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Abstract Can the topology of a recurrent spiking net-
work be inferred from observed activity dynamics?
Which statistical parameters of network connectivity
can be extracted from firing rates, correlations and re-
lated measurable quantities? To approach these ques-
tions, we analyze distance dependent correlations of
the activity in small-world networks of neurons with
current-based synapses derived from a simple ring
topology. We find that in particular the distribution
of correlation coefficients of subthreshold activity can
tell apart random networks from networks with dis-
tance dependent connectivity. Such distributions can
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be estimated by sampling from random pairs. We also
demonstrate the crucial role of the weight distribution,
most notably the compliance with Dales principle, for
the activity dynamics in recurrent networks of different
types.
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1 Introduction

The collective dynamics of balanced random networks
was extensively studied, assuming different neuron
models as constituting dynamical units (van Vreeswijk
and Sompolinsky 1996, 1998; Brunel and Hakim 1999;
Brunel 2000; Mattia and Del Guidice 2002; Timme et al.
2002; Mattia and Del Guidice 2004; Kumar et al. 2008b;
Jahnke et al. 2008; Kriener et al. 2008).

Some of these models have in common that they
assume random network topologies with a sparse con-
nectivity ε ≈ 0.1 for a local, but large neuronal network,
embedded into an “external” population that supplies
unspecific white noise drive to the local network. These
systems are considered as minimal models for corti-
cal networks of about 1 mm3 volume, because they
can display activity states similar to those observed in
vivo, such as asynchronous irregular spiking. Yet, as
recently reported (Song et al. 2005; Yoshimura et al.
2005; Yoshimura and Callaway 2005), local cortical net-
works are characterized by a circuitry, which is specific
and hence, non-random even on a small spatial scale.
Since it is still impossible to experimentally uncover the
whole coupling structure of a neuronal network, it is
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necessary to infer some of its features from its activity
dynamics. Timme (2007) e.g. studied networks of N
coupled phase oscillators in a stationary phase locked
state. In these networks it is possible to reconstruct de-
tails of the network coupling matrix (i.e. topology and
weights) by slightly perturbing the stationary state with
different driving conditions and analyzing the network
response. Here, we focus on both network structure
and activity dynamics in spiking neuronal networks on
a statistical level. We consider several abstract model
networks that range from strict distance dependent
connectivity to random topologies, and examine their
activity dynamics by means of numerical simulation
and quantitative analysis. We focus on integrate-and-
fire neurons arranged on regular rings, random net-
works, and so-called small-world networks (Watts and
Strogatz 1998). Small-world structures seem to be op-
timal brain architectures for fast and efficient inter-
areal information transmission with potentially low
metabolic consumption and wiring costs due to a low
characteristic path length " (Chklovskii et al. 2002),
while at the same time they may provide redundancy
and error tolerance by highly recurrent computation
(high clustering coefficient C, for the general definitions
of " and C, cf. e.g. Watts and Strogatz (1998), Albert and
Barabasi (2002)). Also on an intra-areal level cortical
networks may have pronounced small-world features
as was shown in simulations by Sporns and Zwi (2004),
who assumed a local Gaussian connection probability
and a uniform long-range connection probability for lo-
cal cortical networks, assumptions that are in line with
experimental observations (Hellwig 2000; Stepanyants
et al. 2007). Network topology is just one aspect of
neuronal network coupling, though. Here, we also
demonstrate the crucial role of the weight distribu-
tion, especially with regard to the notion that all in-
hibitory neurons project only hyperpolarizing synapses
onto their postsynaptic targets, and excitatory neurons
only project depolarizing synapses. This assumption
is sometimes referred to as Dale’s principle (Li and
Dayan 1999; Dayan and Abbott 2001; Hoppensteadt
and Izhikevich 1997). Strikingly, this has strong impli-
cations for the dynamical states of random networks
already (Kriener et al. 2008). Yet, the main focus of
the present study is put on the distance dependence
and overall distribution of correlation coefficients. Es-
pecially the joint statistics of subthreshold activity, i.e.
correlations and coherences between the incoming cur-
rents that neurons integrate, has been shown to contain
elusive information about network parameters, e.g. the
mean connectivity in random networks (Tetzlaff et al.
2007).

The paper is structured as follows: In Section 2 we
give a short description of the details of the neuron
model and the simulation parameters used through-
out the paper. In Section 3 we introduce the notion
of small-world networks and in Section 4 we discuss
features of the activity dynamics in dependence of
the topology. In ring and small-world networks groups
of neighboring neurons tend to spike highly synchro-
nously, while the population dynamics in random net-
works is asynchronous-irregular. To understand the
source of this differences in the population dynamics,
we analyze the correlations of the inputs of neurons
in dependence of the network topology. Section 5
is devoted to the theoretical framework we apply to
calculate the input correlations in dependence of the
pairwise distance in sparse ring (Section 5.1) and small-
world networks (Section 5.2). In Section 6 we finally
derive the full distribution of correlation coefficients
for ring and random networks. Random networks have
rather narrow distributions centered around the mean
correlation coefficient, while sparse ring and small-
world networks have distributions with heavy tails. This
is due to the high probability to share a common input
partner if the neurons are topological neighbors, and
very low probability if they are far apart, yielding dis-
tributions with a few high correlation coefficients and
many small ones. This offers a way to potentially dis-
tinguish random topologies from topologies with small-
world features by their subthreshold activity dynamics
on a statistical level.

2 Neuronal dynamics and synaptic input

The neurons in the network of size N are modeled
as leaky integrate-and-fire point neurons with current-
based synapses. The membrane potential dynamics
Vk(t), k ∈ {1, . . . , N} of the neurons is given by

τmV̇k(t) = −Vk(t) + RIk(t) (1)

with membrane resistance R and membrane time con-
stant τm. Whenever Vk(t) reaches the threshold θ , a
spike is emitted, Vk(t) is reset to Vres, and the neuron
stays refractory for a period τref. Synaptic inputs

RIloc,k = τm

N∑

i=1

Jki

∑

l

δ(t − til − ∆) (2)

from the local network are modeled as δ-currents.
Whenever a presynaptic neuron i fires an action
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potential at time til, it evokes an exponential postsynap-
tic potential (PSP) of amplitude

Jki =






J if the synapse i → k is excitatory,

−gJ if the synapse i → k is inhibitory,

0 if there is no synapse i → k

(3)

after a transmission delay ∆ that is the same for
all synapses. Note that multiple connections between
two neurons and self-connections are excluded in this
framework. In addition to the local input, each neuron
receives an external Poisson current Iext,k mimicking
inputs from other cortical areas or subcortical regions.
The total input is thus given by

Ik(t) = Iloc,k(t) + Iext,k(t) . (4)

2.1 Parameters

The neuron parameters are set to τm = 20 ms, R =
80 MΩ , J = 0.1 mV, and ∆ = 2 ms. The firing threshold
θ is 20 mV and the reset potential Vres = 0 mV. After a
spike event, the neurons stay refractory for τref = 2 ms.
If not stated otherwise, all simulations are performed
for networks of size N = 12,500, with NE = 10,000 and
NI = 2,500. We set the fraction of excitatory neurons
in the network to β = NE/N = 0.8. The connectivity is
set to ε = 0.1, such that each neuron receives exactly
κ = ε N inputs. For g = 4 inhibition hence balances
excitation in the local network, while for g > 4 the local
network is dominated by a net inhibition. Here, we
choose g = 6. External inputs are modeled as Kext =
εNE independent Poissonian sources with frequencies
νext. All network simulations were performed using the

NEST simulation tool (Gewaltig and Diesmann 2007)
with a temporal resolution of h = 0.1 ms. For details of
the simulation technique see Morrison et al. (2005).

