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Gating of Signal Propagation in Spiking Neural Networks by
Balanced and Correlated Excitation and Inhibition
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Both ongoing and natural stimulus driven neuronal activity are dominated by transients. Selective gating of these transients is
mandatory for proper brain function and may, in fact, form the basis of millisecond-fast decision making and action selection.
Here we propose that neuronal networks may exploit timing differences between correlated excitation and inhibition (temporal
gating) to control the propagation of spiking activity transients. When combined with excitation–inhibition balance, temporal
gating constitutes a powerful mechanism to control the propagation of mixtures of transient and tonic neural activity components.

Introduction
Appropriate action selection is one of the fundamental problems
that the brain needs to solve in its interaction with the environ-
ment. This problem is even enhanced by the intrinsically parallel
architecture of the brain. A mechanism based on winner-take-all
dynamics is often suggested for this purpose (Ermentrout, 1992).
However, winner-take-all dynamics require strong recurrent
inhibition, which may not be available in every brain region
(Tepper et al., 2004). Moreover, winner-take-all dynamics are
typically slow if the competing signals are of comparable strength,
and may even result in unpredictable responses in the presence of
transient synchrony within and among the competing inputs
(Ermentrout, 1992). Another approach to action selection could
be based on the gating of signals, such that only one (or few)
effectively propagate to the next processing stage. Thus, recently
Vogels and Abbott (2009) demonstrated that detailed balance of
excitation and inhibition (amplitude gating) can efficiently
gate the propagation of firing rates. However, while this mech-
anism allows for a rapid selection among competing rate in-
puts, it fails to control activity transients on a timescale of up
to a few tens of milliseconds [Vogels and Abbott (2009), their
Fig. 3f]. In a natural stimulus environment, such activity tran-
sients frequently occur as a consequence of stimulus-driven
changes in firing rates or by the emergence of correlations in
the network (Buracas et al., 1998; Bar-Yosef and Nelken, 2007;
Butts et al., 2007; Hromádka et al., 2008; Haider et al., 2010).
Therefore, reliable gating of activity transients is a prerequisite
of proper brain function.

Here we propose an alternative gating mechanism that ex-
ploits temporal differences between correlated excitation and in-

hibition (Okun and Lampl, 2008; Gentet et al., 2010). We
show that small differences between the timing of excitation
and inhibition (referred to temporal gating from hereon) can
act as a modulator of neuronal integration time and, thereby,
serve as a highly selective gate for signal transients. The pro-
posed mechanism allows for both gating at a millisecond time-
scale and reliable control of onset transients and correlated
rate inputs. When combined with amplitude gating, temporal
gating constitutes a powerful mechanism to control the prop-
agation of mixtures of transient and tonic neural activity
components.

Materials and Methods
Models
Neurons
The neurons in the network were modeled as leaky integrate-and-fire
neurons, with the subthreshold dynamics of the membrane potential
Vi(t) in neuron i described by the following equation:

C
d

dt
Vi!t" ! Grest#Vi!t" " Vrest$ # Ii

syn ,

where Isyn
i is the total synaptic input current into neuron i, and C and

Grest denote the passive electrical properties of its membrane at rest
(Vrest). When the membrane potential reached a fixed spike threshold
Vth above rest, a spike was emitted, the membrane potential was reset to
its resting value, and synaptic integration was halted for 2 ms, mimicking
the refractory period in real neurons. The parameters used in the simu-
lations were as follows: C % 290 pF, Grest % 29 nS, Vrest % &70 mV, and
Vth % &57 mV (Destexhe et al., 1998; Muller et al., 2007).

Network
We simulated a network of 28,125 neurons, with 22,500 excitatory and
5625 inhibitory neurons (ratio 4:1). The excitatory neurons were ar-
ranged on a Cartesian grid of 150 ' 150, the inhibitory neurons on a grid
of 75 ' 75. Both grids represented the same cortical space of 1 ' 1 mm 2.
To avoid boundary effects, the network was folded as a torus. The recur-
rent network was sparsely connected with a connection probability of
(5% (Kexc3exc % 1120, Kexc3inh % 280, Kinh3exc % 1120, Kinh3inh %
280). As an exception to this rule, excitatory neurons that participated in
the signal path received less than 5% connection from the background
neurons, to maintain the same in-degree. The local connection probabil-
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ity was described as a function of their cell body distance using a Gaussian
profile (Hellwig, 2000). The width of the Gaussian describing the con-
nection probability $e was set to 0.6 mm for the excitatory and $i % 0.1
mm for the inhibitory connections (Stepanyants et al., 2008) (Fig. 1a). In
addition to the local connections from within the network, each neuron
received excitatory connections from outside, mimicking both long-
range connections within the same cortical area and input from other
areas in cortex (Braitenberg and Schüz, 1991; Kumar et al., 2008a). The
external inputs were modeled as uncorrelated Poisson-type spike trains.
The rate and strength of external inputs (1500 excitatory synapses per
neuron, each at (2 Hz) were adjusted to obtain a low-firing-rate ((3
Hz), asynchronous (pairwise correlation ) 0.01), and irregular activity
state in the network (Brunel, 2000; Kumar et al., 2008b).

