
When two elementary brain-processes have been 
active together or in immediate succession, one 
of them, on re-occurring, tends to propagate its 
excitement into the other. William James, 1890 (REF. 1)

One of the central problems in neuroscience is that of 
characterizing and understanding the neural code2. 
The term ‘neural code’ refers to the properties of a 
single sequence of action potentials (spike trains) or  
a spike train ensemble that may be used by the brain 
to encode, decode and process sensory and/or cogni-
tive information. To investigate the neural code exper-
imental approaches are often based on presenting 
different inputs (stimuli) to an animal and quantify-
ing various properties of the generated spike patterns. 
In this approach, encoding and decoding of sensory 
information is quantified from the human perspec-
tive. In some senses, however, this is a non-biological 
approach to elucidating the neural code, which ought 
to be defined and understood from the neuronal per-
spective. Stimulus encoding and decoding should be 
meaningful primarily to the subsequent processing 
stages (or effector organs) and not necessarily to the 
human observer.

In the spirit of a neuronal perspective, Perkel 
and Bullock proposed in their seminal report2 that a  
candidate neural code must serve four key functions: 

stimulus representation, interpretation, transforma-
tion and transmission (BOX 1). In this Review, we focus 
on the last of these properties — the transmission of 
neural activity. Because the brain is a highly modular 
structure, it is vitally important that spiking activity 
can propagate from one module to the next while pre-
serving the information it carries. Thus, to understand 
the neural code and the mechanisms of processing and 
computation in modular neural networks, it is essential 
to identify the conditions under which spiking activity 
can propagate.

Surprisingly, the issue of spiking-activity propagation 
has received remarkably little attention from experimen-
tal neuroscientists (see REF. 3 for an exception). Yet, in the 
last decade several computational studies have specifi-
cally addressed this issue4–10. The feedforward network 
(FFN) with convergent–divergent connections between 
subsequent groups of neurons (or ‘layers’) has been 
the model of choice in these studies. The simple FFN  
topology captures important features of the modular 
architecture of the brain (FIG. 1).

These theoretical studies have identified two separate 
modes that support the propagation of either asynchro-
nous (rate code)6,11 or synchronous (temporal code) spik-
ing activity4,8,9,12,13 (BOX 2). This dichotomy is interesting 
because it reflects the widespread view that rate codes 
and temporal codes are mutually exclusive.
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Convergent–divergent 
connection
A connectivity scheme in which 
neurons in a group receive 
inputs from many neurons in a 
previous group (convergent 
connections) and at the same 
time project to many neurons 
in subsequent groups 
(divergent connections).
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Abstract | The brain is a highly modular structure. To exploit modularity, it is necessary that 
spiking activity can propagate from one module to another while preserving the information 
it carries. Therefore, reliable propagation is one of the key properties of a candidate neural 
code. Surprisingly, the conditions under which spiking activity can be propagated have 
received comparatively little attention in the experimental literature. By contrast, several 
computational studies in the last decade have addressed this issue. Using feedforward 
networks (FFNs) as a generic network model, they have identified two dynamical activity 
modes that support the propagation of either asynchronous (rate code) or synchronous 
(temporal code) spiking. Here, we review the dichotomy of asynchronous and synchronous 
propagation in FFNs, propose their integration into a single extended conceptual framework 
and suggest experimental strategies to test our hypothesis.
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Unreliable synapses
Synapses may fail to induce a 
postsynaptic potential in the 
target neuron despite 
stimulation owing to the 
probabilistic nature of synaptic 
vesicle release.

In this Review, we propose an extended conceptual 
framework to integrate these two modes of activity propa-
gation. We argue that rate and synchrony propagation rep-
resent, in fact, two extremes of a ‘continuum’ defined by the 
parameters of the feedforward architecture. A particular 
class of networks may be more suitable for rate propaga-
tion, but it can be systematically altered to a network that 
preferentially propagates synchrony. Specifically, we argue 
that the strength of synaptic couplings and the abundance 
of shared connections are the two key para meters of the 
network structure that determine the preferred mode of 
activity propagation. In addition, we highlight the con-
ceptual importance of spiking-activity propagation in 
neural networks and provide specific suggestions to exper-
imentally study the different modes of spiking-activity  
propagation in vivo and in vitro.

Models for studying spike propagation
Even though the brain is densely packed with neurons,  
only a very small fraction of these are activated in 
response to a stimulus or in a cognitive or motor task. 
Numerous studies that recorded single neuron activ-
ity unequivocally suggest that repeated presentation of 
the same stimulus or repeated execution of the same 
task activates roughly the same set of neurons each 
time. This fact is the basis for the concept of the neural 
assemby14–16. Neural assemblies can efficiently encode 
sensory stimuli and information that is intrinsic to 
the brain, despite the fact that neural activity in vivo 
is highly variable across repeated trials17–19 and that 
individual neurons are exposed to inputs from large 
numbers of other neurons20,21, typically through weak 
and unreliable synapses22,23. Such neural hardware pre-
cludes the input from reliably reaching a target neuron 
via a single pre-synaptic neuron alone. Thus, a `trans-
mission line’ with only a single neuron at each stage is 
highly unreliable. Only the seemingly redundant layout 
with multiple neurons at each stage, interconnected by 
convergent-divergent projections, may allow for reliable 
representation and propagation of the input24.

Anatomically segregated regions of the brain are 
highly specialized in their function (FIG.1a). Even the per-
formance of simple tasks requires both serial and parallel  
interactions among multiple brain regions25–27. In fact, 
serial interactions among multiple brain regions may 
explain why the reaction time in animals performing a 
task often increases with task complexity25,26. Together, 
the concepts of a modular brain and of neural assem-
blies provide a powerful framework for neural informa-
tion processing in terms of cascades of neural assemblies 
interconnected by convergent–divergent links25.

Donald Hebb envisaged the organization of behav-
iour based on networks of neural assemblies intercon-
nected by convergent–divergent links16 as a foundation 
for a neuropsychological theory of brain function rooted 
in biological principles (‘neuralizing’)15,16. Hebb post-
ulated that repeated co-activation of a group of neurons 
strengthens synapses to, and among, the neurons in the 
group. As a consequence, an established assembly can 
be ‘ignited’ by partial stimulation and may thereby func-
tion as a pattern completion or pattern recognition unit  
(FIG. 2Aa). Hebb referred to such activation of a network 
of neural assemblies as a ‘phase-sequence’16 (FIG. 2Ab).  
This notion was important because it allowed for 
information processing that depends on both the 
external input and on the internal state of the network  
comprising the assemblies.