3 Structural properties of small-world networks

Many real world networks, including cortical networks
(Watts and Strogatz 1998; Strogatz 2001; Sporns 2003;
Sporns and Zwi 2004), possess so-called small-world
features. In the framework originally studied by Watts
and Strogatz (1998), small-world networks are con-
structed from a ring graph of size N, where all nodes
are connected to their κ % N nearest neighbors (“box-
car footprint”), by random rewiring of connections
with probability pr (cf. Fig. 1(a), (b)). Watts and
Strogatz (1998) characterized the small-world regime
by two graph-theoretical measures, a high clustering
coefficient C and a low characteristic pathlength " (cf.
Fig. 1(c)). The clustering coefficient C measures the
transitivity of the connectivity, i.e. how likely it is, that,
given there is a connection between nodes i and j,
and between nodes j and k, there is also a connection
between nodes i and k. The characteristic path length
" on the other hand quantifies how many steps on
average suffice to get from some node in the network
to any other node. In the following we will analyze
small-world networks of spiking neurons. Networks can
be represented by the adjacency matrix A with Aki =
1, if node i is connected to k and Aki = 0 otherwise.
We neglect self-connections, i.e. Akk = 0 for all k ∈
{1, ..., N}. In the original paper by Watts and Strogatz
(1998) undirected networks were studied. Connections
between neurons, i.e. synapses are however generically

(a) (b) (c)

Fig. 1 A sketch of (a) the ring and (b) a small-world network
with the neuron distribution we use throughout the paper for the
Dale-conform networks (gray triangle: excitatory neuron, black
square: inhibitory neuron, ratio excitation/inhibition = NE/NI =
4). The footprint κ of the ring in this particular example is 4,
i.e. each neuron is connected to its κ = 4 nearest neighbors,
irrespective of the identity. To derive the small-world network

we rewire connections randomly with probability pr. Note, that
in the actual studied networks all connections are directed. (c)
The small-world regime is characterized by a high relative clus-
tering coefficient C(pr)/C(0) and a low characteristic path length
"(pr)/"(0) (here N = 2,000, κ = 200, averaged over 10 network
realizations)
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directed. We define the clustering coefficient C for di-
rected networks1 here as

Ci =
∑N

j=1

∑N
k=1 Aki Aji

(
Ajk + Akj

)
(∑N

k=1 Aki

) ([∑N
k=1 Aki

]
− 1

) (5)

with

C = 1
N

N∑

i=1

Ci . (6)

In this definition, C measures the likelihood of having
a connection between two neurons, given they have
a common input neuron, and it is hence directly re-
lated to the amount of shared input

∑N
i=1 WkiWli be-

tween neighboring neurons l and k, where Wki are the
weighted connections from neuron i to neuron k (cf.
Section 2), i.e.

Wki =






J Aki if i excitatory
−gJ Aki if i inhibitory
0 if there is no synapse

. (7)

The characteristic path length " of the network graph is
given by

" = 1
N

N∑

i=1

"i , with "i = 1
N − 1

∑

j&= i

"ij , (8)

where "ij is the shortest path between neurons i and
j, i.e. "ij = minn∈Z{(An)ij > 0} (Albert and Barabasi
2002). The clustering coefficient is a local property
of a graph, while the characteristic path length is a
global quantity. This leads to the relative stability of
the clustering coefficient during gradual rewiring of
connections, because the local properties are hardly
affected, whereas the introduction of random shortcuts
decreases the average shortest path length dramatically
(cf. Fig. 1(c)).

4 Activity dynamics in spiking small-world networks

In a ring graph directly neighboring neurons receive
basically the same input, as can be seen from the
high clustering coefficient C(0) = 3(κ − 2)/4(κ − 1) ≈
0.752 which is the same as in undirected ring networks
(Albert and Barabasi 2002). This leads to high in-

1The value of the clustering coefficient does in expectation not
depend on the exact choice of triplet connectivity we ask for.
2The reverse is not true, we can have a high amount of shared
input in a network without having a high clustering coefficient.
An example is a star graph in that a central neuron projects to N
other neurons which in turn are not connected.

put correlations and synchronous spiking of groups of
neighboring neurons (Fig. 2(a)). As more and more
connections are rewired, the local synchrony is atten-
uated and we observe a transition to a rather asyn-
chronous global activity (Fig. 2(b), (c)). The clustering
coefficient of the corresponding random graph equals
C(1) = κ/N = ε (here ε = 0.1), because the probabil-
ity to be connected is always ε for any two neu-
rons, independent of the adjacency of the neurons
(Albert and Barabasi 2002). This corresponds to the
strength of the input correlations observed in these
networks (Kriener et al. 2008). However, the popula-
tion activity still shows pronounced fluctuations around
∼ 1/4∆ (with the transmission delay ∆ = 2 ms, cf.
Section 2) even when the network is random (pr =
1, Fig. 2(c)). These fluctuations decrease dramatically,
if we violate Dale’s principle, i.e. the constraint that
any neuron can either only depolarize or hyperpo-
larize all its postsynaptic targets, but not both at the
same time. We refer to the latter as the hybrid sce-
nario in which neurons project both excitatory and
inhibitory synapses (Kriener et al. 2008). Ren et al.
(2007) suggest that about 30% of pyramidal cell pairs in
layer 2/3 mouse visual cortex have effectively strongly
reliable, short latency inhibitory couplings via axo-
axonic glutamate receptor mediated excitation of the
nerve endings of inhibitory interneurons, thus bypass-
ing dendrites, soma, and axonal trunk of the involved
interneuron. These can be interpreted as hybrid-like
couplings in real neural tissue.

The average rate in all four networks is hardly
affected by the underlying topology or weight dis-
tribution of the networks (cf. Table 1), while the
variances of the population activity are very differ-
ent. This is reflected in the respective Fano factors
FF[n(t; h)] = Var[n(t; h)]/E[n(t; h)] of population spike
counts n(t; h) = ∑N

i=1 ni(t; h) per time bin h = 0.1 ms,
where ni(t; h) =

∫ t+h
t Si(s) ds =

∫ t+h
t

∑
l δ(s − sil) ds is

the number of spikes emitted by neuron i at time points
sl within the interval [t, t + h) (cf. Appendix A). If the
population spike count n(t; h) is a compound process
of independent stationary Poisson random variables
ni(t; h) with parameter νoh, we have

FF[n(t; h)] = Var[n(t; h)]
E[n(t; h)]

=
∑N

i, j=1 Cov[ni(t; h), n j(t; h)]
∑N

i=1 E[ni(t; h)]

= Nνoh
Nνoh

= 1 , (9)
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Fig. 2 Activity dynamics for (a) a ring network, (b) a small-world
network (pr = 0.1) and (c) a random network that all comply
with Dale’s principle. (d) shows activity in a ring network with
hybrid neurons. In the Dale-conform ring network (a) we observe
synchronous spiking of large groups of neighboring neurons. This
is due to the high amount of shared input: neurons next to each
other have basically the same presynaptic input neurons. This
local synchrony is slightly attenuated in small-world networks

(b). In random networks the activity is close to asynchronous-
irregular (AI), apart from network fluctuations due to the finite
size of the network (c). Networks made of hybrid neurons have
a perfect AI activity, even if the underlying connectivity is a
ring graph (d). The simulation parameters were N = 12,500, κ =
1,250, g = 6, J = 0.1 mV, with NI = 2,500 equidistantly distrib-
uted inhibitory neurons and Kext = 1, 000 independent Poisson
inputs per neuron of strength νext = 15 Hz each (cf. Section 2)

because the covariances Cov[ni(t; h), n j(t; h)] =
E[ni(t; h)n j(t; h)] − E[ni(t; h)]E[n j(t; h)] are zero for all
i &= j and the variance of the sum equals the sum of the
variances. If it is larger than one this indicates positive
correlations between the spiking activities of the
individual neurons (cf. Appendix A) (Papoulis 1991;
Nawrot et al. 2008; Kriener et al. 2008). We see (cf.
Table 1) that indeed it is largest for the Dale-conform
ring network, still manifestly larger than one for the
Dale-conform random network, and about one for the
hybrid networks for both the ring and the random case.
The quantitative differences of the Fano factors in all
four cases can be explained by the different amount

of pairwise spike train correlations (cf. Appendix A,
Section 6). This demonstrates how a violation of
Dale’s principle stabilizes and actually enables asyn-
chronous irregular activity, even in networks whose
adjacency, i.e. the mere unweighted connectivity,
suggests highly correlated activity, as it is the case
for Dale-conform ring (Fig. 2(a)) and small-world
networks (Fig. 2(b)).

To understand the origin of the different correlation
strengths in the various network types, and hence the
different spiking dynamics and population activities
in dependence on both the weight distribution and
the rewiring probability, we will extend our analysis
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Table 1 Mean population rates νo and Fano factors FF[n(t; h)] =
Var[n(t; h)]/E[n(t; h)] of population spike count n(t; h) per time
bin h (10 s of population activity, N = 12,500, bin size h = 0.1 ms)
for the random Dale and hybrid networks and the corresponding
ring networks

Network type Mean rate νo Fano factor FF
Random, Dale 12.9 Hz 9.27
Random, Hybrid 12.8 Hz 1.25
Ring, Dale 13.5 Hz 26.4
Ring, Hybrid 13.1 Hz 1.13

If all spike trains contributing to the population spike count were
uncorrelated Poissonian, the FF would equal 1. A FF larger than
1 indicates correlated activity (cf. Appendix )

introduced in Kriener et al. (2008) to

A

ring and small-
world networks in the following sections.