Synapses
Synaptic inputs were modeled as transient conductance changes, using
exponential functions with %exc % 1.5 ms and %inh % 10 ms (Kuhn et al.,
2004; Muller et al., 2007). Excitatory and inhibitory synaptic delays in the
embedding network were set to 2 ms. The weights (peak conductance) of
the excitatory synapses targeting excitatory neurons (JEE) were set to 0.5
nS, such that a postsynaptic potential of (0.15 mV was elicited at rest
(Matsumura et al., 1996; Bruno and Sakmann, 2006; Kumar et al.,
2008a). The weight of excitatory synapses targeting inhibitory neurons
(JEI) was set to 1 nS (Cruikshank et al., 2007; Kremkow et al., 2010). The
synaptic weights of all inhibitory synapses (JII, JIE) were set to a 0.5 nS
conductance value. This set of synaptic strengths and external input (see
above) generated both a realistic effective membrane time constant of (5
ms (Anderson et al., 2000; Destexhe et al., 2003; Léger et al., 2005) and a
realistic low-firing-rate, asynchronous-irregular network activity regime
(Brunel, 2000; Kumar et al., 2008b; Ecker et al., 2010).

Embedding of a feedforward network as signal path
To construct a signal path, we embedded a feedforward network, con-
taining three successive groups of neurons (sender, gate, and receiver
groups), into the recurrent network. The sender group was composed
solely of 100 excitatory neurons, whereas the gate and receiver group
contained 100 excitatory and 25 inhibitory neurons each (Fig. 1b). The
inhibitory neurons provided the balancing inhibition in the signal path
and controlled the effective integration time of the excitatory neurons.
The three groups were spatially separated to avoid cross talk between
groups (Kumar et al., 2008a) (Fig. 1b). The neurons constituting a group
were randomly chosen from a local pool of 300 excitatory and 75 inhib-
itory neurons. The center of the neuron pool defined the physical loca-
tion of the group in the network. Each neuron in the signal path received
convergent inputs from 60 randomly selected excitatory neurons of the
preceding group. The neurons in the gate and receiver groups received
excitatory synapses from 1060 neurons (*5%) of the background net-
work to maintain uniform in-degree in the network. The delay of exci-
tatory synapses in the signal path was set to 5 ms (Aertsen et al., 1996;
Diesmann et al., 1999). This choice of the excitatory delays of 5 ms is
somewhat arbitrary. These delays are supposed to mimic the latency
between different neighboring brain regions, and such delays can be in
the order of up to 10 ms. Further, we point out that these delays do not
influence the dynamics of the embedding network and the embedded
feedforward network, and can be reduced to any arbitrary value without
influencing the gating. In the default state of the signal path, the delay of
inhibitory synapses onto the excitatory neurons within a group was set to
2 ms (Cruikshank et al., 2007; Kremkow et al., 2010).

Embedding multiple signal paths
To construct two signal paths that merged in the gate group, we embed-
ded the first signal path as described above. The sender group of the
second signal path was then added. It was spatially separated from the
first sender group to avoid cross talk. The excitatory neurons in the gate
and receiver groups were common in both signal paths. The inhibitory
neurons of the gate group in both signal paths were randomly chosen
from a local pool of 75 inhibitory neurons. Thus, both signal paths might
share a small fraction of inhibitory neurons in the gate group (see Fig. 5a).

Stimuli
We used three different stimulus classes to study signal propagation and
gating in the signal path.

Pulse packet input. The input to the sender group was a volley of spikes
with & spike times drawn from a Gaussian distribution of width$ (Aertsen et
al., 1996; Diesmann et al., 1999). The number of synapses from the pre-
synaptic neurons to the sender group was set to 60, the same as within the
signal path.

Uncorrelated rate input. We used a Poisson process to stimulate the
sender group with uncorrelated firing rate input (Vogels and Abbott,
2009). The onset time of the stimulus was set to 500 ms to mimic a
sudden activation of the signal path (Butts et al., 2007). The rate of the
Poison process was set to 200 Hz to induce a strong onset transient.

Correlated rate input. To introduce correlation in the firing rate input,
we used the multiple-interaction process (MIP) (Kuhn et al., 2003). This
process introduces correlations by copying spikes from a Poisson
“mother process” into a desired number of “children” processes. The
copy probability (c) defines the correlation among the children pro-
cesses. As in the uncorrelated rate input, the onset time constant of the
correlated rate stimulus was set to 500 ms. The rate of the MIP popula-
tion was set to 20 Hz to illustrate that even at low firing rates, spike
correlations [c % 0.5, e.g. (see Fig. 3d)] could induce strong transients.

Data analysis
Event characterization
To characterize the spiking activity of each group and, thus, the & and $
of the pulse packet sent to the next group, we measured “events,” i.e.,
distinct, short bursts of spikes in the peristimulus time histogram
(PSTH) of all excitatory neurons in a group. The spike count of all exci-
tatory neurons in an event described the response strength &. Likewise, $
described the temporal spread of the spike times, that is, the time differ-
ence between the start and end of the “event.” Thus, the propagation of
activity in the signal path was determined by the response of the three
groups of the signal path, quantified by & and $.

