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1 Adaptive Optimal Control Methods

The general mathematical model underlying the fits and predictions in the main text belongs to a

class of modified Linear-Quadratic-Gaussian (LQG) models [Stengel, 1994]. LQG models deal with

linear dynamic systems, quadratic cost functions as performance criteria, and Gaussian random

variables as noise. Here we consider the following model class:

!xt+1 = F [!a ] !xt + G !ut + !ξt + G
∑

i

Ci !ut σi,t

!yt = H !xt + !χt (1)

J =
1

2
E

[ ∞∑

t=0

{
!xT

t Q !xt + !uT
t R !ut

}]

with the following variables

dynamic state !xt ∈ "n

unknown system parameters !a ∈ "l

control signal !ut ∈ "m

feedback observation !yt ∈ "q

expected cumulative cost J ∈ "
state cost matrix Q = QT ≥ 0

control cost matrix R = RT > 0

Time is discretized in bins of 10ms. The noise variables !ξt ∈ "n, !χt ∈ "k, σi,t ∈ " are realizations

of independent, zero-mean, Gaussian noise processes with covariance matrices E[!ξt1
!ξT
t2 ] = Ωξ δt1t2 ,

E[!χt1!χ
T
t2 ] = Ωχ δt1t2 and E[σi1,t1σi2,t2 ] = δt1t2 δi1i2 respectively. The dynamic state !xt is a hidden

variable that needs to be inferred from feedback observations !yt. An initial estimate of !x0 is given

by a normal distribution with mean !̂x0 and covariance P x
0 . Accordingly, an initial estimate of the

unknown parameters !a is given by a normal distribution with mean !̂a0 and covariance P a
0 . This

allows to state the optimal control problem: given F [!̂a0], G, H, Ci, Ωξ, Ωχ, P x
0 , P a

0 , R, Q, what is

the control law !ut = !π(!̂x0, !u0, ...!ut−1, !y0, ...!yt−1, t) that minimizes the expected cumulative cost J?

In the absence of multiplicative noise (i.e. Ci ≡ 0 ∀i) and assuming perfect knowledge of

all system parameters !a, the posed optimal control problem has a well-known solution [Stengel,

1994]: a Kalman filter estimates the hidden state !xt optimally in a least-squares sense and a linear

optimal controller maps this estimate !̂xt into a control signal !ut. Several approximative solutions

have been suggested in the literature to solve the non-adaptive control problem with multiplicative

noise [Moore et al., 1999; Todorov, 2005]. Here we address the optimal control problem with

multiplicative noise in the presence of parameter uncertainties.

Unfortunately, adaptive optimal control problems can, in general, neither be solved analytically

nor numerically. Therefore, reasonable approximations have to be found that are applicable to broad
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classes of problems. In movement neuroscience, usually ‘indirect’ adaptive control schemes are used,

implying that subjects avail themselves of internal models both to predict their environment and

to adjust their motor control on the basis of these predictions. Mathematically, this entails the

separation of estimation and control processes, i.e. the general proceeding is (1) to identify the

system parameters !a on-line, and (2) to exploit the resulting estimate !̂at by appropriately adjusting

the control law !π when computing !ut.

1.1 The Estimation Problem

To perform system identification on-line in a noisy environment implies solving a joint filtering

problem [Haykin, 2001], because states and parameters have to be estimated simultaneously. Joint

filtering methods are based on the definition of an augmented or joint state space with the con-

catenated state vector

!xt =

[
!xt

!at

]
(2)

Since the unknown parameters are assumed to be constant (!at+1 = !at), system identification can

be simply instantiated by letting the parameters do a random walk driven by a process noise1

!νt ∼ N (0, Ων)

!at+1 = !at + !νt (3)

To be compatible with the concatenated state vector, the state transition matrix, the measurement

matrix and the process covariance matrix need to be modified for the joint state space

F̃ [!at] =

[
F [!at] 0

0 Il×l · !at

]

H̃ =
[

H 0
]

Ω̃ξ̃ =

[
Ωξ 0

0 Ων

]

Since adaptive control problems are inherently nonlinear, the standard Kalman filter solution

[Kalman, 1960] is not applicable in the augmented state space. A state-of-the-art method for non-

linear estimation problems is Unscented Kalman filtering [Haykin, 2001], where the distribution

of the random variable is sampled efficiently by carefully chosen sigma points that are propagated

through the full nonlinearity. The sigma vectors of the random variable with mean!̂x ∈ "n+l and

covariance P x are calculated according to

X0 =!̂x

Xi =!̂x + γ (
√

P x)i i = 1, . . . , n + l

Xi =!̂x− γ (
√

P x)i−n−l i = n + l + 1, . . . , 2(n + l)