5 Distance dependent correlations in a shot-noise
framework

We assume that all incoming spike trains Si(t) =∑
l δ(t − til) are realizations of point processes corre-

sponding to stationary correlated Poisson processes,
such that

E[Si(t)S j(t + τ )] := ψij(τ ) = cij
√

νiν j δ(τ ) , (10)

with spike train correlations cij ∈ [−1, 1], and mean
rates νi, ν j (cf. however Fig. 4(d)). The spike trains
can either stem from the pool of local neurons
i ∈ {1, . . . , N} or from external neurons i ∈ {N +
1, . . . , N + NKext}, where we assume that each neuron
receives external inputs from Kext neurons, which are
different for all N local neurons. We describe the total
synaptic input Ik(t) of a model neuron k as a sum
of linearly filtered presynaptic spike trains (i.e. the
spike trains are convolved with filter-kernels fki(t)),
also called shot noise (Papoulis 1991; Kriener et al.
2008):

Ik(t) = Iloc,k(t) + Iext,k(t) =
N∑

i=1

(Si ∗ fki)(t)

+
N+NKext∑

i=N+1

(Si ∗ fki)(t) . (11)

Ik(t) could represent e.g. the weighted input current,
the synaptic input current ( fki(t) = unit postsynaptic
current, PSC), or the free membrane potential ( fki(t) =
unit postsynaptic potential, PSP). All synapses are iden-
tical in their kinetics and differ only in strength Wki,
hence we can write

fki(t) = Wki f (t) . (12)

With si(t) := (Si ∗ f )(t), Eq. (11) is then rewritten as

Ik(t) =
N∑

i=1

Wkisi(t) +
N+NKext∑

i=N+1

Wkisi(t) . (13)

The covariance function of the inputs Ik, Il is given by

Cov[Ik(t)Il(t + τ )] =
N+NKext∑

i=1

N+NKext∑

j=1

× WkiWljCov[si(t)s j(t + τ )] . (14)

This sum can be split into

Cov[Ik(t)Il(t + τ )]

=
N+NKext∑

i=1

WkiWliCov[si(t)si(t + τ )] (i)

+
N∑

i=1

N∑

j&=i

WkiWljCov[si(t)s j(t + τ )] (ii) . (15)

The first sum Eq. (15) (i) contains contributions of
the auto-covariance functions Cov[si(t)si(t + τ )] of the
filtered input spike trains, i.e. the spike trains that stem
from common input neurons i ∈ {1, ..., N} (WkiWli &=
0, including W2

ki). The second sum Eq. (15) (ii) con-
tains all contributions of the cross-covariance functions
Cov[si(t)s j(t + τ )] of filtered spike trains that stem from
presynaptic neurons i &= j, i, j ∈ {1, ..., N}, where we al-
ready have taken into account that the external spike
sources are uncorrelated, and hence Cov[si(t)s j(t +
τ )] = 0 for all i, j ∈ {N + 1, ..., N + NKext}. It is appar-
ent that the high degree of shared input, as present in
ring and small-world topologies, should show up in the
spatial structure of input correlations between neurons.
The closer two neurons k, l are located on the ring, the
more common presynaptic neurons i they share. This
will lead to a dominance of the first sum, unless the
general strength of spike train covariances, accounted
for in the second sum, is too high, and the second sum
dominates the structural amplifications, because it con-
tributes quadratically in neuron number. If the input
covariances due to the structural overlap of presynaptic
pools is however dominant, a fraction of this input
correlation should also be present at the output side of
the neurons, i.e. the spike train covariances cij should
be a function of the interneuronal distance as well. This
is indeed the case as we will see in the following.
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We will hence assume that all incoming spike train
correlations cij are in general dependent on the pairwise
distance Dij = |i − j| of neurons i, j (neuron labeling

across the ring in clockwise manner), and the rewiring
probability pr. With Campbell’s theorem for shot noise
(Papoulis 1991; Kriener et al. 2008) we can write

Et[si(t)] = νi

∞∫

−∞

f (t) dt ∀i ∈ {1, . . . , N},

Cov[si(t)s j(t + τ )] = Et[si(t)s j(t + τ )] − Et[si(t)]Et[s j(t + τ )]

=:






as,loc
i (τ ) = (ψii ∗ φ)(τ ) if i = j, i ∈ {1, . . . , N}

as,ext
i (τ ) = (ψii ∗ φ)(τ ) if i = j, i ∈ {N + 1, . . . , N + NKext}

cs
ij(τ, Dij, pr) = (ψij ∗ φ)(τ ) if i &= j and i, j ∈ {1, . . . , N}

0 otherwise

(16)

with

Et[ . ] = lim
T→∞

1
2T

T∫

−T

( . ) dt .

Here, φ(τ ) =
∫∞
−∞ f (t) f (t + τ ) dt represents the auto-

correlation of the filter kernel f (t).
We now want to derive the zero time-lag input

covariances, i.e. the auto-covariance ain and cross-
covariance cin of Ik, Il, defined as

Cov[Ik(t)Il(t)] =:
{

ain,k(pr) for k = l
cin,kl(Dkl, pr) for k &= l

(17)

in dependence of the auto- and cross-covariances as
i (0),

cs
ij(0, Dij, pr) of the individual filtered input spike trains

to obtain the input correlation coefficient

Cin(Dkl, pr) = cin,kl(Dkl, pr)√
ain,k(pr)ain,l(pr)

. (18)

With the definitions Eq. (16) the input auto-covariance
function at zero time lag ain,k(pr), i.e. the variance of
the input Ik, explicitly equals

ain,k(pr) =
N∑

i=1

W2
ki as,loc

i (0)

+
N+NKext∑

i=N+1

W2
ki as,ext

i (0)

+
N∑

i=1

N∑

j&=i

WkiWkj cs
ij(0, Dij, pr) , (19)

while the cross-covariance of the input currents
cin(Dij, pr) is given by

cin,kl(Dkl, pr) =
N∑

i=1

WkiWli as,loc
i (0)

+
N∑

i=1

N∑

j&=i

WkiWlj cs
ij(0, Dij, pr) . (20)

To assess the zero-lag shot noise covariances as
i (0) and

cs
ij(0, Dij, pr) we derive with Eqs. (10), (16)

Cov[si(t), s j(t)]

=
{

as
i (0) = νi φ(0) if i = j

cs
ij(0, Dij, pr) = cij(Dij, pr)

√
νiν j φ(0) if i &= j

(21)

We assume νi = νo for all i ∈ {1, ..., N}, with νo denoting
the average stationary rate of the network neurons,
and νi = νext for all i ∈ {N + 1, ..., N + NKext}, with
νext denoting the rate of the external neurons. Hence,
as,loc

i (0) = νo φ(0), and as,ext
i (0) = νext φ(0) are the same

for all neurons i ∈ {1, ..., N}, and i ∈ {N + 1, ..., N +
NKext}, respectively. For the cross-covariance function
we analogously have cs

ij(0, Dij, pr) = νo cij(Dij, pr)φ(0).
We define Hk as the contribution of the shot noise vari-
ances as to the variance ain of the inputs (cf. Fig. 3(a))

Hk := as,loc(0)

N∑

i=1

W2
ki + as,ext(0)

N+NKext∑

i=N+1

W2
ki , (22)
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Fig. 3 Sketch of the different
contributions to the input
correlation coefficient
Cin(Dkl, 0), cf. Eq. (26) for
the ring graph. The variance
ain(0), Eq. (17) of the input to
a neuron k is given by the
sum of the variances H
(panel (a)), Eq. (22) and the
sum of the covariances L(0)
(panel (b)), Eq. (24) of the
incoming filtered spike
trains si from neurons i &= j
with WkiWkj &= 0. The
cross-covariance cin(Dkl, 0),
Eq. (17) is given by the sum
of the variances of the
commonly seen spike trains si
with WkiWli &= 0, G(Dkl, 0)
(panel (c)), Eq. (23) and the
sum of the covariances
of the spike trains si from
non-common input neurons
i &= j with WkiWlj &= 0,
M(Dkl, 0), Eq. (25). We
always assume that the
only source of spike train
correlations cij(Dij, 0) stems
from presynaptic neurons
sharing a common
presynaptic neuron m (green)
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Gkl as the contribution of the shot noise variances as to
the cross-covariance cin of the inputs (cf. Fig. 3(c))

Gkl(Dkl, pr) := as,loc(0)

N∑

i=1

WkiWli , (23)

Lk as the contribution of the shot noise cross-
covariances cs to the auto-covariance ain of the inputs
(cf. Fig. 3(b))

Lk(pr) :=
N∑

i=1

N∑

j&=i

WkiWkjcs
ij(0, Dij, pr) , (24)

and Mkl as the contribution of the shot noise cross-
covariances cs to the cross-covariance cin of the inputs
(cf. Fig. 3(d))

Mkl(Dkl, pr) :=
N∑

i=1

N∑

j&=i

WkiWljcs
ij(0, Dij, pr) . (25)

Finally, if we assume input structure homogeneity, i.e.
that the expected values of these individual contribu-
tions do not depend on k and l, but only on the relative

distance Dkl and the rewiring probability pr, we can
rewrite Eq. (18) as

Cin(Dkl, pr) = cin(Dkl, pr)
ain(pr)

= G(Dkl, pr) + M(Dkl, pr)
H + L(pr)

, (26)

The next two sections are devoted to the calculation of
these expressions for ring and small-world networks.