Signal propagation
To determine whether a signal, composed of multiple pulse packets,
could successfully propagate from the sender to the receiver, we mea-
sured the similarity between the spiking activities in both groups. The
similarity was calculated by cross-correlating the PSTHs of the excitatory
neurons in both groups. In case of successful propagation, the signal in
the receiver group should have a similar temporal sequence of peaks in
the PSTH. However, due to the synaptic delay in the signal path, this
sequence would be shifted in time. Therefore, when calculating the cross-
correlation between sender and receiver, we accounted for this time shift.

Simulation tools
All network simulations were written in Python (http://www.python.org)
using PyNN (Davison et al., 2008) (http://neuralensemble.org/trac/PyNN)
as interface to the simulation environment NEST (Morrison et al.,
2005; Gewaltig and Diesmann, 2007; Eppler et al., 2008) (http://www.
nest-initiative.org). The dynamical equations were integrated at a fixed tem-
poral resolution of 0.1 ms. Simulation management was performed using the
Python package NeuroTools (http://neuralensemble.org/trac/NeuroTools).
Simulation data were analyzed in Python using the scientific libraries SciPy
(http://www.scipy.org) and NumPy (http://numpy.scipy.org) and visual-
ized using the plotting library Matplotlib (http://matplotlib.sourceforge.
net).

Results
To systematically study the concept of temporal gating, we em-
bedded a signal path in a large-scale recurrent cortical network
model (Fig. 1a,b). The signal path was a feedforward network
consisting of three successive groups of neurons. The first group,
composed of excitatory neurons activated by the stimulus, is re-
ferred to as the sender. The second and third groups contained
both excitatory and inhibitory neurons, with the inhibitory neu-
rons providing disynaptic inhibition to the excitatory neurons
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within the same group. The third group is referred to as receiver,
whereas the second group, which is in a strategic position to influ-
ence propagation from sender to receiver, is referred to as the gate
(Fig. 1b). However, the gating mechanism is flexible and in a feed-
forward network with more than three groups, any group can be
considered as a gate group between its preceding and succeeding
partner groups. The embedding network was tuned into an
asynchronous-irregular state to provide realistic background activity
(Kumar et al., 2008a) (cf. Materials and Methods).

Temporal gating of signal propagation
To illustrate the mechanism of temporal gating, we stimulated
the sender group with a volley of spikes (pulse packet; cf. Mate-
rials and Methods), with & spike times drawn from a Gaussian
distribution of width $.

We first considered the propagation of a synchronous stimu-
lus S1 (small $). In the default state of the signal path (cf. Mate-
rials and Methods), S1 generated a transient response in the
sender, which successfully propagated through the gate to the
receiver (Fig. 1c). This propagation can be described in terms of
the synfire attractor, a defining feature of feedforward network
dynamics (Diesmann et al., 1999; Kumar et al., 2008a, 2010;
Kremkow et al., 2010), with the fate of signal propagation being
determined by the properties of the pulse packet stimulus. The
(&, $) state space is subdivided by a separatrix (schematically
shown in Fig. 2a, blue line). If the pulse packet starts above the
separatrix (class P stimulus), the signal converges into a fixed
point (FP) and propagates in a stable manner (Figs. 1c, 2a). If, by
contrast, the pulse packet starts below the separatrix (class F stim-
ulus), the signal progressively dies out, indicating failure to prop-
agate (Figs. 1d, 2a). Thus, the location of the separatrix is the
critical parameter that controls the propagation of a stimulus
(Diesmann et al., 1999; Kumar et al., 2008a, 2010; Kremkow et al.,

2010). Consequently, altering the location of the separatrix could
change a class P stimulus into a class F stimulus (or vice versa),
thereby providing a simple mechanism for gating the propagation of
more or less transient spiking activity (Fig. 2a). Various properties of
the feedforward network, such as group size, connection probability,
and weights determine the location of the separatrix in the (&, $)
space, which, however, can also be modulated by the dynamical
properties of the feedforward network, such as noise level of the
embedding background activity (Diesmann et al., 1999; Gewaltig et
al., 2001). Furthermore, we recently showed that the delay between
excitation and inhibition within one group changes the slope of the
separatrix by effectively altering the integration time (+t) of the neu-
rons (Kremkow et al., 2010). Interestingly, recent data from in vivo
measurements of the delay between excitation and inhibition (Okun
and Lampl, 2008) are in the right range to alter the slope of the
separatrix in an appreciable way. Several biologically plausible mech-
anisms could lead to dynamic variations in the excitation/inhibition
delay and, thereby, to associated modulations of +t. For instance,
neuromodulators could change +t by differentially altering neuro-
nal excitability or synaptic strengths (Kruglikov and Rudy, 2008;
Antal et al., 2010). Similarly, stimulus properties could introduce
variations in +t (Zhang et al., 2003; Wilent and Contreras, 2005).