As a matter of fact, the idea of a network of neural 
assemblies pre-dated Hebb1,28. Even before the notion 
of neurons as the computational units in the brain was 
established, William James postulated a mechanism 
subsequently termed ‘re-integration’ or ‘recall’: the joint  
discharge of a group of ‘elementary nerve-tracts’ ‘awakens’  
a consecutive group that is identified and reinforced by 
‘vibrating in unison’1 (FIG. 2B).

For neurophysiologists, the idea of neural assemblies 
has always been closely associated with the occurrence 
of activity patterns in the neural network. In a poetic 
and later famous metaphor, Sherrington29 described the 
activity in the cortex upon awakening: 

Swiftly the head-mass becomes an enchanted loom 
where millions of flashing shuttles weave a dissolving 
pattern, always a meaningful pattern though never 
an abiding one; a shifting harmony of sub-patterns. 

Decades later, Moshe Abeles invoked the idea of a 
‘synfire chain’ of successively activated neural assemblies, 
arranged as convergently–divergently connected groups 
of neurons25 (FIG. 2C), to explain the observation of spike 
patterns recurring with millisecond precision in awake 
behaving animals30–34. This hypothesis was tested in a 
number of follow-up theoretical studies3,4,6–10,13 (FIG. 2D). 
However, the functional and statistical significance of 
precisely recurring spike patterns is still a highly debated 
issue, and the choice of the model of ongoing cortical 
activity may change the results and interpretations35–38.

Another variant of the neural assembly concept is based 
on the synchronization of oscillatory cell assemblies39–41.  
In this context, Wolf Singer proposed the idea of  
a parallel ‘read-out of assemblies by assemblies’ as a 

 Box 1 | Properties of a neural code

In their seminal treatise, Perkel and Bullock2 identified the following four functions  
that a candidate neural code must serve:

Stimulus representation: certain properties of the stimulus should be able to alter  
the neural activity such that the stimulus can be represented using the code.

Interpretation: the read-out mechanism should be able to correctly interpret the 
code and perform an action accordingly. The read-out can be muscle activation or 
the next stage of processing.

Transformation: the neural code is generated and exists in a recurrent network of 
neurons. To perform any computation it is important that the candidate code can be 
transformed by the network in a controlled way.

Transmission: the brain is highly modular. Therefore, any candidate neural code must 
be able to propagate from one network (module) to another with high fidelity.

Experimenters have primarily focused on understanding stimulus the first three 
properties mentioned above, and evidence has been collected for several candidate 
codes, such as the firing rate code, temporal code, correlation code and rank-order 
codes. Surprisingly the study of transmission has been largely ignored in the 
experimental literature.
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potential solution to the read-out problem40,41. This type 
of read-out mechanism requires convergent–divergent 
connections (similar to the FFN) between the respec-
tive cortical areas within which ‘sending’ and ‘receiving’ 
assemblies are configured (FIG. 2E).

The idea of a cascade of neural assemblies in which 
single neurons can participate at multiple levels has sub-
sequently been formalized as a feedforward network 
(FFN). This term refers to a network topology in which 
groups of neurons project their activity, by convergent–
divergent links of synaptic connections, to successive 
groups of neurons in a repetitive manner. A repetitive 
sequence of such group activations can be considered 
a ‘transmission line’42 for spike propagation (FIG. 2F). 
Here, the term ‘feedforward’ should not be taken as an  
anatomical descriptor: the repeated participation of neu-
rons in multiple groups of an FFN creates feedback loops. 
This is obviously incompatible with an anato mical feed-
forward architecture. Refractoriness, however, prevents 
neurons from effectively participating in the propaga-
tion of activity among nearby groups, thereby enforcing 
a minimal distance between their repeated participation. 
Thus, even in a recurrent network, the flow of spiking 
activity on a local scale (‘locality’ being defined by con-
nection delays, firing rates and refractoriness), can be 
treated as an FFN43,44,47, independent of the anatomical 
network architecture.

Feedforward networks in their natural habitat 
An FFN is a simple yet powerful model that may provide 
important insights into mechanisms of cortical compu-
tation. However, it is not straightforward to reconcile 
the idealized architecture of an FFN with the complex 
recurrent connectivity of different brain regions. Recent 
studies, however, show that a random network can be 
constructed by using the FFN as an elementary motif 
while maintaining overall network connectivity that is 
similar to conventional random networks45,46. Moreover, 
recent analyses of network connectivity models suggest 
that the activity dynamics of certain types of recur-
rent networks are compatible with those of an FFN. 
Thus, from a functional perspective, recurrent random  
networks may behave in ways akin to an FFN43,44,47.

In a biologically plausible scenario in which the FFN 
is part of a recurrent network, it is important to consider 
the interaction between the dynamics of the FFN and 
that of the embedding recurrent network. One approach 
to studying FFN dynamics under realistic conditions 
is to search for an FFN-type network in the recurrent 
connectivity of the embedding network10,48. This method 
involves randomly choosing a group of neurons and 
identifying another group that is directly connected to 
the first group with a certain probability. This process is 
repeated N times to identify an N layer FFN. However, 
in a sparsely connected recurrent network, such as the 
neocortex, only sparsely connected (or ‘diluted’) FFNs 
can be identified10,48,49. As a consequence, the connection 
strength between one group and the next in such FFNs 
needs to be increased to high values to ensure the typical 
FFN dynamics10. Clearly this has strong implications for 
the type of activity that is supported by such networks, as 
we will review in more detail in the following sections.

Often, modellers adopt a slightly different approach 
to the study of FFN dynamics in realistic scenarios by 
altering the connectivity, not the synaptic strengths, 
among neurons that form parts of the FFN. In such 

Figure 1 | The feedforward network as a model of information processing in the 
brain. a | A schematic of hierarchical processing in the visual systems of primates.  
Similar schematic models have also been described for other sensory and motor areas.  
b | Each module in part a can be considered as a recurrent network of excitatory and 
inhibitory neurons. Each of the rectangular boxes represents a recurrent random 
network. The hierarchical structure of the brain is conceived here as a network of 
recurrent networks with forward and backward excitatory connections. So far, only the 
feedforward part (shown in black) of such a network of networks has been investigated in 
a systematic manner. Recurrent excitation and inhibition within one group and 
excitatory synapses that do not contribute to the feedforward hierarchy of subsequent 
groups (shown in grey) have not been considered yet. Part a is reproduced, with 
permission, from REF. 27  (1991) Oxford Journals. Exc.; excitatory, Inh.; inhibitory.
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Read-out problem
The problem of how the neural 
activity of a single neuron or 
group of neurons received and 
transformed (‘decoded’) by a 
postsynaptic group of neurons, 
to result in, for example, a 
decision, perception or  
motor act.