5.1 Ring graphs

First we consider the case of Dale-conform ring net-
works, i.e. pr = 0. A fraction of βκ of the presynaptic
neurons i within the local input pool of neuron k is
excitatory and depolarizes the postsynaptic neuron by
Wki = J with each spike, while (1 − β)κ presynaptic
neurons are inhibitory and hyperpolarize the target
neuron k by Wki = −gJ per spike (cf. Section 2).
Moreover, each neuron receives Kext excitatory inputs
from the external neuron pool with Wki = J. Hence,
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for all neurons k ∈ {1, ..., N} we obtain for the input
variance Hk = H, Eq. (22), Fig. 3(a)

H = as,loc(0)

N∑

i=1

W2
ki + as,ext(0)

N+NKext∑

i=N+1

W2
ki

∀ k=
(
κ J2 (β + g2(1 − β)) νo + Kext J2 νext

)
φ(0) . (27)

Because of the boxcar footprint, the contribution of
the auto-covariances as(0) of the individual filtered
spike trains to the input cross-covariance Gkl(Dkl, 0),
Eq. (23), is basically the same as H, only scaled by the
respective overlap of the two presynaptic neuron pools
of neurons k and l. This overlap only depends on the
distance Dkl between k and l, cf. Fig. 3(c). Hence, for
all k, l ∈ {1, ..., N}

G(Dkl,0)=as,loc(0)

N∑

i=1

WkiWli

=Θ[κ−Dkl](κ−Dkl)J2(β+g2(1−β)) νo φ(0) ,

(28)

with minor modulations because of the exclusion of
self-couplings and the relative position of the inhibitory
neurons with respect to the boxcar footprint, but for
large κ these corrections are negligible. Θ[x] is the
Heaviside stepfunction that equals 1 if x ≥ 0, and 0 if
x < 0. If all incoming spike trains from local neurons
are uncorrelated and Poissonian, and the external drive
is a direct current, the complete input covariance stems
from the structural (i.e. common input) correlation co-
efficient Cstruc(Dkl, pr) := G(Dkl,pr)

H alone, that can then
be written as

Cstruc(Dkl, 0) = Cin(Dkl, 0)|cs=0 = cin(Dkl, 0)

ain(0)

∣∣∣
cs=0

= G(Dkl, 0)

H
=
(

1 − Dkl

κ

)
Θ [κ − Dkl] .

(29)

The spike train correlations cij(Dij, 0) show however
a pronounced distance dependent decay and reach
non-negligible amplitudes up to cij(1, 0) ≈ 0.04 (cf.
Fig. 4(c)). In the following we will use two approxima-
tions of the distance dependence of cij(Dij, 0), a linear
relation and an exponential relation. We start by as-
suming a linear decay on the interval (0, κ] (cf. Fig. 4(c),
black). This choice is motivated by two assumptions.
First, we assume that the main source of spike cor-
relations stems from the structural input correlations
Cstruc(Dij, 0), Eq. (29), of the input neurons i, j alone,
i.e. the strength of the correlations between two input
spike trains Si and S j depends on the overlap of their

presynaptic input pools, determined by their interneu-
ronal distance Dij. Analogous to the reasoning that
lead to the common input correlations G(Dkl, 0)/H,
Eq. (29), before, the output spike train correlation
between neurons i and j will hence be zero if Dij ≥ κ .
Moreover, the neurons i and j will only be contributing
to the input currents of k and l, if they are within a
distance κ/2, that is Dki < κ/2 and Dlj < κ/2. Hence,
for the correlations of two input spike trains Si, S j, i &=
j to contribute to the input covariance of neurons k
and l, these must be within a range κ + 2 κ/2 = 2κ .
Additionally, we assume that the common input cor-
relations Cstruc(Dij, 0) are transmitted linearly with the
same transmission gain γ := cij(1, 0)/Cstruc(1, 0) to the
output side of i and j. We hence make the following
ansatz for the distance dependent correlations between
the filtered input spike trains from neuron i to k and
from neuron j to l (we always indicate the dependence
on k and l by |kl):

cs,lin
ij (0, Dij, 0)

νoφ(0)

∣∣∣∣
kl

= clinij (Dij, 0)|kl = γ Cstruc(Dij, 0)|kl

= γ

(
1 − Dij

κ

)
Θ
[
κ/2 − |i − k|

]

×Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

(30)

For the third sum in Eq. (19) this yields for all k ∈
{1, ..., N} (cf. Appendix B for details of the derivation)

Llin
k (0) =

N∑

i=1

N∑

j&=i

WkiWkjc
s,lin
ij (0, Dij, 0)

∀ k= γ J2

3
(2κ − 1)(κ − 1)(β − g(1 − β))2 νoφ(0) .

(31)

For the second term in Eq. (20) we have

Mlin(Dkl, 0) =
N∑

i=1

N∑

j&=i

WkiWljc
s,lin
ij (0, Dij, 0) , (32)

which again only depends on the distance, so we
dropped the sub-script of M. It is derived in Appendix
B and explicitly given by Eq. (67). After calculation
of Llin(0) and Mlin(Dkl, 0) with the ansatz Eq. (30), we
can plot Cin(Dkl, 0) as a function of distance and get
a curve as shown in Fig. 4(a). It is obvious (Fig. 4(c))
that the linear fit overestimates the spike train correla-
tions as a function of distance, the correlation transmis-
sion decreases with interneuronal distance, i.e. strength
of input correlation Cin, non-linearly (De la Rocha
et al. 2007; Shea-Brown et al. 2008). This leads to an
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Fig. 4 Input current (a, b, e) and spike train (c, f) correlation
coefficients as a function of the pairwise interneuronal distance
D for a ring network of size N = 12,500, κ = 1,250, g = 6,
J = 0.1 mV with βN equidistantly distributed inhibitory neurons
and Kext = 1,000 external Poisson inputs per neuron of strength
νext = 15 Hz each. (a) depicts the input correlation coefficients
Eq. (18) derived with the assumption that the spike train correla-
tion coefficients cij(D, 0) go linearly like clin(D, 0) = 0.0406 (1 −
D/κ)Θ[κ − D], cf. Eq. (30), and (b) fitted as a decaying ex-
ponential function cexp(D, 0) = 0.0406e−0.0025 D (red). The gray
curves show the input correlations estimated from simulations.
(c) shows the spike train correlation coefficients estimated from
simulations (gray), and both the linear (black) and exponential

fit (red) used to obtain the theoretical predictions for the input
correlation coefficients in (a) and (b). (d) shows the measured
spike train cross-correlation functions ψij(τ, D, 0) for four dif-
ferent distances D = {1, 325, 625, 1250}. (e) shows the average
input correlation coefficients (averaged over 50 neuron pairs per
distance) and (f) the average spike train correlation coefficients
measured in a hybrid ring network (for the full distribution cf.
Fig. 7(c)). Note, that the average input correlations in (e) are even
smaller than the spike train correlations in (c). For each network
realization, we simulated the dynamics during 30 s. We then
always averaged over 50 pairs for the input current correlations
and 1,000 pairs for the spike train correlations with selected
distances D ∈ {1, 10, 20,...,100, 200,..., 6,000}

overestimation of the total input correlations for dis-
tances Dkl ≥ κ (Fig. 4(a)). If we instead fit the distance
dependence of the spike train correlations of neuron i
and j by a decaying exponential function with a cut-off
at Dij = κ ,

cexpij (Dij, 0) = γ e−η DijΘ[κ − Dij] , (33)

and fit the corresponding parameters γ and η to the
values estimated from the simulations, the sums in
Eqs. (31) and (32) can still be reduced to simple terms
(cf. Eqs. (69), (70)) and the correspondence with the
observed input correlations becomes very good over
the whole range of distances (Fig. 4(b)). We conclude
that the strong common input correlations Cstruc of
neighboring neurons due to the structural properties of
Dale-conform ring networks predominantly cause the

spatio-temporally correlated spiking of neuron groups
of size ∼ κ .