We exploited the control over the delay between excitation/
inhibition to close the gate, i.e., to block the propagation of the
S1-type stimulus as shown in Figure 1c. Thus, we reduced the
temporal delay between excitation and inhibition in the gating
group by injecting a small depolarizing control pulse into the
inhibitory neurons. As a result, the gate closed: the response in
the gate group fell below the separatrix, causing activity in the
receiver group to fade (Figs. 1e, 2a). To further explore the tem-
poral gating mechanism, we systematically varied +t by altering
the inhibitory synaptic delay, while keeping the excitatory delay
fixed. For different values of +t, Figure 2b shows & and $ for

Figure 1. Temporal gating of spiking activity by delayed correlation between excitation and inhibition. a, Scheme of cortical network model. Twenty-eight thousand, one hundred twenty-five
neurons [80% excitatory (‚) and 20% inhibitory (E)] were arranged as a two-dimensional sheet. Space constants of excitatory and inhibitor neurons are shown as red and blue shaded
regions, respectively. b, A signal path (sender, gate, receiver) was embedded in the network. The sender neuron group transmitted an input signal via the gate group toward the receiver
group. A depolarizing or hyperpolarizing input to the gate was used as control signal. c, d, Top, Spiking activity of the sender, gate, and receiver groups. Bottom, Excitatory and inhibitory
synaptic conductances (Gexc, Ginh) for a representative excitatory neuron in the gate group. c, A strong (& % 60), synchronous ($ % 3.5 ms) signal S1 propagated through the gating
group and successfully activated the receiver group. d, By contrast, a less synchronous ($ % 7 ms) signal S2 failed to propagate. e, Propagation of S1 could be blocked by advancing
inhibitory spiking in the gate group, thereby reducing +t of the excitatory neurons. f, Propagation of S2 could be rescued by delaying (or abolishing) inhibitory spiking in the gate group,
thereby increasing +t of the excitatory neurons.
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the three excitatory neuron groups in the signal path. For small
integration time (+t ' 1 ms in this example), the gate response
was weak and fell below the separatrix. Consequently, the re-
sponse in the receiver group was indistinguishable from the
background network activity. However, increasing the integra-
tion time (+t ) 2 ms in this example) shifted the gate activity above
the separatrix, inducing a strong response (high &, small $) in the
receiver group. The same mechanism can be used to open the gate,
i.e., to facilitate propagation of class F stimuli, which would other-
wise fail to propagate (Fig. 1f). To test this, we applied a hyperpolar-
izing (rather than depolarizing) control pulse to the inhibitory
neurons, thereby delaying or even suppressing their spiking activity.
As a result, the integration time was increased, such that more exci-
tatory neurons in the gate group responded. Its activity thereby rose

above the separatrix and, hence, ensured a
strong response (high &, small $) in the re-
ceiver group (Fig. 1f). A systematic increase
in the integration time +t of the gate neu-
rons resulted in a monotonic increase in
both & and $ of the gate activity (Fig. 2c).
Due to the synfire attractor, the activity of
the receiver group was further synchro-
nized. Note that, in contrast to Figure 2b, the
prolonged opening of the gate caused activ-
ity in the gate to be higher than in the re-
ceiver. Also, it is noteworthy that for
increasing integration time (higher +t), sig-
nal propagation became more reliable, as
expressed in a reduction in trial-by-trial
variability in the receiver group (Fig. 2c,
top panel).

In summary, the sigmoidal relationship
between +t and the activity in the gate and
receiver groups demonstrates the effective-
ness of the temporal gating (Fig. 2b,c).

As there is an ongoing debate (Kuhn et
al., 2004; Vogels and Abbott, 2005; Kumar et
al., 2008a,b) on whether synapses in a point
neuron model are best described by con-
ductance transients (as done here) or cur-
rent transients [the more common choice,
e.g., Brunel (2000)], we resimulated the net-
work model with current-based synapses.
The sigmoidal relationship between +t and
the activity in the gate and receiver groups
remained unchanged when synapses were
modeled as current transients (compare
supplemental Fig. S1, available at www.
jneurosci.org as supplemental material, and
Fig. 2b,c), demonstrating that the “temporal
gating” does not depend on the choice of
synapse or input activity model.

Gating of signals with strong transients
Next we tested whether temporal gating is
also effective in controlling the propaga-
tion of signal onset transients. Such signal
onset transients arise when the input sig-
nal is abruptly changed (Deger et al.,
2009). To mimic sharp changes in the in-
put, the sender group, we stimulated the
sender group with Poisson-type spiking
activity, starting at time t % 500 ms (Fig.

