Springerlink Beta
Recognized as:
Universitaetsbibliothek Freiburg (570-10-954)There is a Persona associated with this account.
GER Nationallizenz eBooks (343-06-182)There is a
 Persona associated with this account.
GER Baden Württemberg 2009 (398-50-578)There is
 a Persona associated with this account.
GER Nationallizenz OJA (479-50-028)There is a 
Persona associated with this account.
Welcome!
To use the personalized features of this site, please log in or register.
If you have forgotten your username or password, we can help.
My Menu
Saved Items

Functional consequences of correlated excitatory and inhibitory conductances in cortical networks

Jens Kremkow1, 2, 3 Contact Information, Laurent U. Perrinet1, Guillaume S. Masson1 and Ad Aertsen2, 3

(1)  Institut de Neurosciences Cognitives de la Méditerranée, UMR6193 CNRS—Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
(2)  Neurobiology and Biophysics, Faculty of Biology, Albert-Ludwig University, Schänzlestrasse 1, 79104 Freiburg, Germany
(3)  Bernstein Center for Computational Neuroscience, Hansastrasse 9A, 79104 Freiburg, Germany

Received: 19 March 2009  Revised: 8 April 2010  Accepted: 20 April 2010  Published online: 19 May 2010

Action Editor: X.-J. Wang
Abstract  
Neurons in the neocortex receive a large number of excitatory and inhibitory synaptic inputs. Excitation and inhibition dynamically balance each other, with inhibition lagging excitation by only few milliseconds. To characterize the functional consequences of such correlated excitation and inhibition, we studied models in which this correlation structure is induced by feedforward inhibition (FFI). Simple circuits show that an effective FFI changes the integrative behavior of neurons such that only synchronous inputs can elicit spikes, causing the responses to be sparse and precise. Further, effective FFI increases the selectivity for propagation of synchrony through a feedforward network, thereby increasing the stability to background activity. Last, we show that recurrent random networks with effective inhibition are more likely to exhibit dynamical network activity states as have been observed in vivo. Thus, when a feedforward signal path is embedded in such recurrent network, the stabilizing effect of effective inhibition creates an suitable substrate for signal propagation. In conclusion, correlated excitation and inhibition support the notion that synchronous spiking may be important for cortical processing.

Keywords  Correlated conductances - Synaptic integration - Sparse coding - Signal propagation


Contact Information Jens Kremkow
Email: kremkow@biologie.uni-freiburg.de

References

Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press.
 
Abeles, M., Hayon, G., & Lehmann, D. (2004). Modeling compositionality by dynamic binding of synfire chains. Journal of Computational Neuroscience, 17(2), 179–201.
SpringerLink PubMed
 
Aertsen, A., Diesmann, M., & Gewaltig, M.-O. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology (Paris), 90(3–4), 243–247.
CrossRef ChemPort
 
Assisi, C. G., Stopfer, M., Laurent, G., & Bazhenov, M. (2007). Adaptive regulation of sparseness by feedforward inhibition. Nature Neuroscience, 10(9), 1176–1184.
CrossRef ChemPort PubMed
 
Atallah, B. V., & Scanziani, M. (2009). Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron, 62(4), 566–577.
CrossRef ChemPort PubMed
 
Aviel, Y., Mehring, C., Abeles, M., & Horn, D. (2003). On embedding synfire chains in a balanced network. Neural Computation, 15(6), 1321–1340.
CrossRef ChemPort PubMed
 
Brémaud, A., West, D. C., & Thomson, A. M. (2007). Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14134–14139.
CrossRef PubMed
 
Braitenberg, V., & Schüz, A. (1991). Cortex: Anatomy of the cortex: Statistics and geometry. Springer.
 
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.
SpringerLink ChemPort PubMed
 
Bruno, R. M., & Sakmann, B. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Science, 312(5780), 1622–1627.
CrossRef ChemPort PubMed
 
Buzsáki, G. (1984). Feed-forward inhibition in the hippocampal formation. Progress in Neurobiology, 22(2), 131–153.
CrossRef PubMed
 
Cruikshank, S. J., Lewis, T. J., & Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nature Neuroscience, 10(4), 462–468.
ChemPort PubMed
 
Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., et al. (2009). PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2, 11. doi:10.3389/neuro.11/011.2008.
 