Embedding recurrent 
network
A large recurrent network 
typically composed of 
excitatory and inhibitory 
neurons that contain 
feedforward networks as 
subnetworks.

models, neurons are arbitrarily assigned to different 
groups, and neurons that are assigned to one group 
are then made to preferentially form connections to 
neurons that are assigned to the next group, with a 
certain probability that is usually higher than for 
the remainder of the network9,50,51. Neurons that are 
assigned to the FFN have a reduced connection prob-
ability to the rest of the network in order to maintain 
their in- and out-degree within the recurrent network.  
This approach has the advantage that an FFN with 
arbitrary parameters can be embedded within the 
recurrent network without altering the overall network 
statistics dramatically.

Both approaches to studying the FFNs in their natural 
habitat result in some degree of non-randomness in the 
network connectivity by making some number of pref-
erential connections or by preferentially strengthening 

certain synapses. This is not a trivial issue because devia-
tions from a random or locally random connectivity in 
small networks may destabilize the ongoing activity in the  
network51. Deviations from random connectivity arise 
because neurons participating in the embedded FFN 
receive more shared inputs than the rest of the neurons. 
Correlations due to the shared connectivity may be 
amplified and can introduce dynamical instabilities in 
the embedding network51,52. Thus, complex connectivity  
rules and/or specific synapse properties are required to 
ensure stable network activity. For example, neurons 
in the FFN receive stronger correlated excitation than 
the rest of the network and, thus, tend to destabilize the 
activity in the embedding network. Therefore, it was 
suggested that inhibitory neurons should be included 
in each group to balance the effects of this extra exci-
tation50. Recently, we have shown that by modelling 
synapses as conductances rather than as currents, it 
becomes possible to embed an FFN without destabiliz-
ing the network9. Furthermore, the number of neurons 
in a group and the inter-group synaptic strengths have 
a crucial effect on the FFN activity dynamics, and a  
neuron group size that is too large can make even an 
isolated FFN unstable51–53.

Spiking-activity propagation
Evidence from neuroanatomy (there are up to 10,000 
synapses per neuron20,21) and neurophysiology (indi-
vidual synapses are weak and unreliable) suggests that 
collective activation of multiple presynaptic neurons  
is necessary to reliably elicit a spike response in a 
post synaptic neuron. Two types of descriptors are 
commonly used to quantify the spiking activity of a 
neural assembly; the firing rates of individual neurons,  
or of the whole ensemble, and the pair-wise or higher-
order correlations among neurons in the ensemble. 
Each descriptor corresponds to a different neural 
code. Stimulus or task-related activity is said to be 
‘rate coded’ when it can be decoded using only the 
firing rates of neurons in an ensemble. On the other 
hand, when stimulus or task-related activity can be 
decoded using synchrony (BOX 2), it is referred to as a 
time (or ‘synchrony’) code. Both types of neural codes 
impose certain constraints on the population activity. 
For example, an ideal firing rate code requires that 
the spiking activities of neurons in a population are 
uncorrelated54,55. By contrast, synchrony is a necessary 
feature of spiking activity for a synchrony code, but it 
will render a rate code inefficient. Therefore, these two 
codes are commonly considered to be dichotomous.

Although firing rates and synchrony are commonly 
used variables for describing the activity of a neural 
ensemble, their quantitative estimates from the spiking 
activities of only few neurons is unreliable. As neural 
activity is not stationary, this makes it even more difficult 
to ascertain whether observed synchrony or correlation 
in spiking activities is an artefact56,57. Thus, sophisticated 
methods are required to quantify the synchrony among 
neurons with non-stationary firing rates58–62.

Despite these technical difficulties, there is ample 
evidence for synchrony37,63–70 and firing rate codes71–75 

 Box 2 | Experimental measurment of firing rate and synchrony

Measurement of the firing rate
The concept of ‘firing rate’ has long been used to quantify the response strength of  
a spiking neuron. Neuronal responses are often quite variable, therefore, most  
methods measure the firing rate effectively by averaging the spike count within a 
certain time window.

Trial-averaged firing rate. The simplest variant is to use long observation windows but 
this compromises the temporal resolution of the measurement. Averaging across a 
sufficient number of trials using the peri-stimulus time histogram (PSTH122) can improve 
time resolution to the millisecond range.

Single-trial firing rate. Firing rates can also be estimated from single trials and some 
degree of temporal averaging or kernel-based methods123 must be employed to reduce 
statistical fluctuations. The temporal resolution of the resulting rate signal, however, 
will not be more accurate than a few inter-spike intervals. Hence, sparse spiking, which 
is typical for the neocortex (< 1 spike per second)25,115 does not allow for a reliable 
estimate of a single-trial firing rate at behaviourally relevant timescales.

Measurement of synchrony
The notions of ‘synchrony’ or ‘correlation’ refer to the joint firing of two (or more) 
spiking neurons. Most methods use joint spike counts (C

1
 and C

2
) derived from two 

simultaneously recorded neurons58,124.

Pairwise correlations. The product C
1 
! C

2
 (the ‘raw count correlation’) represents a new 

signal, which is non-zero if (and only if) both neurons generate at least one spike within 
the same time window. Subtraction of the mean spike count before correlating the two 
signals yields the ‘count covariance’, which is zero for independently spiking neurons. 
Additional normalization of the count variables to unit variance leads to the ‘count 
correlation coefficient’125, which is always a number between –1 and +1. Note that 
correlation-based measures are well behaved only in the case of Poissonian spike statistics. 
Certain properties of real spike trains, most notably their degree of regularity, may impose 
a considerable bias on the measurement of correlations, depending on the bin size that is 
chosen for analysis126. Total pairwise correlation of a population of neurons can also be 
quantified by the ‘fano factor’. To quantify higher-order correlations a number of methods 
have recently been devised62,127,128.

