is
a graph invariant. Empirically, it appears that signifi-
cantly different network topologies give rise to differ-
ently shaped eigenvalue spectra (Farkas et al. 2001).
All network models considered here have small-world
features, although their spectra differ considerably. If
a graph describes the couplings between the compo-
nents of a linear dynamical system, its eigenvalues carry
information about the temporal aspects of its dynam-
ical modes. More precisely, in a linear time-invariant
system, the real parts of the eigenvalues of the cou-
pling matrix indicate whether the system exhibits stable
dynamical behavior (Re(λ) < 0 for all eigenvalues λ).
As all our structural spectra have eigenvalues with
positive real parts, the dynamical equations must have
an additional reset of the membrane potential to guar-
antee this condition (for networks of integrate-an-fire
neurons see, e.g., Kriener et al. 2008). The imaginary
part of an eigenvalue indicates oscillatory behavior,
with a large | Im(λ)| implying fast oscillations. Our
analysis of the eigenvalue spectra is incomplete in the
sense that inhibition was not accounted for and synaptic
transmission delays were ignored. Nevertheless, it may
be anticipated that the specific shapes of the structural
spectra are indicative for certain aspects of the network
dynamics. In particular, the broad tail-like structure in
the spectra of the RP, SP and PP models might indicate
the presence of fast oscillations. In principle, if Re(λ) <

0, a large | Re(λ)| is associated with a short lifetime of
the corresponding dynamical eigenmode. For the OP
model, this means that the eigenmodes corresponding
to large Im(λ) and negative Re(λ) are presumably very
transient modes and thus of no importance for the
network dynamics. In addition, we can make some
speculations concerning the global dynamical behavior
of our network models. Due to the general similarity
of all spectra shown in Fig. 7 (circular structure around
zero with a tail of Re(λ) > 0 and a maximum value at
Re(λ) ≈ 44), we expect the system dynamics to be quite
similar. Thus we presume that our five models exhibit
essentially indistinguishable population activities in the
‘idle’ state of the networks. The specific differences
in the spectra may come into play in connection with
excited states, for example, in terms of the propagation
and processing of input signals that represent external
stimuli. This view is compartible with the idea that spa-
tially clustered synapses are actually learnt connectivity
patterns (Callaway and Katz 1990), i.e. the results of
long-term plasticity processes.

For the spatially embedded networks considered
here, we also determined some spatial properties of

the structural eigensystem, in particular their spatial
spread. In accordance with our above discussion, the
average values of the spatial spread of all eigenvectors
were very similar for all network models considered
here (Fig. 8(a)). Therefore, the differences in terms of
the population dynamics are presumably rather small.
However, there are a few localized eigenmodes for
the NP and RP model with real parts between 10 and
20, while all networks with overlapping distant termi-
nation fields (OP, SP and PP model) show no such
localized modes. An increased probability of common
projection targets appears to induce a more global and
less local spread of activity. Again, this may indicate
that the specific distinctions between our five mod-
els become particularly relevant when signals undergo
processing.

Shared input and shared output for pairs of nodes
in a network is the structural basis for a number of dy-
namical properties of networks. For instance, Kriener
et al. (2008) show that strong common input amplifies
synchrony in recurrent networks. Therefore, we expect
more synchrony in the network dynamics of the OP, SP
and PP models. In particular, the study of propagation
of synchronous activity requires an analysis of the trans-
mission between successive groups of neurons. The
synfire chain model (Abeles 1991; Diesmann et al. 1999;
Kumar et al. 2008a) is used to explore the conditions
under which precisely synchronized action potentials
propagate from group to group within the cortical net-
work. In order to excite a neuron in a subsequent group
one requires a minimal degree of convergence but
also enough divergent connections to keep the number
of excited neurons large enough. In this context, the
number of common projection targets, as well as the
number of common inputs, is of great interest. Local
cortical networks meet these conditions by means of
recurrent connections. In larger networks with only
local couplings, however, transmission remains neces-
sarily local. It is tempting to speculate whether patchy
connections can provide the anatomical basis for a non-
local propagation of synfire chains. This question has
been addressed in Voges (2007). Starting with a group
defined on the basis of the cluster analysis presented
in Fig 9, the respective next group is determined by
all other nodes in the network that receive a certain
amount of input from the previous group, and so on.
The NP model, for example, is not qualified as the
long-range connections are not convergent/divergent
enough, while in the RP model the number of common
input nodes is too small. However, the models with
shared or overlapping patches could provide a delicate
connectivity pattern, enabling the spread of synchro-
nous activity over longer distances.
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A remarkable finding concerning all network struc-
tures considered here is that the input and output
populations may exhibit different statistical properties,
depending on the network architecture. Neither are the
in- and out degree distributions (of the SP and the PP
model) identical, nor can it be assumed that the average
numbers of common in- and output nodes are equal.