1The parameter covariance matrix Ων determines the time scale of parameter adaptation. In the present case,
Ων is a phenomenological constant that captures the adaptation rate of the brain for a specific learning task. The
optimal control problem is posed under the constraint of this given adaptation rate.
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with the scaling parameter γ [Julier et al., 1995]. The expression (
√

P x)i denotes the ith column of

the matrix square root of P x that can be determined, for instance, by the lower-triangular Cholesky

factorization. This leads to the following Kalman filter equations:

!̂xt = !̂x
−

t + Kt [!yt − !̂y−t ] (4)

P x
t = P x−

t −Kt P
yy
t KT

t (5)

with the Kalman gain Kt = P xy
t (P yy

t )−1 and the covariances

P yy
t =

2n∑

i=0

W (c)
i

(
Y−t − !̂y−t

)(
Y−t − !̂y−t

)T

+ Ωχ (6)

P xy
t =

2n∑

i=0

W (c)
i

(
X−

t − !̂x
−

t

)(
Y−t − !̂y−t

)T

(7)

P x−
t =

2n∑

i=0

W (c)
i

(
X−

t − !̂x
−

t

)(
X−

t − !̂x
−

t

)T

+ Ω̃ξ̃ +
∑

i

G̃ Ci, !ut !u
T
t CT

i G̃T (8)

The last summand of equation (8) accounts for higher variability due to multiplicative noise and

is derived from a linear approximation scheme following [Moore et al., 1999]. The required sigma

points are calculated as

X−
t = F̃ [Xt−1] + G̃ !ut−1 (9)

!̂x
−

t =
2n∑

i=1

W (m)
i X−

t (10)

Y−t = H̃X−
t (11)

!̂y−t =
2n∑

i=1

W (m)
i Y−t (12)

with scaling parameters W (m)
i and W (c)

i [Julier et al., 1995].

1.2 The Control Problem

In general, the posed adaptive optimal control problem will be a dual control problem2 without a

straightforward solution [Åström and Wittenmark, 1989]. In the case of partial system observability,

it is a common approximation [Bar-Shalom and Tse, 1974; Bar-Shalom, 1981] to decompose the cost

function J into a deterministic part JD (certainty-equivalent control), a cautious part JC (prudent

control), and a probing part JP (explorative control). Accordingly, the adaptive optimal controller

2The dual control problem is conceptually related to the exploration-exploitation-dilemma known in reinforcement
learning [Sutton and Barto, 1998], since it deals with a similar set of questions: If the parameter uncertainty is not
too high, should one act as if there were no uncertainty (certainty-equivalent control)? Should one be particularly
prudent in an unknown environment (cautious control)? Or is it best to be explorative, i.e. invest short-term effort
into identifying the unknown parameters and exploit this knowledge subsequently (probing control)?
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u is designed as a composition of the sub-controllers uD, uC and uP . Then it depends on the

characteristics of the specific control problem which sub-controllers dominate and which might be

neglected. Especially the design of the sub-controllers uC and uP usually follows mere heuristic

principles. The design of uD can be obtained by virtue of the certainty-equivalence principle3. In

the present case, the following certainty-equivalent controller can be derived by applying again the

approximation scheme of [Moore et al., 1999] to linearize the multiplicative noise terms

!uD
t = −Lt[!̂at] !xt (13)

with

Lt[!̂at] =
(
R + GT St G +

∑

i

CT
i GT St GCi

)−1
GT St F [!̂at] (14)

The matrix St can be easily computed by solving the pertinent Riccati equation by means of

established standard methods

St = Q + F [!̂at]
T St F [!̂at]− F [!̂at]

T St G
(
R + GT St G +

∑

i

CT
i GT St GCi

)−1
GT St F [!̂at] (15)

In case of perfect knowledge of system parameters and full state observability (i.e. !yt = !xt),

the above solution can be shown analytically to be optimal [Kleinman, 1969]. In case of partial

observability, equations (13)-(15) can only be part of an approximative solution [Moore et al.,

1999; Todorov, 2005]. In case of parameter uncertainties, the additional difficulty arises that

successful system identification in the closed loop cannot be guaranteed generically [Kumar, 1983,

1990; van Schuppen, 1994; Campi and Kumar, 1996; Campi, 1997]. Here, we only considered

unknown system parameters in the state transition matrix, but the algorithm is also applicable

in the face of general parameter uncertainties provided that questions of stability and closed-loop

identification are clarified on a case-to-case basis. These difficulties are omnipresent in adaptive

control, simply due to the immense complexity of the topic. Indeed, the vast majority of practical

applications in the field that have proven to be very robust lack a thorough mathematical treatment

and convergence proof [Åström and Wittenmark, 1989; Sastry and Bodson, 1989]. Here, we compare

the performance of the proposed algorithm with other non-adaptive control algorithms considering

a multiplicative noise structure (Fig. S1).