However, we saw (cf. Fig. 2(d)) that the spiking
activity in ring networks becomes highly asynchronous
irregular, if we relax Dale’s principle and consider hy-
brid neurons instead. Since the number of excitatory,
inhibitory and external synapses is the same for all
neurons, we get the same expressions for H, Llin(0) and
Mlin(Dkl, 0) for hybrid neurons as well, but the common
input correlations become (the expectation value EW is
with regard to network realizations)

EW[Ghyb(Dkl, 0)]
νoφ(0)

= Θ[κ − Dkl]

× (κ − Dkl) J2(β2 + g2(1 − β)2 − 2gβ(1 − β)) . (34)
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The ratio of Ghyb and G hence corresponds to the
one reported for random networks (Kriener et al.
2008) and equals 0.02 for the parameters used here.
This is in line with the average input correlations in
the hybrid ring network (Fig. 4(e)). They are hence
only about half the correlation of the spike trains in
the Dale-conform ring network (Fig. 4(c)). If we as-
sume the correlation transmission for the highest pos-
sible input correlation to be the same as in the Dale
case (γ ≈ 0.04), we estimate spike train correlations
of the order of cij ∼ 10−4. The measured average val-
ues from simulations give indeed correlations of that
range (Fig. 4(f)) and are, hence, of the same order as
in hybrid random networks (Kriener et al. 2008). As
we will show in Section 6, the distribution of input
correlation coefficients Chyb

in (Dkl, 0) is centered close
to zero with a high peak at zero and both negative
and positive contributions. In the Dale-conform ring
network, however, we only observe positive correla-
tion coefficients with values up to nearly one (it can
only reach Cin(1, 0) = Cstruc(1, 0) = 1, if we apply iden-
tical external input to all neurons). This transfers to
the spike generation process and hence explains the
dramatically different global spiking behavior, as well
as the different Fano factors of the population spike
counts (cf. Table 1, Appendix A) in both network types
due to the decorrelation of common inputs in hybrid
networks.

5.2 Small-world networks

As we stated before, the clustering coefficient C (cf.
Eq. (5)) is directly related to the amount of shared
input ∝ ∑N

i=1 WkiWli between two neurons l and k, and
hence to the strength of distance dependent correla-
tions. When it gets close to the random graph value,
as it is the case for pr > 0.3, also the input correlations
become similar to that of the corresponding balanced
random network (cf. Fig. 5). If we randomize the net-
work gradually by rewiring a fraction of pr connections,
the input variance H is not affected. However, the
input covariances due to common input G(Dkl, pr) do
not only depend on the distance, but also on pr. The
boxcar footprints of the ring network get diluted during
rewiring, so a distance Dkl < κ does not imply anymore
that all neurons within the overlap (κ − Dkl) of the
two boxcars project to both or any of the neurons
k, l (cf. Appendix B, Fig. 8(b)). At the same time the
probability to receive inputs from neurons outside the
boxcar increases during rewiring. These contributions
are independent of the pairwise distance. Still, the
probability for two neurons k, l with Dkl < κ to receive
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Fig. 5 Clustering coefficient C(pr)/C(0) (black) versus the
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(gray) estimated from simulations and evaluated at its maximum
at distance D = 1 in a semi-log plot. Cdale

in (1, pr)/Cdale
in (1, 0) de-

cays slightly faster with pr than the clustering coefficient, but
the overall shape is very similar. This shows how the topological
properties translate to the joint second order statistics of neu-
ronal inputs

input from common neurons within the overlap of the
(diluted) boxcars is always higher than the probability
to get synapses from common neurons in the rest of
the network, as long as pr < 1: those input synapses
that were not chosen for rewiring adhere to the boxcar
footprint, and at the same time the boxcar regains a
fraction of its synapses during the random rewiring. So,
if Dkl < κ there are three different sources for common
input to two neurons k and l that we have to account
for: neurons within the overlap of input boxcars, that
still have or re-established their synapses to k and l
(possible in region ‘a’ in Fig. 8(b)), those that had
not have any synapse to either k or l, but project to
both k and l after rewiring (possible in region ‘c’ in
Fig. 8(b)), and those that are in the boxcar footprint
of one neuron k and got randomly rewired to another
neuron outside of l’s boxcar footprint (possible in re-
gion ‘b’ in Fig. 8(b)). This implies that after rewiring
neurons can be correlated due to common input in the
regions ‘b’ and ‘c’, even if they are further apart than
κ . These correlations due to the random rewiring alone
are then independent of the distance between k and l.
The probabilities for all these contributions to the total
common input covariance Gkl(Dkl, pr) are derived in
detail in Appendix B. Ignoring the minor corrections
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due to the exclusion of self-couplings, we obtain for all
k, l ∈ {1, ..., N}

G(Dkl, pr) = EW

[
N∑

i=1

WkiWli as,loc
i (pr)

]

⇒ G(Dkl, pr)
J2(β + g2(1 − β)) νoφ(0)

=






p2
1 (κ−Dkl) + p2

2 (N−κ−Dkl)

+ 2 p1 p2 Dkl if Dkl < κ

p2
2 (N − 2 κ) + 2 p1 p2 κ otherwise

(35)

with (cf. Appendix B)

p1(pr) = (1 − pr) + p2
r κ

N − (1 − pr)κ
(36)

and

p2(pr) = pr κ
N − (1 − pr)κ

. (37)

Since we always assume that the spike train correla-
tions cij(Dij, pr) are caused solely by common input
correlations transmitted to the output, i.e. that they are
some function of Cstruc(Dij, pr), we also have to take
this into account in the ansatz for the functional form
of cs

ij(0, Dij, pr). Again, these spike train correlations
lead to contributions to the cross-covariances of inputs
Ik, Il if Dkl < 2κ . With the linear distance dependence
assumption we obtain (cf. Appendix B)

cs,lin
ij (0, Dij, pr)

νoφ(0)

∣∣∣∣
kl

= clinij (Dij, pr)|kl = γ (pr) Cstruc(0, Dij, pr)|kl

=






γ (pr)
κ

Θ
[
κ/2 − |i − k|

]
Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

×
(

p2
1

(
κ − Dij

)
+ p2

2

(
N − κ − Dij

)
+ 2 p1 p2 Dij

)
if Dkl < 2κ

γ (pr)
κ

(
p2

2 (N − 2κ) + 2 p1 p2 κ
)

otherwise

(38)

and for all k, l ∈ {1, ..., N}

Llin(pr) = EW




N∑

i=1

N∑

j&=i

WkiWkjcs
ij,lin(0, Dij, pr)





= γ (pr) J2(β − g(1 − β))2 (κ − 1)

3
νoφ(0) × . . .

×
(

p2
1(2κ−1)+ p2

(
2p1(κ+1)+ p2(3N−4κ−1)

))

(39)

where we assumed that the rates, and the auto- and
cross-covariances of the spike trains are the same forall

neurons and neuron pairs, respectively. Mlin(Dkl, pr)
can be for evaluated as before. The same procedure as
in the case pr = 0 hence gives the respective distance
dependent input correlations (cf. Appendix B for de-
tails) for pr &= 0. The correspondence with the observed
curves is good (Fig. 6). If we on the other hand apply
cut-off exponential fits

cexpij (Dij, pr) = γ (pr)e−η(pr) DijΘ[κ − Dij] , (40)

of the distance dependent part of the spike train covari-
ance functions, the shot noise covariance becomes

cs,exp
ij (0, Dij, pr)

νoφ(0)

∣∣∣∣
kl

= cexpij (Dij, pr)|kl

=






γ (pr)Θ
[
κ/2 − |i − k|

]
Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

×
(

p2
1 e

−η(pr) Dij + p2
2

N−κ−Dij

κ
+ 2 p1 p2

Dij

κ

)
if Dkl < 2κ

γ (pr)
(

p2
2

N−2κ
κ

+ 2 p1 p2
)

otherwise

(41)
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Fig. 6 Structural (a), spike train (b), and input (c, d) corre-
lation coefficients as a function of the rewiring probability pr
and the pairwise interneuronal distance D for a ring network of
size N = 12,500, κ = 1,250, g = 6, J = 0.1 mV with βN equidis-
tantly distributed inhibitory neurons and Kext = 1, 000 external
Poisson inputs per neuron of strength νext = 15 Hz each. (a)
The structural correlation coefficients Cstruc(D, pr) = G(D,pr)

H .
For pr = 0 they are close to one for D = 1 and tend to zero
for D = 1, 250. These would be the expected input correlation
coefficients, if the spike train correlations were zero and the
external input was DC. (b) shows the spike train correlations
cij(D, pr) as estimated from simulations (gray) and the expo-

nential fits cexpij ∼ cij(1, pr)e−η(pr)D (red) we used to calculate
Cin(D, pr) as shown in panel (d). (c) shows the input correlation
coefficients Cin(D, pr) (gray) estimated from simulations and the
theoretical prediction (red) using linear fits of the respective
clinij (D, pr). (d) shows the same as (c), but with cexpij (D, pr) fitted
as decaying exponentials as shown in panel (c). For each network
realization, we simulated the dynamics for 30 s. We then always
averaged over 50 pairs for the input current correlations and
1,000 pairs for the spike train correlations with selected distances
D ∈ {1, 10, 20,...,100, 200,..., 6000} and rewiring probabilities pr ∈
{0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, always shown from top
to bottom

With this ansatz the correspondence of the pre-
dicted and measured input correlations Cin(Dkl, pr)
is nearly perfect, as it was the case for the ring
graphs (Fig. 6). For the random network the spike
correlations cij(Dij, 1) are independent of distance and
are proportional to the network connectivity ε (cf.
also Kriener et al. (2008)), i.e. cij(Dij, 1) = ε γ (1).
This is indeed the case with the linear ansatz, as
one can easily check with p1(1) = p2(1) = κ/N, cf.
Eqs. (36), (37).