Comparing timescales
When measuring pairwise correlations, it is crucial to subtract the individual mean 
spike counts (related to the firing rates) before correlating the product signal. After 
correcting for the mean, two neurons that spike independently have zero correlation. 
This procedure opens the possibility of choosing a different time resolution for 
measuring the spike count (usually 100 ms) and the raw correlation ( 10 ms). In this 
case the analysis goes beyond measuring just correlations — it also involves 
comparison of different time scales.

It is conceivable that neurons can coordinate their spikes (in pairs or in larger groups) 
to encode one signal, and use their individual firing rates, on a slower timescale, to 
encode another65,76,129. 
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in different brain regions under various experimental 
conditions. In fact, as any text book on neuroscience 
shows, most in vivo recordings identify some neurons 
that show a task-related modulation in their firing rate. 
Moreover, neurons often exhibit modulations in firing 
rate and synchrony simultaneously, both of which may 
encode different aspects of neural information65,76,77. 
Moreover, firing rate and correlation (or synchrony) 
are attractive candidate neural codes because both 
can affect network function by influencing synaptic  
plasticity78–80 and the input–output relations81–85 of 
a neuron. Thus, to study spike propagation in FFNs, 
most researchers have focused on propagation of either 
asynchronous firing rates or synchronous spike volleys 
in FFNs, as reviewed below.

Propagation of asynchronous firing rates
The rate code has a serious problem: even weak pair-
wise correlations in the spike timing can severely limit 
the fidelity of the rate code54. Thus, it is important that 
in the propagation or processing of a rate code, spike  
correlations do not increase (FIG. 3a–c). However, any two 
neurons in an FFN group share their presynaptic inputs 
(depending on the connection probability between 
the groups) and thus, are more likely to spike together. 
Consequently, shared input in an FFN is likely to cause 
correlations in its activity52,86, possibly rendering the 
FFN unsuitable for firing-rate propagation. FIGURE 3d 

and e show an example of the development of synchrony 
during the propagation of an asynchronous firing rate 
in an FFN.

Integrative properties of individual neurons also play 
a key role in introducing synchrony in the propagating 
activity of the FFN83,86. Because individual synapses are 
weak compared to the distance-to-spiking threshold of 
the membrane potential, a neuron needs to integrate 
multiple, near-synchronous post-synaptic potentials to 
elicit a spike. Consequently, when a neuron is stimulated 
with a volley of spikes, with spike times drawn from a 
Gaussian distribution of width (σinput), the width of the 
output spike time distribution (σout) may be smaller than 
σinput. When the number of spikes in the volley can be dis-
regarded (see REF. 4 for a more complete description), it is 
possible to define a linear relationship between σout and 
σinput, such that σout = γ σinput

83. Under realistic conditions, 
the proportionality factor γ depends on the degree of 
convergence, the membrane properties and the synaptic  
time constants, and is typically smaller than one. 
Thus, connectivity of FFNs and single neuron prop-
erties argue against the propagation of asynchronous  
firing rates.

It is conceivable that uncorrelated background 
activity in neurons of different FFN groups may  
balance the synchronizing effect of shared connectivity  
and neural integration properties, thereby enabling the  
propagation of asynchronous firing rates through  
the FFN6 (FIG. 3a–c). However, the occurrence of strong 
and uncorrelated noise conditions in vivo or in an FFN 
that is embedded in a recurrent network is unlikely9. 
Therefore, reducing the connection probability and 
increasing the synaptic strengths between subsequent 

Figure 2 | Cascaded neural assemblies. A | Hebb’s notion of a neural assembly (Aa). 
Hebb used this idea to introduce the concept of ‘phase sequence’ (Ab). The arrows 
represent a simple ‘assembly’ of neural pathways that fire in order according to the 
numbers on each arrow16,121. B | James’ concept of interactions between different brain 
processes (A and B are composed of sub-processes a–e and l–p, respectively)1.  
C | Abeles used the general structure of a feedforward network (FFN) to explain the 
experimental observation of spike patterns with millisecond precision25. The blue circles 
represent neurons. D | A more systematic version of the FFN that is shown in c . This FFN 
has been studied extensively by theoreticians for its dynamics and its propagation 
properties4. E | Singer’s scheme of a ‘parallel read-out’ of a neural assembly by another 
neural assembly41. The blue circles represent neurons that are grouped together to form 
neural assemblies A, B and C (shown by different coloured outlines) whose activity is read 
by another set of assemblies A , B  and C  (REF. 41). F | The concept of a neural transmission 
line, introduced by Griffith. The blue circles represent neurons that make convergent–
divergent connections to transmit neural activity42. Part Aa is reproduced, with permission, 
from REF. 16  (1949) John Wiley & Sons. Part Ab is reproduced, with permission, from 
REF. 121  (1958) W. B. Saunders Company. Part B is reproduced, with permission,  
from REF. 1  (1890) Henry Holt and Company. Part C is reproduced, with permission, from 
REF. 25  (1991) Cambridge Univ. Press. Part D is reproduced, with permission, from REF. 4 

 (1999) Macmillan Publishers Ltd. All rights reserved. Panel E is reproduced, with 
permission, from REF. 41  (2002) Academic Press. Part F is reproduced, with permission, 
from REF. 42  (1963) Cell Press.
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In- and out-degree
In-degree refers to the number 
of input synapses that a 
neuron receives. Out-degree 
refers to the number of 
synapses a neuron makes.

FFN groups might be a better strategy for propagating 
firing rates. In fact, FFNs with only 10% connectivity 
but strong synapses between subsequent groups can 
support the propagation of asynchronous firing rates 
with high fidelity10.

When the connection probability is increased 
to reduce synaptic strengths to biologically realistic 
values, firing-rate propagation is strongly affected in 
multiple ways. First, after propagation through a few 
initial groups, the activity becomes increasingly cor-
related because the synchronizing effects of shared 
connectivity accumulate over consecutive groups8,54 
and hence, the activity can no longer be considered 
a strict-sense rate signal52 (FIG. 3a,b,d). In fact, it was 
observed that after the signal had propagated through 
the first five groups, the estimated firing rate had 
become the rate of correlated events in the group8,9. 
Second, rate propagation without accumulating correl-
ations was observed when the background activity  
was asynchronous–irregular87–89 (BOX 2). Recent work 
indicates that ongoing cortical activity may indeed be 
asynchronous–irregular90 and thus, may support the 
propagation of asynchronous firing rates. Finally, it is not 
easy to maintain a unique representation of firing rates 
during propagation, as differences between rates are  
rapidly quenched8,88 (FIG. 3f,g).