Delorme, A. (2003). Early cortical orientation selectivity: How fast inhibition decodes the order of spike latencies. Journal of Computational Neuroscience, 15(3), 357–365.
SpringerLink ChemPort PubMed
 
Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79(2), 999–1016.
ChemPort PubMed
 
Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4(9), 739–751.
CrossRef ChemPort PubMed
 
Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.
CrossRef ChemPort PubMed
 
Eppler, J. M., Helias, M., Muller, E., Diesmann, M., & Gewaltig, M.-O. (2009). PyNEST: A convenient interface to the nest simulator. Frontiers in Neuroinformatics, 2, 12. doi:10.3389/neuro.11/012.2008
 
Gerstein, G., & Mandelbrot, B. (1964). Random walk Models for the spike activity of a single neuron. Biophysical Journal, 4, 41–68.
CrossRef ChemPort PubMed
 
Gewaltig, M.-O., & Diesmann, M. (2007). NEST (neural simulation tool). Scholarpedia, 2(4), 1430.
CrossRef
 
Gewaltig, M.-O., Diesmann, M., & Aertsen, A. (2001). Propagation of cortical synfire activity: Survival probability in single trials and stability in the mean. Neural Networks, 14(6–7), 657–673.
CrossRef ChemPort PubMed
 
Gibson, J. R., Beierlein, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402(6757), 75–79.
CrossRef ChemPort PubMed
 
Haider, B., Krause,M. R., Duque,A., Yu, Y., Touryan, J., Mazer, J. A., et al. (2010). Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron, 65(1), 107–121.
CrossRef ChemPort PubMed
 
Hasenstaub, A. R., Shu, Y., Haider, B., Kraushaar, U., Duque, A., & McCormick, D. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron, 47(3), 423–435.
CrossRef ChemPort PubMed
 
Higley, M. J., & Contreras, D. (2006). Balanced excitation and inhibition determine spike timing during frequency adaptation. Journal of Neuroscience, 26(2), 448–457.
CrossRef ChemPort PubMed
 
Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat’s visual cortex. Journal of Neuroscience, 11(6), 1800–1809.
ChemPort PubMed
 
Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121.
SpringerLink ChemPort PubMed
 
Inoue, T., & Imoto, K. (2006). Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex. Journal of Neurophysiology, 96(4), 1746–1754.
CrossRef PubMed
 
Kapfer, C., Glickfeld, L. L., Atallah, B. V., & Scanziani, M. (2007). Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nature Neuroscience, 10(6), 743–753.
CrossRef ChemPort PubMed
 
Kremkow, J., Perrinet, L., Aertsen, A., Masson, G. S. (2008a). Functional properties of feed-forward inhibition. Proc NeuroComp 2008
 
Kremkow, J., Perrinet, L., Baudot, P., Levy, M., Marre, O., Monier, C. et al. (2008b). Control of the temporal interplay between excitation and inhibition by the statistics of visual input: A V1 network modelling study. Vol. Soc. Neurosci. Abstr. (p. 366.5/II10).
 
Kremkow, J., Perrinet, L., Masson, G. S., & Aertsen, A. (2009). Functional consequences of correlated excitation and inhibition on single neuron integration and signal propagation through synfire chains. Proceedings of the 32nd Göttingen Neurobiology Conference T26-6B.
 
Kuhn, A., Aertsen, A., & Rotter S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. Journal of Neuroscience, 24(10), 2345–2356.
CrossRef ChemPort PubMed
 
Kumar, A., Rotter, S., & Aertsen, A. (2008a). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28(20), 5268–5280.
CrossRef ChemPort PubMed
 
Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008b). The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43.
CrossRef PubMed
 
Kumbhani, R. D., Nolt, M. J., & Palmer, S. E., (2007). Precision, reliability, and information-theoretic analysis of visual thalamocortical neurons. Journal of Neurophysiology, 98(5), 2647–2663.
CrossRef PubMed
 
Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22(2), 361–374.
CrossRef ChemPort PubMed
 
Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance. Journal of Neuroscience, 23(7), 3006–3015.
ChemPort PubMed
 
Mainen, Z. F., & Sejnowski, T. J., (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.
CrossRef ChemPort PubMed
 
Marre, O., Baudot, P., Levy, M., & Frégnac, Y. (2005). High timing precision and reliability, low redundancy and low entropy code in V1 neurons during visual processing of natural scenes. Society for Neuroscience Abstracts, 31, 285.5.
 
Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88(5), 395–408.
SpringerLink PubMed
 
Molnár, G., Oláh, S., Komlósi, G., Füle, M., Szabadics, J., Varga, C., et al. (2008). Complex events initiated by individual spikes in the human cerebral cortex. PLoS Biol, 6(9), e222.
CrossRef
 
Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17(8), 1776–1801.
CrossRef PubMed
 
Muller, E., Buesing, L., Schemmel, J., & Meier, K. (2007). Spike-frequency adapting neural ensembles: Beyond mean adaptation and renewal theories. Neural Computation, 19(11), 2958–3010.
CrossRef PubMed
 
Nawrot, M. P., Boucsein, C., Molina, V. R., Riehle, A., Aertsen, A., & Rotter, S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of Neuroscience Methods, 169(2), 374–390.
CrossRef PubMed
 
Nowak, L. G., Azouz, R., Sanchez-Vives, M. V., Gray, C. M., & McCormick, D. A. (2003). Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology, 89(3), 1541–1566.
CrossRef PubMed
 
Okun, M., & Lampl, I. (2008). Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nature Neuroscience, 11(5), 535–537.
CrossRef ChemPort PubMed
 
Pinto, D. J., Hartings, J. A., Brumberg, J. C., & Simons, D. J. (2003). Cortical damping: Analysis of thalamocortical response transformations in rodent barrel cortex. Cerebral Cortex, 13(1), 33–44.
CrossRef PubMed
 
Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293(5532), 1159–1163.
CrossRef ChemPort PubMed
 
Povysheva, N. V., Gonzalez-Burgos, G., Zaitsev, A. V., Kröner, S., Barrionuevo, G., Lewis, D. A., & Krimer, L. S. (2006). Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cerebral Cortex, 16(4), 541–552.
CrossRef ChemPort PubMed
 
Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. Journal of Neuroscience, 27(20), 5280–5290.
CrossRef ChemPort PubMed
 
Schrader, S., Morrison, A., & Diesmann, M. (2007). A composition machine for complex movements. Proceedings of the 31st Göttingen Neurobiology Conference TS18-1C.
 
Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4(4), 569–579.
CrossRef ChemPort PubMed
 
Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.
ChemPort PubMed
 
Silberberg, G., & Markram, H. (2007). Disynaptic inhibition between neocortical pyramidal cells mediated by martinotti cells. Neuron, 53(5), 735–746.
CrossRef ChemPort PubMed
 
Smith, M., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience, 28(48), 12591–12603.
CrossRef ChemPort PubMed
 
Somers, D. C., Nelson, S. B., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15(8), 5448-5465.
ChemPort PubMed
 
Stepanyants, A., Hirsch, J., Martinez, L. M., Kisvárday, Z. F., Ferecskó, A. S., & Chklovskii, D-B. (2008). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18(1), 13–28.
CrossRef PubMed
 
Swadlow, H. A. (2003). Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cerebral Cortex, 13(1), 25–32.
CrossRef PubMed
 
Tetzlaff, T., Geisel, T., & Diesmann, M. (2002). The ground state of cortical feed-forward networks. Neurocomputing, 44–46, 673–678.
CrossRef
 
Thomson, A. M., West, D. C., Wang, Y., & Bannister, A. P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro. Cerebral Cortex, 12(9), 936–953.
CrossRef PubMed
 
Tiesinga, P., Fellous, J.-M., & Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews. Neuroscience, 9(2), 97–107.
CrossRef ChemPort PubMed
 
Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18(15), 5908–5927.
ChemPort PubMed
 
Tucker, T. R., & Katz, L. C. (2003a). Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex. Journal of Neurophysiology, 89(1), 501–512.
CrossRef PubMed
 
Tucker, T. R., & Katz, L. C. (2003b). Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. Journal of Neurophysiology, 89(1), 488–500.
CrossRef PubMed
 
van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1746.
CrossRef PubMed
 
Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neuroscience, 12(4), 483–491.
CrossRef ChemPort PubMed
 
Wehr, M. S., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.
CrossRef ChemPort PubMed
 
Yger, P., Bruderle, D., Eppler, J., Kremkow J., Pecevski, D., Perrinet, L., et al. (2009). NeuralEnsemble: Towards a meta-environment for network modeling and data analysis. Eight Göttingen Meeting of the German neuroscience society (pp. T26–4C). http://www.incm.cnrs-mrs.fr/LaurentPerrinet/Publications/Yger09gns.
 
Export this article
Export this article as RIS | Text
 
Remote Address: 132.230.233.198 • Server: mpweb23
HTTP User Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv:1.9.2.3) Gecko/20100401 Firefox/3.6.3