With the spike train correlations fitted by an expo-
nential, the correlation length 1/η(pr) actually diverges
for pr → 1, and Eq. (41) gives the wrong limit for Dkl <

2κ . As one can see in Fig. 6(b), the distance dependence
of the spike correlations approaches a linear relation

as the networks leave the small-world regime (pr >

0.3), and the linear model becomes more adequate
Eq. (30).

6 Distribution of correlation coefficients in ring
and random networks

After derivation of the distance dependent correlation
coefficients of the inputs in different neuronal net-
work types, we can now ask for the distribution of
correlation coefficients. In the following, we restrict
the quantitative analysis to correlations of weighted
input currents, but the qualitative results also hold
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Fig. 7 Estimated (gray) and predicted (red) input correlation
coefficient probability density function (pdf) for a Dale-conform
(a) ring and (b) random network, and for a hybrid (c) ring and
(d) random network. (N = 12,500, κ = εN = 1,250, g = 6, esti-
mation window size 0.005). The estimated data (gray) stem from
10 s of simulated network activity and are compared with the
structural input correlation probability mass functions P(Cstruc)
in (b), (c), and (d) as derived in Eq. (46), Eq. (73), and Appen-
dix D (red, binned with the same window as the simulated data),
and compared to the full theory including spike correlations
in (a, red). In (b), (c), and (d) the spike correlations are very
small and hence close to the distributions predicted from the
structural correlation Cstruc (red). For the ring network, however,

the real distribution differs substantially, due to the pronounced
distance dependent spike train correlations. To obtain the full
distribution in (a) and (c), we recorded from 6,250 subsequent
neurons. Both have their maxima close to zero, we clipped the
peaks to emphasize the less trivial parts of the distributions
(the maximum of the pdf in (a) is 142 in theory and 136 in
the estimated distribution; the maximum of the pdf in (b) is 160
in theory and 156 in the estimated distribution). For the random
networks (b, d), we computed all pairwise input correlations of a
random sample of 50 neurons. The oscillations of the analytically
derived pdf in (b, red) are due to the specific discrete nature of
the problem, cf. Eq. (46)

for different linear synaptic filter kernels fki(t), cf.
Section 5. Note that the mean structural input cor-
relation coefficient c̄dale/hybstruc is independent of ring
or random topology, both in the Dale and the hy-
brid case, while the distributions differ dramatically
(Fig. 7).

Ring networks

C̄dale
struc,ring =

κ−1∑

D=1

P(D)

(
1 − D

κ

)
= κ − 1

N
≈ ε (42)

with the distribution of pairwise distances P(D) =
2
N Θ

[ N
2 − D

]
,3 and

C̄hyb
struc,ring=

κ−1∑

D=1

P(D)

(
1− D

κ

)
(β−g(1−β))2

β+g2(1−β)

= κ−1
N

(β−g(1−β))2

β+g2(1−β)
≈ε

(β−g(1−β))2

β+g2(1−β)
. (43)

Random networks (Kriener et al. 2008)

C̄dale
struc,rand = ε2(β + g2 (1 − β))

ε(β + g2 (1 − β))
= ε , (44)

3The density of neurons in a distance D generally behaves like
P(D) ∼ Ddim−1 with dimensionality dim.
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and

C̄hyb
struc,rand = ε2(β − g (1 − β))2

ε(β + g2 (1 − β))
= ε

(β − g (1 − β))2

β + g2 (1 − β)
,

(45)

where (1 − β) and β are the fractions of inhibitory and
excitatory inputs per neuron (each the same for all
neurons).

The distribution of structural correlation coefficients
in the random Dale network is given by

P(Cdale
struc = c)

=
∑

QE,QI

δc,Cdale
struc(QE,QI)

P(QE|NE, KE) P(QI|NI, KI)

=
KI∑

QI=0

P(c · ζ − g2 QI|NE, KE)P(QI|NI, KI) , (46)

where ζ = KE + g2 KI, QI is the number of common
inhibitory inputs and QE that of excitatory ones,

Cdale
struc = QE + g2 QI

KE + g2 KI
, (47)

and

P(QE/I|NE/I, KE/I) =

(
KE/I

QE/I

)(
NE/I − KE/I

KE/I − QE/I

)

(
NE/I

KE/I

) . (48)

Note that P(QE/I|NE/I, KE/I) = 0 for non-integer QE/I.
The correlation coefficient distribution for the random
hybrid network is derived in Appendix D.

For a ring graph the structural correlation coefficient
distribution P(Cstruc)(D, 0) has the probability mass
N−2κ

N at the origin, 2
N in the discrete open interval

(0, 1), and 1
N at 1, if we include the variance for dis-

tance D = 0. However, due to the non-negligible spike
train correlations cij(D, 0), the actually measured input
correlations Cin(D, 0)

ring
dale have a considerably different

distribution that has less mass at 0 due to the positive
input correlations up to a distance ∼ 2κ . They are very
well described by the full theory with an exponential
ansatz for the spike train correlations as described in
Section 5.1, Eq. (41). These two limiting cases empha-
size that the distribution of input (subthreshold) cor-
relations may give valuable information about whether
there is a high degree of locally shared input (heavy tail
probability distribution P(Cstruc)) or if it is rather what
is to be expected from random connectivity in a Dale-
conform network.

7 Discussion

We analyzed the activity dynamics in sparse neuronal
networks with ring, small-world and random topolo-
gies. In networks with a high clustering coefficient C
such as ring and small-world networks, neighboring
neurons tend to fire highly synchronously. With increas-
ing randomness, governed by the rewiring probability
pr, activity becomes more asynchronous, but even in
random networks we observe a high Fano factor FF of
the population spike counts, indicating its residual
synchrony.4 As shown by Kriener et al. (2008) these
fluctuations become strongly attenuated for hybrid
neurons which have both excitatory and inhibitory
synaptic projections.

Here, we demonstrated that the introduction of hy-
brid neurons leads to highly asynchronous (FF ≈ 1)
population activity even in networks with ring topol-
ogy. Recent experimental data suggest, that there are
abundant fast and reliable couplings between pyrami-
dal cells, which are effectively inhibitory (Ren et al.
2007) and which might be intepreted as hybrid-like
couplings. However, the hybrid concept contradicts
the general paradigm that pyramidal cells depolarize
all their postsynaptic targets while inhibitory interneu-
rons hyperpolarize them, a paradigm known as Dale’s
principle (Li and Dayan 1999; Dayan and Abbott 2001;
Hoppensteadt and Izhikevich 1997). As we showed
here, a severe violation of Dale’s principle turns
the specifics of network topology meaningless, and
might even impede functionally potentially important
processes, as for example pattern formation or line
attractors in ring networks (see e.g. Ben-Yishai et al.
1995; Ermentrout and Cowan 1979), or propagation
of synchronous activity in recurrent cortical networks
(Kumar et al. 2008a).

We demonstrated that the difference of the am-
plitude of population activity fluctuations in Dale-
conform and hybrid networks can be understood
from the differences in the input correlation struc-
ture in both network types. We extended the ansatz
presented in Kriener et al. (2008) to networks with
ring and small-world topology and derived the input
correlations in dependence of the pairwise distance
of neurons and the rewiring probability. Because of
the strong overlap of the input pools of neighbor-
ing neurons in ring and small-world networks, the as-
sumption that the spike trains of different neurons

4This is due to the finite size of the network. For increasing
network size N → ∞ the asynchronous-irregular state becomes
stable.
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are uncorrelated, an assumption justified in sparse bal-
anced random networks, is no longer valid. We fit-
ted the distance dependent instantaneous spike train
correlations and took them adequately into account.
This lead to a highly accurate prediction of input
correlations.

A fully self-consistent treatment of correlations is
however beyond the scope of the analysis presented
here. As we saw in Section 5.1, in Dale-conform ring
graphs neurons cover basically the whole spectrum of
positive input correlation strengths between almost one
(depending on the level of variance of the uncorrelated
external input) and zero as a function of pairwise dis-
tance D. If we look at the ratio between input and
output correlation strength, we see that it is not con-
stant, but that stronger correlations have a higher gain.
The exact mechanisms of this non-linear correlation
transmission needs further analysis. Recent analysis of
correlation transfer in integrate-and-fire neurons by
De la Rocha et al. (2007) and Shea-Brown et al. (2008)
showed that the spike train correlations can be written
as a linear function of the input correlations, given they
are small Cin ∈ [0, 0.3]. For larger Cin (De la Rocha
et al. 2007; Shea-Brown et al. 2008), however, report
supralinear correlation transmission. Such correlation
transmission properties were also observed and analyt-
ically derived for arbitrary input correlation strength in
an alternative approach that makes use of correlated
Gauss processes (Tchumatchenko et al. 2008). These
results are all in line with the non-linear dependence
of spike train correlations on the strength of input cor-
relations that we observed and fitted by an exponential
decay with interneuronal distance.