In summary, the modelling studies that are reviewed 
above show that, in principle, firing rates can propa-
gate through an FFN. However, in FFNs with weak  
synapses and high inter-group connectivity, emerging 
synchrony degenerates the fidelity of the propagating 
firing rate signal.

Experimental evidence for firing-rate propagation
It is technically challenging to address firing-rate propa-
gation in physiological experiments because this requires 
simultaneous recording of spiking activities from a large 
number of neurons. However, using a clever iteration 
procedure, it is possible to ‘simulate’ an FFN in vitro3. 
Here, an FFN group of W neurons is mimicked by stimu-
lating a neuron in vitro W times with Poisson-type spike 
trains. The output of the neuron during each stimulation 
is recorded and later used to stimulate the same neuron 
again. N repetitions of this procedure then mimics an 
FFN with N groups of W neurons each. In this in vitro 
‘simulation’ of an FFN, firing rates were propagated for 
at least 10 groups, but with every subsequent group the 
activity became more synchronous3, consistent with 
theoretical predictions8,9. Comparable findings have 
been reported recently in the auditory system of locusts 
in vivo, which can be functionally considered an FFN. 
As stimulus-driven activity travelled through the locust 
auditory system, correlations among neurons increased 
with every processing stage91. Thus, experimental and 
theoretical studies indicate that when firing rate signals 
propagate across successive groups of neurons in an 
FFN, synchrony emerges and an eventual loss of fidelity 
of the rate coded neural signal is inevitable.

Propagation of synchrony
As mentioned earlier, the shared connectivity between 
subsequent groups of an FFN, the spike threshold and 
nonlinear integration properties of neurons may con-
spire to facilitate synchronous activity83,86, causing 
uncorrelated firing rates to become synchronous as they 
propagate through an FFN3,8,9,91. Does this mean that 

Figure 3 | Transmission of asynchronous firing rate in an FFN. a | Asynchronous 
firing rate input (20 spikes per seconds) to the first group of the feedforward network 
(FFN). The top part shows a spike raster diagram. Each line of dots represents the spiking 
of one neuron in the group. The bottom trace shows the population activity in the first 
group. b,c | Examples of stable propagation of asynchronous firing rates. The activity in 
the third (b) and sixth (c) groups of the FFN is shown. The absence of vertical stripes in the 
spike rasters and the small fluctuations in the population activity indicate that the 
propagating activity remains asynchronous. d,e | Examples of development of synchrony 
in the FFN. The activity in the third (d) and sixth groups (e) of the FFN is shown. As the 
asynchronous activity propagates through the FFN, residual transient synchrony is 
amplified, as indicated by the vertical stripes in the spike rasters and by the large 
fluctuations in the population activity. With such large synchronous events in the activity 
of the last group, the firing rate in the FFN degrades to become the rate of synchronous 
events. f | Illustration showing how firing rates in the FFN are unique representations, 
with each input firing rate resulting in a different output rate. g | Illustration showing a 
non-unique representation in terms of firing rates in the FFN. Independent of the input 
firing rates, all of the output firing rates rapidly converge to the same value.
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Asynchronous–irregular 
A network state characterized 
by irregular firing of individual 
neurons (measured by the 
coefficient of variation of the 
inter-spike-interval distribution) 
and by asynchronous 
population activity (measured 
by pairwise correlation or fano 
factor) (BOX 2).

Fixed point
If the system arrives at this 
point in its state-space, it 
remains there permanently in 
the absence of disturbances  
(a steady state). Fixed points 
can be stable or unstable.

Attractor
A fixed point in the state-space 
that attracts all of the system 
trajectories passing through its 
neighbourhood.

Saddle node
A fixed point that attracts 
some nearby trajectories but 
repels others.

State-space
A multi-dimensional space 
defined by variables that 
characterize the system state. 
If there are N such variables, 
each state is represented by a 
point in an N-dimensional 
state-space.

FFNs are more suitable for propagating synchronous 
activity, and that even weak synchrony in the activity 
will be amplified during propagation?

To study the propagation of synchrony in an FFN, the 
notion of a pulse packet was introduced4,12 — that is, an 
ensemble of α spikes, the times of which are drawn from 
a Gaussian distribution with standard deviation σ. Thus, 
propagation of synchrony in an FFN can be quantified 
by estimating α and σ of the spiking activity in succes-
sive neuron groups as a pulse packet travels through the 
FFN. When α and σ of each group are plotted against 
each other, the resulting trajectory presents a discrete 
description of the pulse packet’s evolution in the (α–σ)-
state space (FIG. 4c). For an isolated FFN of appropriate 
group size, there are two fixed points — an attractor and 
a saddle node in the two-dimensional state-space. A line 
passing through the saddle node termed the ‘separatrix’ 
divides the state-space into two regimes. Activity starting 
above the separatrix (FIG. 4) eventually converges into the 
attractive fixed point, indicating a stable propagation of 
the pulse packet (FIG. 4a,c). By contrast, activity starting 
below the separatrix (FIG. 4d) eventually fades into the 
background activity (FIG. 4b,c). Over the first few initial 
groups, such fading of activity may be perceived as pro-
gressive (not necessarily monotonic) broadening and/or 
diminishing of propagating activity.

The location of the separatrix in the (α–σ) state-space 
is the most important feature for the propagation of a 
pulse packet in an FFN. Multiple properties of the FFN, 
such as background activity of the embedding network9, 
noise level13 and temporal correlations between excita-
tion and inhibition92 can alter the location of the separa-
trix and thus, affect the propagation of the pulse packet 
(FIG. 4d). Moreover, heterogeneity in the FFN, particu-
larly in the numbers of FFN synapses and their synaptic 
strengths, may introduce complex dynamics (for example,  
oscillations and chaotic attractors) in the FFN93,94. 

A qualitatively similar state-space was obtained when 
an FFN was embedded in a locally connected random 
network9. The low firing rate and asynchronous–irregular  
activity of the embedding network provided the most suit-
able substrate for propagating a pulse packet through the 
embedded FFN. Synchrony in the embedding network  
shifted the separatrix upwards, thereby reducing the 
probability of the successful propagation9 (FIG. 4c,d). The 
emerging picture can be likened to the propagation of 
waves in the sea — when the sea surface is calm, sea 
waves may propagate over long distances. By contrast, 
even strong waves may not propagate far in a rough sea. 