1.3 Connection to Non-adaptive Optimal Control Models

From a theoretical point of view it seems desirable to design a unified control scheme, where “learn-

ing control” equals “standard control” in the absence of parameter uncertainties, and “learning”

converges to “standard” over time. The proposed approach in sections (1.1) and (1.2) fulfils this

3When neglecting uC and uP , the certainty-equivalence principle leads to the control scheme of the self-tuning
regulator [Åström and Wittenmark, 1989], i.e. the current parameter estimate !̂at is employed for control as if it
were the true parameter !a, while the uncertainty P a

t of the estimate is ignored for control purposes
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criterion and is, therefore, consistent. However, the question arises in how far our “standard con-

trol” corresponds to non-adaptive optimal control schemes in the literature [Todorov and Jordan,

2002].

In contrast to previous non-adaptive optimal control schemes, we have postulated optimality

not for an action sequence on a predefined time interval T , but for an indefinite runtime. In

the literature this is known as infinite horizon control as opposed to finite horizon control with

a predefined time window T [Stengel, 1994]. We have chosen this approach, because the finite

horizon setting does not allow the implementation of adaptivity in a straightforward manner4.

Additionally, a noisy infinite horizon model naturally predicts variable movement durations, while

variable movement times T in a finite horizon model have to be introduced by deliberately drawing

T from a Gaussian distribution. Remarkably, the proposed control architecture is able to reproduce

the speed-accuracy trade-off in the presence of multiplicative noise and can account for the speed-

target distance relationship as found experimentally (cf. Fig. S2). However, it remains to be

tested in how far actual motor behavior can be accounted for by time-independent optimal policies,

and whether and in which contexts time-dependent policies are indispensible. A straightforward

generalization of the present algorithm would be to allow for state-dependent feedback gains (see

[Jazwinsky, 1970] for state-dependent Ricatti equation (SDRE) control).

1.4 Arm Model

In the experiment described in the main text, human subjects steered a cursor on a screen to

designated targets. Since the hand movement in the experiment was very confined in space (8cm),

the hand/cursor system is modeled with linear dynamic equations. Following previous studies

[Todorov, 2005; Winter, 1990] the hand is modeled as a point mass m with two-dimensional position

!pH(t) and velocity !vH(t) = !̇pH(t). The combined action of all muscles on the hand is represented

by the force vector !f(t). The neural control signal !u(t) is transformed to this force through a

second-order muscle-like low-pass filter with time constants τ1 and τ2. In every instant of time, the

4In the finite horizon setting [Harris and Wolpert, 1998; Todorov and Jordan, 2002] the argument goes that
during movement execution there are no explicit constraints apart from avoiding excessive control signals, and only
when the target is reached accuracy becomes an issue, i.e. in mathematical terms the cost matrix Q is zero during
the movement and takes the value Q = Qf at the end of the movement. To solve this finite-horizon optimal control
problem, the constraint Qf has to be propagated back through time via the Riccati recursion determining the optimal
feedback gain Lt at each point in time. Thus, target-related accuracy requirements (“minimum end-point variance”
[Harris and Wolpert, 1998]) shape the optimal trajectory. Obviously, this procedure cannot be carried over to the
adaptive case in a straightforward manner, since the Riccati recursion presupposes knowledge of the true system
parameters to determine the entire sequence of optimal feedback gains and to backpropagate terminal constraints
through time. Finally, going one step back and trying to solve the pertinent Bellman equation under parameter
uncertainties is also not an option due to mathematical intractability. In contrast, a stationary feedback controller
in an infinite horizon setting easily carries over to the adaptive case by re-computing the “stationary” control law
in each time step, thus, considering the most recent parameter estimate. This also implies that such an adaptive
controller is applicable on-line.
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hand motion is mapped to a cursor motion on a screen by use of a manipulandum. This mapping

can either be straightforward, or a rotation φ between hand movement and cursor movement can

be introduced. Neglecting the dynamics of the frictionless manipulandum, the cursor position !p(t)

is connected to the hand position via a simple rotation operator Dφ, i.e. !p(t) = Dφ !pH(t). Put

together, this yields the following system equations

!̈p(t) =
1

m
Dφ

!f(t) (16)

τ1 τ2
!̈f(t) + (τ1 + τ2)