We saw that correlations are weakened as they are
transferred to the output side of the neurons, but, as
is to be expected, they are much higher for neighboring
neurons in ring networks as it is the case in the homoge-
neously correlated random networks that receive more
or less uncorrelated external inputs. The assumption
that the spike train covariance functions are delta-
shaped is certainly an over-simplification, especially
in the Dale-conform ring networks (cf. the examples
of spike train cross-correlation functions ψij(τ, D, 0),
Fig. 4(d)). The temporal width of the covariance func-
tions leads to an increase in the estimation of spike train
correlations if the spike count bin-size h is increased. In
Dale-conform ring graphs we found cij(1, 0) ≤ 0.041 for
time bins h = 0.1 ms (cf. Fig. 4(c), (d)). For h = 10 ms,
a time window of the order of the membrane time
constant τm, we observed cij(1, 0) ≤ 0.25 (not shown).
This covers the spectrum of correlations reported in
experimental studies, which range from 0.01 to approx-
imately 0.3 (Zohary et al. 1994; Vaadia et al. 1995;

Shadlen and Newsome 1998; Bair et al. 2001). For
hybrid networks, however, the pairwise correlations
have a narrow distribution around zero, irrespective
of the topology. This explains the highly asynchronous
dynamics in hybrid neuronal networks.

Finally, we suggest that the distribution of pairwise
correlation coefficients of randomly chosen intracellu-
larly recorded neurons may provide a means to dis-
tinguish different neuronal network topologies. Real
neurons, however, have conductance-based synapses,
and their filtering is strongly dependent on the mem-
brane depolarization (Destexhe et al. 2003; Kuhn
et al. 2004). Moreover, spikes are temporally extended
events, usually with different synaptic time scales, and
transmission delays are distributed and likely depen-
dent on the distance between neurons. These effects,
amongst others, might distort the results presented
here. Still, though intracellular recordings are techni-
cally more involved than extracellular recordings, they
are basically analog signals, and hence much shorter
periods of recording time are necessary to get a suf-
ficiently good statistics, as compared to estimation of
pairwise spike train correlations from low rate spiking
neurons (Lee et al. 2006). So, bell-shaped distributions
of membrane potential correlations may hint towards
an underlying random network structure, while heavy-
tail distributions should be observed for networks with
locally confined neighborhoods. Naturally, the distrib-
ution will depend on the relation between the sampled
region and the footprint of the neuron-type one is
interested in. This is true for both the model as well as
for real neuronal tissue. Some idea about the potential
input footprint, e.g. from reconstructions of the axonal
and dendritic arbors (Hellwig 2000; Stepanyants et al.
2007), can help to estimate the spatial distance that
must be covered. It also is a matter of the spatial scale
that one is interested in: if one is mostly interested in
very small, local networks < 200 µm, where the connec-
tion probability might be considered approximately ho-
mogeneous (Hellwig 2000; Stepanyants et al. 2007), the
correlation coefficient distribution will be akin to that
of a random topology. If one, however, samples several
millimeter, the distribution may tend more to a heavy-
tail shape, due to the increase of the relative number
of weakly correlated neuron pairs. At this scale radial
inhomogeneities, as for example due to axonal patches
(Lund et al. 2003), in two dimensions or different con-
nection probabilities within and between cortical layers
(Binzegger et al. 2004) in three dimensions must be
taken into account as well, as they will distort the over-
simplified assumption of the connectivity made here.
In conclusion, we think that a further extension of the
line of research presented here might provide a way to
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access structural features of neuronal networks by the
analysis of their input statistics. This could eventually
prove helpful in separating correlations that arise due
to the specifics of the network structure from those
that arise due to correlated input from other areas, e.g.
sensory inputs, and provide insight into the relation
between structure and function.
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Appendix A: Fano factor

In this appendix we want to quantitatively formulate
the Fano factor FF[n(t; h)] of spike counts n(t; h) per
time bin h. We assume that the compound spike train,
i.e. the population activity S(t) = ∑N

i=1 Si(t) is an en-
semble of Poisson point processes. The population
spike count with regard to a certain time bin h is
then a sum of random variables n(t; h) = ∑N

i=1 ni(t; h)

(Papoulis 1991) defined by

ni(t; h) :=
t+h∫

t

Si(s) ds . (49)

The expectation value is given by (exploiting the linear-
ity of the expectation value):

E[ni(t; h)] lin=
t+h∫

t

E[Si(s)] ds (50)

E[n2
i (t; h)] is generally given by (Papoulis 1991; Nawrot

et al. 2008)

E[n2
i (t; h)] lin=

t+h∫

t

t+h∫

t

E[Si(s)Si(r)] ds dr . (51)

For stationary Poisson processes with intensity ν, we
have mean and variance

E[ni(t; h)] = νh , E[n2
i (t; h)] − E2[ni(t; h)] = νh . (52)

Hence FF[n(t; h)] = Nνh
Nνh = 1, provided all processes

are independent. If we have homogeneously correlated
Poisson processes (cf. Eq. (10)), such that for all i, j ∈
{1, ..., N} cij = c̄, the variance of the population count is
given by

E[n2(t; h)] =
N∑

i=1

E[n2
i (t; h)] − E2[ni(t; h)]

+
N∑

i=1

N∑

j&=i

E[ni(t; h)n j(t; h)]

−E[ni(t; h)]E[n j(t; h)]
= Nνh(1 + c̄(N − 1)) . (53)

For the Fano factor we hence obtain FF[n(t; h)] =
1 + c̄(N − 1). For homogeneously correlated networks
like random networks this estimate is indeed very
close to the actually measured FF (Kriener et al.
2008). For the ring and small-world networks we have
c̄ = 1

N(N−1)

∑N
i=1

∑N
j&=i cij(Dij, pr) in Eq. (53), since the

spike count estimation is a linear filtering and hence
Campbell’s theorem Eq. (16) can be applied. For the
Dale-conform ring network c̄ ≈ 0.0023, yielding a FF ≈
30. The FF estimated from simulations is indeed of that
order, cf. Table 1.

Appendix B: Distance dependent
correlations—linear fit

To estimate the contributions to the covariances in
Eqs. (35), (39), (68) in detail for pr &= 0 we first calculate
the distribution of non-zero entries in each matrix row
in dependence of pr. If we remove exactly pr κ (in-
coming) synapses from the boxcar neighborhood of a
neuron and randomly redraw them (without establish-
ing multiple and self-connections) from the (N − κ(1 −
pr)) possible presynaptic neurons, the distribution for
reestablishing q connections that were there before is
given by

P(q) =

(
pr κ
q

)(
N − κ (1 − pr) − pr κ

pr κ − q

)

(
N − κ (1 − pr)

pr κ

) , (54)

and that of establishing r new connections is

P(r) =

(
N − κ

r

)(
pr κ

pr κ − r

)

(
N − κ (1 − pr)

pr κ

) . (55)

http://www.nest-initiative.org
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In expectation we hence have

(1 − pr) κ + E[q] = (1 − pr) κ + p2
r κ2

N − κ (1 − pr)
(56)

connections from within the ring boxcar neighborhood
κ , and

E[r] = pr κ (N − κ)

N − κ (1 − pr)
(57)

new connections from outside the boxcar neighbor-
hood.5 We then define the probability p1(pr) of a
neuron within the boxcar neighborhood and the
probability p2(pr) of a neuron outside the boxcar neigh-
borhood to project to a neuron k, k ∈ {1, ..., N} by

p1(pr) := 1
κ

(
(1 − pr) κ + p2

r κ2

N − (1 − pr) κ

)

= (1 − pr) + p2
r κ

N − (1 − pr) κ
, (58)

and

p2(pr) := 1
N − κ

pr κ (N − κ)

N − (1 − pr) κ

= pr κ
N − (1 − pr) κ

. (59)

5We refer to the distance in neuron indices here, that are arbi-
trarily defined to run from 1 to N in a clockwise manner. Hence
the boxcar neighborhood of a neuron i includes {i − κ/2, ..., i +
κ/2} (modulo network size). Note that for pr > 0 this does not
generally correspond to the topological neighborhood defined by
adjacency anymore.

With the notation from Fig. 8 we get the expected
number

E[Q(Dkl, pr)] = a(Dkl, pr) + b(Dkl, pr) + c(Dkl, pr)

(60)

of common inputs Q to neuron k and neuron l in
dependence of Dkl and pr with

a(Dkl, pr) :=
{

p2
1(pr) (κ − Dkl) if Dkl < κ

0 otherwise
, (61)

b(Dkl, pr) :=
{

2 p1(pr) p2(pr) Dkl if Dkl < κ

2 p1(pr) p2(pr) κ otherwise
, (62)

and

c(Dkl, pr) :=
{

p2
2(pr) (N − κ − Dkl) if Dkl < κ

p2
2(pr) (N − 2 κ) otherwise

.