The results obtained by extensive numerical simula-
tions were further corroborated by analytical treatments 
of the problem. Analytical studies have identified synaptic 

Figure 4 | Propagation of a pulse packet in an FFN. a | An example of stable propagation of a pulse packet. The 
horizontal lines in the raster plots separate successive groups of neurons within the feedforward network (FFN). Note that 
the pulse packet becomes progressively more synchronous as it travels through the FFN. b | An example of an unsuccessful 
propagation of a pulse packet. Here, the pulse packet becomes progressively weaker and is eventually indistinguishable 
from the background activity. c | State-space representation of pulse packet propagation. Activity in each group of the 
FFN is quantified by the number of spikes (α) and the standard deviation of spike times (σ). Each trajectory represents the 
evolution of pulse packets with specific initial parameters. The point where the trajectories converge marks the attractor 
of the FFN, corresponding to a stable propagation of the pulse packet. The trajectories leading to the bottom right corner 
(low α, high σ) indicate failed propagation. The blue line (without arrows) marks the separatrix of the FFN. d | The location 
of the separatrix in (α–σ) space can be changed by modulation of the noise level in the FFN or of integration of time 
constants of the neurons. The latter can be achieved by altering the latency of the feedforward inhibition. This change in 
the location of the separatrix can be used to facilitate or block the propagation of the activity in the FFN. For example,  
in the default state of the FFN, the separatrix (shown by the blue trace) allows for successful propagation of the activity of 
stimulus 1 (S

1
; shown by the green trace), while the activity S

2
 would fade into the background (shown by the red trace). If 

the separatrix is moved up (shown by the grey dotted line), propagation of activity can be blocked (shown by the grey 
trace). In contrast, if the separatrix is moved down (shown by the black dotted line), propagation of activity S

2
 can be 

facilitated (shown by the black trace). Part c is modified, with permission, from REF. 4  (1999) Macmillan Publishers Ltd. All 
rights reserved. Part d is modified, with permission, from REF. 92  (2010) Springer. FP, fixed point; Bkg, background.
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noise5, the input–output transfer function of the neuron95 
and the refractory properties of the neural membrane7 as 
factors that influence the properties of the FFN. 

Experimental evidence for synchrony propagation
Systematic experiments have not been carried out to 
investigate the propagation of synchronous activity (for 
example, of pulse packets). Some recent studies, however, 
have indirectly addressed this issue in cortical networks 
and in the thalamocortical system. In the song-generation  
system of songbirds, which is functionally equivalent to an 
FFN96, propagation of correlated activity was more likely 
than that of uncorrelated activity97–99. Similar results were 
reported for the locust auditory system91. Finally, thalamic 
projections onto layer IV neurons in the somato sensory 
cortex of rodents were found to be weak, such that only 
synchrony among the thalamic afferents could reliably 
elicit a response in the sensory cortex100. The in vitro 
simulation of FFNs, discussed above, also showed an 
amplification of synchrony during propagation3.

Thus, multiple computational studies, together with 
indirect support from experiments, argue that FFNs are 
more suited to propagating synchronous spikes than 
asynchronous firing rates. 

Firing rate versus synchrony propagation
Why are there two different activity propagation 
modes? A detailed look at the various FFN models 
reveals that FFNs that have been studied so far belong 
to two different classes: class I FFNs4,5,7–9,12,13,52, which 
are characterized by full (or at least, dense) connec-
tivity with weak synapses (high shared connectivity),  
and class II FFNs6,10, which are characterized by sparse 
connectivity and strong synapses (low shared con-
nectivity). Because shared connectivity can induce 
correlations in activity, it is not surprising that class I 
FFNs support the propagation of synchrony, whereas 
class II FFNs support the propagation of asynchronous 
firing rates.

This subdivision into two classes of FFNs raises the 
question of whether there is an FFN that can sustain 
the propagation of firing rates and synchrony, without 
affecting the fidelity of either signal during propagation. 
To address this question, we simulated an FFN with 6 
groups, each with 150 excitatory neurons9 (A. Kumar, 
S. Rotter and A. Aertsen, unpublished observations). 
Each neuron received balanced excitatory and inhibi-
tory inputs and spiked in an asynchronous–irregular 
manner at a mean firing rate of 2 spikes per second 
(see Supplementary information S1 (box)). In the FFN, 
neurons in one group were connected to the neurons 
in the next group, with conductance-based synapses. 
The two main FFN parameters — synaptic strength (Je) 
and the probability of a synapse being formed between 
neurons in successive groups (ε) — were varied system-
atically. This enabled the full FFN parameter space to 
be explored, covering class I and class II FFNs as well 
as intermediate FFNs. Neurons in the first group of the 
FFN were stimulated with a pulse packet or with asyn-
chronous firing rates The parameters of the stimulus, as 
it evolved through the FFN, were used to quantify the 
activity propagation (BOX 3; FIG. 5).

FIGURE 5a shows the propagation of asynchronous  
firing rates (estimated by the signal-to-noise ratio of fir-
ing rate SNRR; BOX 3) in the FFN as a function of ε and Je. 
For small ε and Je (FIG. 5a), no activity propagated through 
the FFN because the input was too weak. High values of 
ε and Je made the network spontaneously active. This 
reduced the SNRR considerably, and it was not possible to 
discern any signal from the ongoing background activity. 
For moderate values of ε (0.1–0.5) and Je (0.1–0.3 mV) 
a large region in the (ε–Je) parameter space (FIG. 5a; 

enclosed by solid and dashed black lines) supported a 
high SNRR. However, as discussed above, a genuine rate 
code also requires the activity to remain asynchronous 
as it propagates. The region for which synchrony in 
the propagating rate signal remained low (correlation 
<0.1) is indicated in FIG. 5a. Clearly, the two regions, 
black-bound and grey-bound, only partially overlap. 
Thus, imposing both constraints — high SNRR and low  
synchrony — dramatically reduces the parameter range 
and this supports a high fidelity rate code signal: the  
narrow band enclosed by solid grey and black lines in 
FIG. 5a marks the region in the FFN parameter space  
in which an asynchronous firing rate signal is faithfully 
propagated (high SNRR, low synchrony).

 Box 3 | Measuring spike propagation

When a synchronous or asynchronous ensemble of spikes is injected into the first group 
of a feedforward network (FFN), successful propagation means that the input can be 
recovered in the subsequent layers of the FFN. Therefore, the first criterion for 
successful activity propagation is that it should be discernible from the background 
activity. Second, in the course of propagation the nature of the activity should not 
change, that is, synchronous activity should remain synchronous and likewise for 
asynchronous activity. In the following, we define two descriptors that address these 
two criteria of successful propagation9.