3a). In the default state of the gate group, with balanced excita-
tion and inhibition, the onset transient propagated to the receiver
group, whereas the tonic part of the input was blocked (Fig. 3b).
The control of such transients, however, is critical because in a
dynamic natural environment, such transients are likely to occur
frequently (Buracas et al., 1998; Haider et al., 2010). In the default
state of the gate, the effective integration time is large enough for
the transients to elicit a response in the downstream neurons
(gate group). Thus, an effective way to control the flow of tran-
sients is to reduce the integration time of the downstream neu-
rons (e.g., by temporal gating) (see Figs. 1, 2). Indeed, when the
delay between excitation and inhibition in the gate group was
reduced, while still keeping the overall excitation and inhibition
in balance, it was possible to control the propagation of both the

Figure 2. Temporal delay between excitation and inhibition controls signal gating. a, Scheme of the pulse packet propagation
state space, which is subdivided by a separatrix (Diesmann et al., 1999) (blue line). If the pulse packet starts above the separatrix
(S1), the signal converges into a fixed point (FP) and propagates in a stable manner (green trajectory). If, by contrast, the pulse
packet starts below the separatrix (S2), the signal fails to propagate and fades into the background (Bkg.) (red trajectory). When the
effective integration time +t is reduced, the separatrix moves up (gray dotted line), thus blocking the propagation of S1 (gray
trajectory). By contrast, when the integration time is increased, the separatrix moves down (black dotted line), thus allowing the
propagation of S2 (black trajectory). b, & and $ in sender, gate, and receiver groups for the S1 stimulus (class P) as a function of
effective integration time (+t). Error bars represent SD (n % 20). In this example, S1 successfully propagates in the default state
(+t % 2 ms). Further increase in +t does not influence signal propagation. However, a small decrease in +t ((1 ms) suffices to
completely block signal propagation. c, Same as b for stimulus S2 (class F ). In this example, S2 does not propagate in the default
state (+t % 2 ms). Propagation can be rescued by increasing +t. Note that, in contrast to b, the prolonged opening of the gate
causes activity in the gate to be higher than in the receiver. Also, for increasing integration time (larger +t), signal propagation
becomes more reliable, which is expressed as a reduction of trial-by-trial variability in the receiver group.
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stimulus transient and its tonic compo-
nent (Fig. 3c). Note that in this particular
example, when the gate is closed (Fig. 3c),
only the inhibitory population in the gate
group is active, while the activity of the
excitatory neurons is completely sup-
pressed by the balancing inhibitory input.
Reducing the gain of the inhibitory neu-
rons would result in a biologically more
realistic residual spiking activity in the ex-
citatory neurons in the gate group. Tran-
sients in the spiking activity in neural
systems may also arise due to spike time
correlations among neurons (Alonso et
al., 1996; Dan et al., 1998; Chen et al.,
2006). The emergence of such correla-
tions could be due to large-scale fluctua-
tions in ongoing network activity (Arieli
et al., 1996; Kenet et al., 2003) or stimulus-
induced network activity (Bar-Yosef and
Nelken, 2007; Alonso et al., 2008; Hro-
mádka et al., 2008). To generate a signal
composed of tonic and transient compo-
nents, we used the MIP model (Kuhn et
al., 2003) (Fig. 3d; cf. Materials and Meth-
ods). Once again, when the sender group
was stimulated by a MIP-type input sig-
nal, the control of the activity was impre-
cise and signal transients reflecting the
spike correlations propagated uninhib-
ited (Fig. 3e). However, reducing the delay
between excitation and inhibition at the
gate group provided an effective control
over the propagation of signal transients
(Fig. 3f). In summary, Figure 3, b and e,
illustrates the limitations of the Vogels
and Abbott mechanism in gating of both
onset transients (Fig. 3b) and transients
induced by correlations (Fig. 3e). Both
types of transients were fast enough to
pass before the delayed feedforward inhi-
bition could quench them. By contrast,
Figure 3, c and f, shows the improved effectiveness of the tempo-
ral gating mechanism in controlling the propagation of these
activity transients.

Combining temporal and amplitude gating
The effectiveness of temporal gating in controlling the propaga-
tion of activity transients has its price: it precludes the propaga-
tion of sustained (tonic) activity devoid of transients (Fig. 3c,f).
While the importance of such sustained average neural activity
can be argued, in view of the ubiquitous fluctuations in the on-
going activity and dynamic natural environment, it is of general
interest to know whether it is possible to do both, to control the
flow of activity transients, while allowing tonic activity to propa-
gate. Because temporal gating is most effective in controlling the
propagation of activity transients, whereas detailed balance (or
amplitude gating) can be used to control the propagation of tonic
activity, a combination of the two might provide a general mech-
anism to control the propagation of arbitrary neural activity pat-
terns. Therefore, we examined whether a combination of temporal
gating and amplitude gating would be possible within the same net-
work.