Finally, it is necessary to discuss how close our
models are to reality. Due to computational limits we
embedded only N = 3600 nodes into 16 mm2. This
is a rather small number compared to approximately
90 000 neurons per mm3 in mouse cortex (Schüz and
Braitenberg 2002) – even if we assume that our network
resides in one layer (e.g., layer 2/3 with a thickness
of roughly 0.3 mm). Likewise, our nodes have ap-
proximately k̄ = 44 synapses, while in mouse cortex,
there are about 8000 synapses per cell (Schüz and
Braitenberg 2002). Despite a neuron density, which
falls short of realistic values by a factor of 100, the mod-
els are nevertheless adequate to analyze the features
of patchy connectivity. The spatial range of the local
and the long-range connections generally matches the
values given by the literature, and the patch parameters
are adapted from neuroanatomical studies (Kisvarday
and Eysel 1992; Wallace et al. 1991; Lund et al. 1993).
For a more detailed discussion of these numbers see
Voges et al. (unpublished manuscript).

An open question is which network models imple-
ment a good solution to the wiring problem of the cor-
tex. All models with patchy connections studied here
exhibit a small-world topology combined with a high
wiring efficiency, but only the SP and PP models offer
additional features. They reproduce the pictures of
extracellular tracer injections that have been published
for larger animals like cats or monkeys (Binzegger et al.
2007; Amir et al. 1993; Pucak et al. 1996), and they sup-
port the long-distance spread of synchronized activity.
Both projection patterns, resulting from simulated an-
terograde and retrograde tracer injections, respectively,
show a limited number of patches (Fig. 4). However,
only the PP model incorporates an increased probabil-
ity for common projection targets for neurons located
at a distance greater than 0.5 mm (Kisvarday and Eysel
1992; Ojima and Takayanagi 2004). Such a feature is
most favorable with respect to the idea of preferred
connections between neurons with similar functional
properties, e.g., orientation selectivity in visual cortex
(Bosking et al. 1997; Buzas et al. 2006; Chisum and
Fitzpatrick 2004). Combined with the pinwheel as-
sumption for the spatial arrangement of these neurons,
a certain connection probability for remotely located
neurons is required for synapses between neurons in
different pinwheels. It seems that the PP model cap-

tures the long-range projection pattern of primary vi-
sual cortex of large mammals best.

The RP model leads to spatially clustered postsynap-
tic sites (retrograde stainings), while the input neurons
are uniformly distributed (anterograde stainings). Such
a projection pattern matches the horizontal connec-
tivity in the visual cortex (V1) of mammals without
orientation maps. Van Hooser et al. (2006) argue that
retrograde tracer injections in the V1 of a rodent do
not reveal patches. Yet, other studies (e.g., Lohmann
and Rörig 1994; Burkhalter and Charles 1990) show
that single cell projections, as well as anterograde tracer
injections, exhibit a patchy structure in rat V1. Thus, the
RP model might be more appropriate if one intends to
model cortical networks of rodents.

The OP model, however, is too deterministic com-
pared to neuroanatomical data. Each injection leads
to exactly three patches, independent of the injection
size, which does not match reality (Amir et al. 1993;
Rumberger et al. 2001). Randomizing this parameter
would be a desirable feature of an improved model.

In summary, we developed and compared five real-
izations of spatially embedded networks featuring hor-
izontal long-range connectivity in the cortex. Based on
our analysis we conclude that patchy projections rep-
resent an optimized scheme of wiring together distant
neurons. Compared to well-known network topologies
all network models are clearly different from random
graphs, but closely related to small-world networks.
While our results predict similar population dynamics
in the ‘idle’ state of all models considered here, we
also found several hints concerning specific differences
in the signal propagation depending on the spatial
arrangement of the long-range connections. We suggest
to include this feature of spatially clustered projection
patterns when modeling cortex-like networks, but at-
tention should be paid to the specific realization of
these projections. The architecture very likely depends
on the species or on the functional requirements of the
cortical area.
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