Signal-to-noise ratio 
Signal-to-noise ratio (SNR) for the propagation of a firing rate is defined as the ratio 
between the stimulus-induced firing rate in the Nth group of neurons of a network and 
the firing rate in these neurons before the stimulus occurred.

Nature Reviews | Neuroscience

fr(
t

rate
 refers to the time interval during which  the stimulus was present and t

bkg
 refers to  

a time interval before the rate stimulation occurred. t
rate

 and t
bkg

 are of the same 
duration. fr(N, t) refers to the average firing rate of the Nth group of neurons in the 
respective time interval. 

Similarly, the SNR for synchrony can be defined as:
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where t
pp

 refers to the duration of the pulse packet, and t
bkg

 refers to a time interval 
before the pulse packet stimulation. A(N, t) refers to the total spike count in the Nth 
group of neuons in the respective time interval t.

According to this framework, a high-fidelity transmission of spiking activity would be 
associated with either maintenance of SNR after the first group or even an increase in 
the value of SNR as the activity propagates through the FFN. SNR can also be estimated 
by taking the ratio of concurrent activity in the last group and the neurons in the 
embedding network.

Pairwise correlation 
For rate code transmission, correlations should be kept close to zero within every group 
of an FFN, whereas for synchrony transmission, correlations in every group of the FFN 
should be maximized (see also BOX 2).
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FIGURE 5b shows the signal-to-noise ratio of a propa-
gating pulse packet (signal-to-noise ratio of synchrony 
(SNRS; BOX 3) as a function of ε and Je. There is a region 
in (ε–Je) space (enclosed by blue lines) in which the pulse 
packet propagated with high SNRS. When the regions that 
allow for a stable propagation of firing rates (FIG. 5a) and 
synchrony (FIG. 5b) are superimposed, the region of the 
(ε–Je) parameter space that supports stable propagation 
of firing rate and synchrony can be identified (FIG. 5c; 
shown in green). FIGURE 5 also reveals that the two classes 
of FFNs are in fact situated in diagonally opposite corners 
of the FFN parameter space (insets). Therefore, it is not 
surprising that different studies have reached partially 
opposing conclusions concerning the propagation of 
their ‘favoured’ activity mode in the FFN.

In summary, a general structure of FFNs allows, in 
principle, stable propagation of asynchronous firing 
rates and synchronous pulse packets, provided that 

the FFN parameters ε and Je are chosen appropriately. 
Further modifications in the general architecture of 
the FFN, for example increased group size, inclusion of 
recurrent connections within groups or heterogeneity 
in neuron properties, may further increase the param-
eter space that allows for propagation of both types of  
spiking activity.

Inhibition in the FFN
Computational studies of activity propagation in  
isolated FFNs have largely disregarded the role of inhibi-
tion within or across different layers in the FFN. Only 
a few studies implicitly included intra- and inter-layer 
inhibition when studying the dynamics of FFNs that are 
isolated8 or embedded in a recurrent network9,10,50–52. 
However, these studies did not focus on isolating the role 
of inhibition in shaping activity propagation. Only in one 
study was inhibition between subsequent layers explicitly 

Figure 5 | Coexistence of firing rate propagation and synchrony propagation. a | Signal-to-noise ratio of firing rate 
propagation (SNR

R
) in the sixth group of the feedforward network (FFN) is shown as a function of connection probability (ε) 

and synaptic strength (J
e
). The solid and dashed black lines enclose the region in the (ε– J

e
) space with high SNR, indicating 

stable propagation of firing rates. The solid and dashed grey lines enclose the region in the (ε– J
e
) space where the activity 

in the sixth group could be considered asynchronous (pairwise correlation-coefficient <0.1). Thus, the region enclosed by 
solid grey and black lines can be considered suitable for asynchronous firing rate propagation. b | Signal-to-noise ratio of 
synchrony (SNR

S
) propagation. SNR

S
 in the sixth group of the FFN is shown as a function of ε and J

e
. The blue lines mark the 

region that is suitable for stable propagation of synchronous activity. c | The black and grey lines from part a and the blue 
lines from part b are plotted together to identify the region in the  (ε– J

e
) parameter space that is suitable for propagation 

of both asynchronous firing rate and synchronous pulse packets (shown by green shading). The four insets show extreme 
cases of an FFN architecture, considering the synaptic strength (shown by the thickness of the arrows) and the connection 
probability between neuron groups (a greater number of arrows represents greater connection probability).
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Rank-order coding
A spatiotemporal pattern of 
spikes in which the temporal 
rank of spikes carries 
information about a stimulus  
or cognitive state.

Sparse code
A coding scheme in which 
strong activation of a relatively 
small set of available neurons  
is used for information 
representation.

used to stabilize the dynamics of the embedding network50.  
A recent study showed that small changes in the latency of 
feedforward inhibition can alter the location of the sepa-
ratrix92. One of the implications of this finding is the pos-
sibility that activity propagation can be selectively gated 
(FIG. 4d) . A recent theoretical study has described condi-
tions under which recurrent inhibition may decorrelate  
the activity in recurrent networks89. Such decorrelated 
background activity (asynchronous–irregular) is better  
suited to propagate synchrony in the FFNs that are 
embedded in a recurrent network6. However, more 
systematic analysis is needed to understand how decor-
relating the effects of recurrent inhibition would affect 
the activity propagating through the embedded FFNs. 
Apart from being of theoretical interest, this would also 
help to interpret activity propagation in in vivo FFN-type 
systems (for example, song-generation in songbirds or 
hearing in insects) where inhibition is ubiquitous. 