For this we stimulated the signal path with uncorrelated Pois-
son activity, starting at time t % 500 ms. This type of stimulus
contains both a transient onset and a tonic phase, which makes it
optimal for probing the effectiveness of both gating mechanisms.
The amplitude gating mechanism was implemented by varying
the strength of the inhibition in the gate group, thereby control-
ling the balance of excitation and inhibition in the excitatory
neurons of the gate group (Vogels and Abbott, 2009). To this end,
we varied the synaptic strength from the excitatory neurons in the
sender group onto the inhibitory population (JEI), while keeping
the synaptic strength from the excitatory neurons onto the exci-
tatory neurons (JEE) fixed. Thus, we define the inhibitory gain
factor as JEI/JEE. In all examples shown so far (i.e., Figs. 1–3), the
inhibitory gain factor was 2. This gain factor ensured an effective
feedforward inhibition in the neurons of the gate group (cf. Ma-
terials and Methods) (Cruikshank et al., 2007; Kremkow et al.,
2010). Figure 4 shows the results of systematically varying both
the degree of temporal gating and amplitude gating. Simulta-
neous closing of both the temporal (+t % &2 ms) and amplitude
(inhibitory gain % 2) gates blocked both the transient and the
tonic component in the gate group (Fig. 4a– c). Opening the tem-

Figure 3. Effectiveness of gating tonic activity and activity transients. a, Uncorrelated rate stimulus as input to the signal path.
b, Population activity in the excitatory (top) and inhibitory (bottom) neurons in the signal path. In the default state (+t % 2 ms),
gating by balancing excitation and inhibition successfully blocks propagation of the tonic component of the stimulus, but fails to
block the stimulus onset transient. c, By reducing the effective integration time of the excitatory neurons (+t ' 1 ms), temporal
gating effectively blocks both the onset transient and the tonic stimulus component. d, Firing rate stimulus with transient input
correlations. e, As in b, gating by balancing excitation and inhibition fails to block activity transients, here induced by transient
input correlations. f, As in c, temporal gating effectively blocks activity transients.
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poral gate (+t % 4 ms), while keeping the amplitude gate closed
(inhibitory gain % 2), allowed only the onset transient to induce
activity in the gate group (Fig. 4a,b,d). These two examples, thus,
show the effectivity of temporal gating at high inhibitory gain
(compare Figs. 3 and 4c,d). By contrast, opening the amplitude
gate (e.g., inhibitory gain % 0.75) resulted in tonic activity in the
gate group (Fig. 4a,b,e,f). Here, the weaker feedforward inhibi-
tion could not balance the direct excitation during the tonic
phase (Kremkow et al., 2010). However, during the transient
phase the inputs from the sender group arrived synchronously,
activating the inhibitory neurons in the gate group simulta-
neously, thereby providing sufficient balancing inhibition for the
temporal gating to function and block the transient [compare
closed temporal gate (Fig. 4e) and open temporal gate (Fig. 4f)].
Note that using inhibitory gain as a gating variable may result in
an attenuated response in the receiver group. However, because a
high signal-to-noise ratio is maintained, this reduced activity
could easily be amplified in a subsequent stage.

In summary, Figure 4 shows that amplitude gating is effective in
gating tonic component of the activity (Fig. 4b), while temporal gat-
ing is effective in gating the activity transients (Fig. 4a). When the
two gating mechanisms are implemented within the same network,

together they provide a powerful mecha-
nism to control the propagation of a wide
variety of temporal activity profiles.

Gating of multiple signals
So far we considered how isolated tran-
sients or those that form part of stimulus-
evoked or ongoing activity modulations
propagate along a single signal path. How-
ever, in a modular system like the brain,
action selection can be thought of in terms
of directing one of multiple signals to a next
processing stage or, alternatively, as direct-
ing a particular signal to one of multiple
subsequent processing stages (Bienenstock,
1995). In both these scenarios, the brain
needs a mechanism to control the propaga-
tion of activity over multiple (and interact-
ing) signal pathways. Here, we test the
effectiveness of temporal gating in selecting
between two neuronal activity signals that
are statistically identical but uncorrelated,
and dominated by transients.

Figure 5a shows the scheme of two sig-
nal paths, embedded in a recurrent random
network (cf. Materials and Methods). This
arrangement of sender, gate, and receiver
groups is similar to that used in Figures
1– 4, except that here two spatially sepa-
rated sender groups (SenderX and Send-
erY) can send signals (SX, SY) to the gate.
To control the propagation of either sig-
nal SX or SY, we systematically varied the
delay between excitation and inhibition
from the respective sender to the gate (+tX

and +tY, respectively). To quantify the
propagation of the two signals, we mea-
sured the cross-correlations ((X and (Y)
between the receiver group output and
each of the two input signals (cf. Materials
and Methods). Figure 5b shows the differ-

ence between the two: ( % (X & (Y as a function of both +tX and
+tY. Positive values of ( indicate that the receiver group output is
more similar to the input signal SX, and negative values reflect a
higher similarity with input signal SY. When ( is close to zero, the
receiver output is equally correlated (including uncorrelated)
with both input signals; in this case, the scenario is evidently not
suitable for action selection.

When the two signals were presented simultaneously, selec-
tive transmission of signal SX (Fig. 5b,c) could be obtained by
increasing +tX and decreasing +tY (effectively closing signal path
SY) (compare Fig. 2). Similarly, selective transmission of signal SY

(Fig. 5b,f) could be obtained by increasing +tY and decreasing
+tX (closing signal path SX). The exact value of +tX to gate signal
SX depended on the value of +tY (Fig. 5b) and vice versa. When
the gate was closed for both signal paths (Fig. 4e), neither of the
two input signals propagated to the receiver and, hence, ( was
close to zero. On the other hand, when the gate was opened for
both signal paths (Fig. 5d), both signals propagated and the re-
sponse of the receiver group was equally correlated to both input
signals, again resulting in ( being close to zero.