!̇f(t) + !f(t) = !u(t) (17)

Equation (17) can be written equivalently as a pair of coupled first-order filters with outputs g and

f . This allows to formulate the state space vector !x ∈ "10 as

!x(t) =
[

px(t) vx(t) fx(t) gx(t) ptarget
x py(t) vy(t) f y(t) gy(t) ptarget

y

]T

where the target location is absorbed in the state vector. When discretizing the above equations

with time bin ∆ the following system matrices are obtained

F [φ] =





1 ∆ 0 0 0 0 0 0 0 0
0 1 ∆

m cos(φ) 0 0 0 0 ∆
m sin(φ) 0 0

0 0 1− ∆
τ2

∆
τ2

0 0 0 0 0 0
0 0 0 1− ∆

τ1
0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 ∆ 0 0 0
0 0 −∆

m sin(φ) 0 0 0 1 ∆
m cos(φ) 0 0

0 0 0 0 0 0 0 1− ∆
τ2

∆
τ2

0
0 0 0 0 0 0 0 0 1− ∆

τ1
0

0 0 0 0 0 0 0 0 0 1





G =





0 0
0 0
0 0
∆
τ1

0
0 0
0 0
0 0
0 0
0 ∆

τ1

0 0





A crucial part of the dynamic equations of the arm model is the multiplicative noise structure

[Harris and Wolpert, 1998]. Following [Todorov, 2005], control-dependent noise is generated by

multiplying the control signal !ut with a stochastic matrix and a scaling parameter Σu

G Σu

(
σ(1)

t σ(2)
t

−σ(2)
t σ(1)

t

)
!ut

Accordingly, the matrices Ci (i = 1, 2) are set to

C1 =

(
Σu 0

0 Σu

)
C2 =

(
0 Σu

−Σu 0

)

Feedback is provided by delayed and noisy measurement of position and velocity of the cursor,

and proprioception. The system formulation of equation (1) already implied a feedback delay of

one time step, since the sensory feedback yt is received after generation of the control signal ut.
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Including an additional delay of d time steps can be achieved easily by further augmenting the

state space as described in the literature [Todorov and Jordan, 2002]. For the present simulations

a feedback delay of 150ms was assumed. This yields the feedback equation

!yt =
[

px
t−d vx

t−d fx
t−d py

t−d vy
t−d f y

t−d

]T

+ χt

When introducing a parameter uncertainty as in (1), long feedback delays can lead to substantial

problems in the process of joint estimation, such as instability and oscillations in the parameter

estimate. In fact, the joint estimation of states and parameters can only be accomplished if the

parameters change on a time-scale well below the delay time. To circumvent these problems we

simply iterated the Kalman equations (4)-(5) at every time step t from t′ = 0 to t′ = t by setting
!̂at′ = !̂at and P a

t′ = P a
t for t′ = 0. This solution is still causal, but makes explicit use of the knowledge

that the unknown parameters are constant throughout the control task.

2 Model Fit

For the investigated visuomotor learning task, the cost function J is given by

J =
1

2
E

[ ∞∑

t=0

{
!xT

t Q !xt + !uT
t R !ut

}]
(18)

with

Q =





w2
p 0 0 0 −w2

p 0 0 0 0 0

0 w2
v 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−w2
p 0 0 0 w2

p 0 0 0 0 0

0 0 0 0 0 w2
p 0 0 0 −w2

p

0 0 0 0 0 0 w2
v 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −w2
p 0 0 0 w2

p





R =

(
r 0

0 r

)

Following equation (13), the certainty-equivalent controller then takes the form

!uD
t = −Lt[φ̂t] !̂xt (19)

where Lt is computed according to equation (14) and the estimates !̂xt and φ̂t are procured by the

Unscented Kalman Filter that operates in the augmented state space

!̂xt =

[
!̂xt

φ̂t

]
(20)

An example of how the parameter estimate evolves within a trial can be seen in Fig. S3.
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As discussed in the previous section, optimal adaptive controllers generally have to be designed

in a problem-specific fashion. To this end, issues of cautious and probing control have to be

tackled. In the present case, the probing control problem can safely be neglected, since center-out

movements automatically entail better system identification of the rotation parameter φ̂. However,

it is intuitively clear that cautiousness (slowing down) is expedient in the presence of very slow

parameter identification and high feedback gains. In line with previous work in the engineering

sciences [Chakravarty and Moore, 1986; Papadoulis et al., 1987; Papadoulis and Svoronos, 1989],

cautiousness is introduced here heuristically by means of an innovation-based “cautious factor”.