Gating the propagating spiking activity
Apart from transmission itself, the regulation of spiking- 
activity propagation is an equally important point to 
consider. In a modular system like the brain, cogni-
tive functions such as action-selection require that a 
parti cular signal is able to be directed to one of multi-
ple subsequent processing stages26,101. In this scenario, 
the brain needs a mechanism to control the propaga-
tion of activity over multiple, interacting signal path-
ways. Thus, selective blocking or boosting of a neural  
signal could be an efficient mechanism for fast action- 
selection on millisecond timescales102. Recently it was 
shown that a detailed balance of excitation and inhibi-
tion at the receiving FFN group is a potent way to control  
the tonic (slowly changing) part of a neural spike  
signal11. This mechanism, however, fails to control the 
propagation of neural activity transients (rapid changes) 
that occur frequently in a natural stimulus environment 
as a consequence of stimulus driven changes in firing 
rates or due to the emergence of correlations in the  
network64,103–105. Selective gating of such activity  
transients can, however, be achieved by exploiting the 
sensitivity of the separatrix location to the relative 
latency between excitation and inhibition106 (FIG. 4d). By 
carefully modulating the latency of excitation and inhi-
bition, it is possible to either block or facilitate the prop-
agation of activity transients: temporal gating (FIG. 4d). 
Thus, when combined with excitation–inhibition  
balance, temporal gating constitutes a powerful mecha-
nism to control the propagation of mixtures of tran-
sient and tonic neural activity components (J. Kremkow,  
A. Aertsen and A. Kumar, unpublished observations). 

Spike propagation and computing
Thus far in this review of propagation of spiking activ-
ity, we have considered the FFN as a transmission line42.  
According to this idea, a faithful propagation of spiking 
activity in an FFN does not interfere with the ongoing 
activity and the nature of the propagating activity remains 
unaffected during propagation. However, the idea of pre-
serving a spike signal across different stages should not 
be taken too literally. Obviously, if neither rate (rate code)  

nor synchrony (time code) change across layers, the 
network would not perform any useful computation. 
It can be argued, however, that in a system composed  
of multiple FFNs, the selection of a particular FFN 
and the subsequent routing of its activity propagation  
are themselves elementary computations26,27,101,107.

The FFN, independently of the underlying neuron 
model, with its convergent–divergent connections is 
a powerful computing device that can solve a host of 
complex computational problems108. So far, the possi-
bilities of computing with FFNs of spiking neurons have 
not been widely explored. The state-space of the FFN 
(such as α–σ space) already indicates that by carefully 
controlling the separatrix (FIG. 4d), the spike response in 
any given layer of the FFN can be controlled in multiple 
ways. Furthermore, variation of the synaptic weights 
and latencies in the FFN could be used to recruit differ-
ent dynamic states for information processing93,94.Thus, 
in principle, FFNs with spiking neurons can perform 
meaningful transformations on the propagating activity. 
Now that we understand how different types of neuronal 
activity may propagate in an FFN, future research can 
exploit the computational potential of such networks 
with convergent–divergent connections.

Future directions
The simple yet powerful architectural concept of the FFN 
provides a minimal framework for studying coding and 
for interpreting certain aspects of information process-
ing in the brain. So far, theoretical work has focused on 
the propagation of firing rates and synchrony in FFNs. 
However, it is equally important to study how other 
potential neural codes, such as rank-order coding109–112, 
correlation codes39,66–70,113, sparse codes114–117 and spatio-
temporal patterns15,118 propagate in FFNs. Similarly, the 
issue of interactions between FFNs9 and a related issue, 
the coding capacity of a recurrent network that consists 
of FFNs45, need to be studied systematically. Having 
understood the transmission properties of FFNs it is 
important to further investigate the computational prop-
erties of FFNs. In fact, such lines of investigation could 
draw inspiration from the extensive body of literature in 
the field of artificial neural networks108.

When activity propagates in an FFN, groups of  
neurons are activated in a sequential manner (potentially 
seen as spatiotemporal spike patterns in multi-electrode 
recordings). This has prompted the idea that using  
simple biologically plausible plasticity mechanisms, such 
as spike-timing-dependent plasticity (STDP)78, might 
facilitate the dynamic emergence of FFNs in recurrent 
networks119. However, even an artificially embedded FFN 
network fails to survive in a recurrent balanced network 
as STDP tends to isolate it from the embedding net-
work120. On the other hand, spontaneous activity in large 
random networks with STDP may have pulse packet-like 
spiking patterns49. It is possible that the failure to sus-
tain an embedded FFN in a recurrent plastic network 
is an artefact of the specific STDP implementation46.  
Therefore, it is important to further explore different 
plasticity rules that may support stable dynamics in the 
FFN and the embedding network.
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Surprisingly, only a handful of experimental studies 
have addressed the issue of spiking-activity propagation 
between neuronal networks3,91,97–99, notwithstanding its 
obvious importance for a candidate neural code2. These 
experiments have provided partial support to the theo-
retical predictions that spiking activity tends to become 
more synchronous during propagation over multiple 
networks and, therefore, that a neural code based on 
synchronous activity may be more suitable. However, a 
direct experimental confirmation (or refutation) of the 
theoretical predictions is currently lacking.

To address the question of spiking-activity propaga-
tion, careful experimental testing of only a few layers of 
connected neuron groups would be highly instructive. 
Multiple brain regions, such as the thalamocortical system,  
the entorhinal-hippocampus network, the basal ganglia 
and the amygloid complex, are potential candidates for 
studying the propagation of spiking activity and the 
underlying neural code in vivo. Controlled stimulation 
of appropriately selected neural networks in vivo using 
either electrical or optical methods to generate activity 
patterns that conform with either pulse packet or asyn-
chronous firing rate type input, could provide an effec-
tive paradigm. Standard physiological experiments using 
simple (artificial) or natural sensory stimuli are unlikely 
to provide clear conclusions regarding these issues. No 
matter how simple or natural a stimulus might appear 
from the human perspective, sensory organs (especially 

actively sensing organs) may transform the stimulus in 
a highly nonlinear fashion such that — already after 
the first processing stages — neurons may not receive a 
purely asynchronous firing rate or synchrony modulation  
— in real life, clear dichotomies tend to be rare.

Conclusions
To understand the neural code is fundamental to neuro-
science. Perkel and Bullock2 suggested four fundamental 
functions that a candidate neural code must serve. Three 
key functions of the neural code — stimulus represen-
tation, interpretation and transformation properties — 
have been extensively studied, both theoretically and 
experimentally. Here, we have reviewed the literature on 
the fourth function, namely transmission. Theoretical 
studies have suggested contrasting possibilities for the 
propagation of firing rates and synchrony in a widely 
studied network model, the FFN. We show that these two 
seemingly conflicting results represent two extremes of a 
continuum. Given the importance of this issue, experi-
mental testing is vital. Fortunately, recent developments 
in experimental methods enable such testing in differ-
ent brain regions. Our conclusion, that a specific FFN 
architecture may simultaneously support stable propaga-
tion of activity in both regimes, opens new possibilities 
for neural information processing strategies that exploit 
both firing rate and spike correlations as candidate  
neural codes.
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