Thus, the temporal gating mechanism appears well suited for
selective gating of multiple signals to a next processing stage.

Figure 4. Combining temporal and amplitude gating. a, Transient response (first 10 ms, marked light gray in c and d) in the
gate as a function of effective integration time +t (temporal gating) and inhibitory gain (amplitude gating) with uncorrelated rate
stimulus as input to the signal path. Mean transient response in the gate does not change as a function of inhibitory gain for all
values of +t, indicating that inhibitory gain cannot gate the propagation of transient component of the activity (left). By contrast,
mean transient response in the gate as a function of +t for all values of inhibitory gain shows a sigmoidal shape, indicating that +t
can control the propagation of transient component of the activity (bottom). b, Tonic response (excluding first 10 ms, marked dark
gray in c and d) in the gate as a function of effective integration time +t and inhibitory gain. Mean tonic response in the gate as a
function of inhibitory gain for all values of +t, varies in a threshold linear manner, indicating that inhibitory gain can control the
propagation of tonic component of the activity (left). By contrast, mean tonic response in the gate does not change as a function of
+t for all values of inhibitory gain, indicating that +t cannot gate the tonic component of the activity (bottom). c–f, Population
activity of the excitatory neurons in the gate and receiver group during four distinct gating modes, marked with corre-
sponding letters in a and b. c, Simultaneously closing of the temporal and the amplitude gates blocks both the onset
transient and the tonic component, resulting in a very small activity in the receiver group. d, Opening the temporal gate,
while keeping the amplitude gate closed, allows the onset transient to propagate. e, Opening the amplitude gate, while
keeping the temporal gate closed, allows the tonic component to propagate. f, Both the transient and the tonic component
are propagated when both gates are open.
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Similarly, temporal gating can also be
used to selectively direct a particular sig-
nal to one of several next processing stages
(not shown here).

Discussion
In a modular system like the brain, appro-
priate gating or control over activity prop-
agation is critical for information
processing and action selection (Bienen-
stock, 1995; Kumar et al., 2010). In fact,
for various biological reasons, gating of
neural activity emerges as a superior strat-
egy over winner-take-all dynamics for ac-
tion selection (Ermentrout, 1992; Tepper
et al., 2004). In any case, a key require-
ment for an appropriate gating mecha-
nism is that it should be able to control
neural activity with arbitrary statistical
properties.

In particular, it is important to be able
to gate neuronal activity that is dominated
by strong transients, which are ubiquitous
in a dynamic sensory environment, as has
been reported under various conditions in
vivo in all sensory pathways. For example,
it has been demonstrated in the rodent
whisker-barrel system that cortex is pri-
marily driven by transient synchronous
activity of thalamic neurons (Bruno and
Sakmann, 2006). Similarly, neurons with
overlapping receptive fields of the same
polarity (on- or off-center) in the cat vi-
sual thalamus show spike correlation in
the millisecond range and, consequently,
drive postsynaptic neurons in the visual
cortex much more effectively (Alonso et
al., 1996). Furthermore, transient sub-
threshold dynamics have been measured
intracellularly in the cat visual cortex in vivo during presentation
of natural stimuli (Haider et al., 2010; Y. Fregnac, personal com-
munication). Likewise, subthreshold membrane potential in vivo
in the rat auditory cortex showed large transients, induced by
synchronous synaptic input, occurring irregularly in an other-
wise quiet background (DeWeese and Zador, 2006). Together,
these observations in different sensory pathways in several species
corroborate the importance of activity transients. Consequently,
a proper gating mechanism should be able to cope with these
transients.

Recently, Vogels and Abbott (2009) proposed a gating mech-
anism based on the detailed balance of excitation and inhibition
to control the propagation of neuronal activity in feedforward
networks. This gating strategy, however, is only effective in con-
trolling the propagation of tonic components of neuronal
activity modulation—transients “escape” from such gating and
propagate to the next stage in any case. This is because the mech-
anism fails in gating transients that are fast enough to pass the
small time window, induced by the lagging inhibition, i.e., in the
range of some tens of milliseconds [Vogels and Abbott (2009), their
Fig. 3f]. As a consequence, gating based only on detailed balance of
excitation and inhibition is truly limited in its applicability.

The temporal gating mechanism proposed here extends this
idea by changing the delay between excitation and inhibition, and

thereby obtaining the means to control the temporal scale of
transients that can pass or, alternatively, are blocked. The delay
between excitation and inhibition affects the neurons integration
time (Pouille and Scanziani, 2001; Cruikshank et al., 2007).
Thereby, it can be used to block or facilitate activity propagation.
Thus, this gating mechanism presents an example of exploiting a
single neuron-level property to modulate network behavior—in
this case, the location of the state space separatrix—such as to
control the propagation of spiking activity within the network. As
our study showed, the temporal gating mechanism is a simple yet
powerful mechanism to control the propagation of activity tran-
sients. Thus it is complementary to the amplitude gating mecha-
nism proposed by Vogels and Abbott (2009). When the two
mechanisms are combined, they can control neural activity with
different temporal profiles.