The basic idea is to tune down feedback gains if the parameter innovation is high, i.e. if the

current parameter estimate yields poor predictions. The parameter innovation can be obtained by

calculating the Robbins-Munro innovation update [Ljung and Sönderström, 1983]

I φ̂
t+1 = (1− α) I φ̂

t + α K φ̂
t

[
!yt − !̂y−t

][
!yt − !̂y−t

]T

(K φ̂
t )T

where K φ̂
t corresponds to the respective entries of the Kalman gain matrix Kt from the Unscented

Kalman Filter working on the augmented state space5. An example of the innovation estimator can

be seen in Fig. S3. Importantly, the parameter innovation I φ̂
t can be used to adjust the feedback

gain Lt. In the present case, the feedback gain is effectively determined by the two cost parameters

wp and wv. They specify the controller’s drive to regulate the position towards the target position,

while trying to regulate the velocity to zero. Since the cost function is invariant with regard to

a scaling factor (i.e. r can be set arbitrarily), cautiousness can be introduced most generally by

means of two effective cost parameters

w̃p
t =

wp

1 + λp I φ̂
t

w̃v
t = wv

(
1 + λv I φ̂

t

)

with constants λp and λv. While the original cost function is still determined by wp and wv, the

effective cost parameters w̃p
t and w̃v

t (i.e. the effective cost matrix Q̃t) can be used to calculate the

(approximatively) optimal adaptive feedback gain. The optimal adaptive controller then takes the

form

!uopt
t = −L̃t[φ̂t] !̂xt (21)

with L̃t[φ̂t] from equation (14) calculated on the basis of Q̃t. In the absence of parameter uncertainty

(I φ̂
t = 0) this yields a standard LQG control scheme. For infinitely high innovations one gets w̃p

t → 0

and w̃v
t →∞, i.e. the controller halts.

Finally, the model was tested on the experimental movement data. To this end, four effective

control parameters and three noise parameters of the model were adjusted to fit the mean trajectory

and variance of 90◦-transformation trials. The parameters of the arm model were taken from the

literature [Todorov, 2005]. The obtained parameter set was then used to predict trajectories,

5We set α = 0.1
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speed profiles, angular speed and variance for all intermediary transformation angles and standard

movements.

The parameter set to fit and predict the human movement data was as follows:

Arm Parameters τ1 = τ2 = 40ms

m = 1kg

Control Parameters wp = 1

wv = 0.1

r = 0.0001

λp = 2 · 104

λv = 1 · 104

Noise Parameters Ωξ = 0

Ωχ =
(
0.1 diag([1cm 10cm/s 100cN 1cm 10cm/s 100cN ])

)2

Ων = 10−7

Σu = 0.7

The average costs appertaining to this parameter set mounted up to J = 7880± 60. In contrast, a

certainty-equivalent controller (λp ≡ λv ≡ 0) yields JCE = 8910 ± 70. This clearly shows that for

fast movements it is optimal to behave cautiously (cf. Fig. S5).
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Figure S1. Benchmark Test. The performance of the proposed algorithm (“UKFmult”) was
measured for different magnitudes of multiplicative noise in a standard center-out reaching task
to allow for comparison with existing approximation schemes by [Todorov, 2005] and [Moore et
al., 1999]. In the absence of observation noise, Kleinman [Kleinman, 1969] calculated the optimal
solution to the posed control problem and, thereby, provided a lower bound. All other algorithms
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are in line with the model of Todorov [Todorov, 2005]. (b) Speed vs. Target Distance. The model
predicts a linear relationship between target distance and peak velocity as found experimentally.
(cf. [Krakauer et al., 2000, Fig. 2D]).
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Figure S3. Adaptation of model parameters. The left panel shows trajectories when the controller
adapts to different unexpected visuomotor transformations: 0◦ black, 30◦ blue, 50◦ red, 70◦ green
and 90◦ magenta. The middle panel shows how the innovation estimate evolves within a trial. Due
to feedback delay, initially there is no mismatch detected. After the delay time the innovation
estimator detects parameter mismatch. Once the correct parameter estimate can be achieved
innovations return to zero again. The right panel shows evolution of the parameter estimate
within a trial. The different rotation angles are estimated corresponding to different experienced
visuomotor rotations.
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Figure S4. Non-adaptive optimal control model. When the model is not allowed to track the
rotation parameter, the controller becomes quickly unstable. The trajectories diverge.
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Figure S5. Adaptive controller without “cautiousness”. When the cautiousness parameters are
set to zero, the controller acts much faster in the second part of the movement, not only leading to
higher speeds, but importantly also to higher costs (compare Section 2).
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