The key parameter of temporal gating is the delay between
excitation and inhibition. The delayed correlated inhibition in
our model was induced by disynaptic inhibition, a connectiv-
ity pattern observed ubiquitously in the CNS [hippocampus
(Buzsáki, 1984), thalamocortical connection (Swadlow, 2003;
Cruikshank et al., 2007), local cortical network (Kapfer et al.,
2007; Silberberg and Markram, 2007), and long-range horizontal
cortical network (Hirsch and Gilbert, 1991; Tucker and Katz,
2003a,b)]. In addition, neuromodulators (Kruglikov and Rudy,

Figure 5. Selective gating of multiple signals. a, Scheme of two interacting signal paths. b, Selectivity of signal propagation in
two interacting signal paths. The color map shows the selectivity measure (%(X &(Y as a function of effective integration time
+tX and +tY. Positive values (brown color) of ( indicate that the receiver group output is more similar to signal SX, and negative
values (blue color) reflect a high similarity with signal SY (i.e., selective gating of either SX or SY). At ( ) 0, the receiver output is
equally correlated with both signals (i.e., no selective gating). c–f, Spiking activity of the sender, gate, and receiver groups during
four distinct gating modes, marked with corresponding letters in b. c, With the gate open for SX and closed for SY, the activity in the
receiver group resembles the signal SX. d, With both gates open, the activity in the receiver group is a superposition of SX and SY,
thereby reducing ( to zero. e, Closing both gates blocks the propagation of both signals. f, With the gate open for SY and closed for
SX, the activity in the receiver group resembles the signal SY.
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2008; Antal et al., 2010) and stimulus properties (Zhang et al.,
2003; Wilent and Contreras, 2005) could change the latency be-
tween excitation and inhibition in a neuron specific manner, by
differentially altering neuronal excitability or synaptic strengths.
Thus, the required neuronal hardware for the proposed temporal
gating mechanism is quite general and not restricted to any spe-
cific brain area. Furthermore, the gating mechanism does not
depend on the choice of the synapse model (current based vs con-
ductance based) (Fig. 2 and supplemental Fig. S1, available at www.
jneurosci.org as supplemental material). Moreover, the delay values
used here were well within the range measured experimentally in
vivo (Okun and Lampl, 2008). The effectivity of temporal gating in
controlling the propagation of activity transients, however, pre-
cludes propagation of sustained (tonic) neural activity devoid of
transients (Fig. 3c,f). Because detailed balance (or amplitude gating)
is suitable in controlling the propagation of tonic activity, a combi-
nation of the two mechanisms provides a general solution to control
the propagation of arbitrary neural activity patterns.

Here we presented a possibility of combining the two mecha-
nisms and showed that, indeed, by comodulating excitation–in-
hibition balance and their latencies, it is possible to control the
propagation of neural activity for combinations of transient and
tonic components (Fig. 4). In addition, more sophisticated
mechanisms might be invoked. For instance, dynamic modula-
tion of excitation–inhibition balance can be achieved with de-
pressing or facilitating synapses. Thus, introducing synapses with
short-term plasticity (Klyachko and Stevens, 2006) into our tem-
poral gating mechanism might be an alternative way of combin-
ing the strengths of the two gating mechanisms.

Gating of transients is most effective when the activity tran-
sients are close to the separatrix (Fig. 2a). If, by contrast, the
activity transients are close to the stable fixed point (FP) (Fig. 2a)
or too similar to the background fluctuations (Bkg) (Fig. 2a),
temporal gating may not be as effective. Thus, if temporal coding
is indeed used in neuronal systems, it should be possible to pre-
dict the spectrum of neural activity transients, given the proper-
ties of synapses and the connection probabilities between
processing stages. In a similar vein, knowledge of the neural ac-
tivity transients may provide important hints concerning the
connectivity between subsequent processing stages.

Preliminary experimental evidence already points toward the
involvement of a temporal gating mechanism in decision making
and action selection. For instance, animals can make decisions on
a millisecond timescale (Yang et al., 2008). Mechanisms based on
winner-take-all dynamics would not support such rapid decision
making, while temporal gating allows for signal gating and,
thereby, action selection (decision making) on a millisecond
timescale. Moreover, precisely timed perturbations of the cortical
network can systematically alter the behavior of the animal (Sei-
demann et al., 1998). However, more direct tests of this type of
gating mechanism have not been performed thus far. As noted
above, the temporal gating method exploits circuit level behavior,
which makes this mechanism particularly interesting for in vivo
experiments. Recent developments in optogenetic techniques,
which allow selective activation/inactivation of specific groups of
neurons (Zhang et al., 2007), could be used to test our proposal of
temporal gating in vivo in a highly controlled manner.
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