(63)

For two neurons k and l we assumed (cf. Eq. (38))
the spike train correlations between input neuron i of k
and input neuron j of l to be given by

cs,lin
ij (0, Dij, pr)

νoφ(0)
= clinij (Dij, pr) = γ (pr) Cstruc(Dij, pr)

=






γ (pr)
κ

Θ
[
κ/2 − |i − k|

]
Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

×
(

p2
1

(
κ − Dij

)
+ p2

2

(
N − κ − Dij

)
+ 2 p1 p2 Dij

)
if Dkl < 2κ

γ (pr)
κ

(
p2

2 (N − 2κ) + 2 p1 p2 κ
)

otherwise

The double-sum over all pairwise distances Dij = |i − j|
can be expressed by a simple summation formula:

κ∑

i=1

κ∑

j&=i

|i − j| =
κ−1∑

s=1

s +
1∑

s=1

s +
κ−2∑

s=1

s +
2∑

s=1

s + . . .

+
1∑

s=1

s +
κ−1∑

s=1

s

=
κ−1∑

r=0

[
κ−1−r∑

s=1

s +
r∑

s=1

s

]

= 1
2

κ−1∑

r=0

(κ − 1 − r)(κ − r) + r(r + 1)

= κ

3
(κ2 − 1) , (64)
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(a)

(b)

Fig. 8 Sketch how to derive the different contributions a, b, and c
to the covariances in Eqs. (35), (39), (68), omitting the correction
due to the non-existence of self-couplings. The ring is flattened-
out and the left and right ends of each row are connected
((N + 1) = 1). (a) The ring network case pr = 0: the neurons are
in the center of their respective boxcar-neighborhoods of size κ
marked in black. Black indicates a connection probability of 1,
white indicates connection probability 0. The two neurons k and
l > k are within a distance Dkl = |k − l| < κ from each other,
hence they share common input from (κ − Dkl) neurons. The
neurons k and l′, however, are farther apart than κ and do not
have any common input neurons. (b) After rewiring, pr > 0: The
boxcar-neighborhood is diluted (dark-patterned) and the neurons
have a certain probability to get input from outside the boxcar

(light-patterned). Common input can now come in three different
varieties: ‘a’, ‘b’ and ‘c’. If two neurons k, l are closer together
than κ , the contribution of variety ‘a’ is proportional to the
probability that a neuron within range a = (κ − Dkl) still projects
to both k and l after rewiring (cf. Eq. (61)). The contributions of
variety ‘b’ are from neurons that projected to only one of both
k or l before rewiring, but do now project to both k and l (cf.
Eq. (62)). The contributions of the third variety ‘c’ are due to the
number of common inputs proportional to the probability that
neurons projected to neither k nor l in the original ring network,
but do project to both after rewiring (cf. Eq. (63)). If two neurons
k and l′ are farther apart than κ , they can have common input
neurons after rewiring of varieties ‘b’ and ‘c’ only

and hence we can evaluate with Defs. (61), (62), (63)
and

∑κ
i=1

∑κ
j&=i κ = κ2(κ − 1):

Llin(pr) = EW




N∑

i=1

N∑

j&=i

WkiWkjc
s,lin
ij (0, Dij, pr)





= γ (pr)J2(β − g(1 − β))2 νo φ(0)

×
κ∑

i=1

κ∑

j&=i

a(Dij,pr)+b(Dij,pr)+c(Dij,pr)
κ

Eq. (64)= γ (pr)J2(β − g(1 − β))2 νo φ(0)
(κ − 1)

3

×
(

p2
1(pr) (2 κ − 1) + p2(pr) (2 p1(pr)

× (κ + 1) + p2(pr) (3 N − 4 κ − 1))
)

(65)

We assume k &= l and, without loss of generality, k > l.
We set Dkl = |k − l| = (k − l) := d and we always omit



196 J Comput Neurosci (2009) 27:177–200

the explicit modulo-notation due to periodic boundary
conditions. For pr = 0 we calculate

Mlin(d, 0) =
N∑

i=1

N∑

j&=i

WkiWlj cs,lin
ij (0, Dij, 0) (66)

We define the alias

f (d) = Mlin(d, 0)

γ (0) J2 (β − g(1 − β))2 νo φ(0)

and obtain:

f (d) =
N∑

i=1

N∑

j&=i

(
1 − Dij

κ

)
Θ
[
κ/2 − |i − k|

]

× Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

We can evaluate the Heaviside step-functions and
rewrite the sums as

f (d) =
κ/2∑

i=−κ/2

κ/2∑

j=−κ/2





Θ[κ + 1 − |(k + i) − (l + j)|]

(
1 − |(k+i)−(l+ j)|

κ

)
if κ < d

Θ[κ − |(k + i) − (l + j)|]
(

1 − |(k+i)−(l+ j)|
κ

)
if κ ≥ d

− (κ + 1)

(
1 − d

κ

)
Θ[κ − d] ,

where the cases occur due to the negligence of k, l
in the summation and we need to subtract the over-

counted terms i = j. A shift of the summation indices
yields:

f (d) =






∑κ
r=0

∑κ
s=0 Θ[κ + 1 − |d − (r − s)|]

(
1 − |d−(r−s)|

κ

)
if κ < d

∑κ
r=0

∑κ
s=0 Θ[κ − |d − (r − s)|]

(
1 − |d−(r−s)|

κ

)
if κ ≥ d

− (κ + 1)

(
1 − d

κ

)
Θ[κ − d]

Now we perform a similar, but more involved resorting
as in Eq. (64) and split the sum into various contribu-
tions that correspond to the same boundary conditions:

f (d) =
d∑

q=0

κ∑

p=d−q

(
1 − p

κ

)
Θ[κ − q]

+
d∑

q=1

κ−q∑

p=1

(
1 − p

κ

)
Θ[κ − q − d]

+
q∑

p=1

(
1 − p

κ

)
Θ[κ − q − d]

+
κ−2d∑

q=1

κ−d−q+1∑

p=1

(
1 − p

κ

)
+

d+q−1∑

p=1

(
1 − p

κ

)

We have to keep in mind that d ∈ {1, ..., 2κ}. Hence, e.g.
the first term in the latter identity

d∑

q=0

κ∑

p=d−q

(
1 − p

κ

)
Θ[κ − q]

has two distance-regimes, one where κ ≥ d and the
stepfunction is always one, and the second, where κ <

d ≤ 2κ , and the stepfunction truncates all summands
with q > κ . This has to be taken into account when
calculating the summation formula:

d∑

q=0

κ∑

p=d−q

(
1− p

κ

)
Θ[κ−q] if d>κ=

κ∑

q=d−κ

κ∑

p=d−q

(
1− p

κ

)

q′=q+κ−d=
2κ−d∑

q′=0

κ∑

p=κ−q′

(
1− p

κ

)
,

where in the first identity we used the stepfunction,
and have to keep in mind that all summands in the
inner sum with a lower summation index exceeding the

upper one are zero, hence (d − q)
!≤ κ , i.e. q

!≥ (d − κ).
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In the second identity we performed a simple index
shift operation. After we evaluated the stepfunctions, it

is straightforward to find the corresponding summation
formulae (Bronstein and Semendjajew 1987):

f (d) = 1
6κ










(d + 1)(d2 + 3κ(1 + κ) − d(3κ + 1)) − 1 if 0 ≤ d ≤ κ ∗

(2(1 + κ) − d)(d − 2κ − 1)(d − 2κ) if κ < d ≤ 2κ

0 otherwise

+ ++ +






d(3κ2 − 2d2 + 3d(κ − 1) − 1) if 0 ≤ d ≤ κ − d
(d − κ)((3 − 4κ)κ + 2d2 − d(κ + 3) + 1) if κ − d < d < κ

0 otherwise

+ + + ++ +
{

(2d − κ)(2(d − 2κ)(κ + d) + 3κ + 1) if 0 < d < κ/2

0 otherwise



 (67)

(*) The minus one contribution comes about by cor-
recting for the omission of neurons k and l during
summation over the κ neighbors.

In general we numerically evaluated:

Mlin(0, Dkl, pr) := EW




N∑

i=1

N∑

j&=i

WkiWlj cs,lin
ij (0, Dij, pr)





(68)

Appendix C: Distance dependent
correlations—exponential fit

With the ansatz Eq. (38)

cs,exp
ij (0, Dij, pr)

νoφ(0)

=






γ (pr)Θ
[
κ/2 − |i − k|

]
Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

×
(

p2
1(pr)e−η(pr) Dij + p2

2(pr)
(
N − κ − Dij

)
/κ + 2 p1(pr) p2(pr) Dij/κ

)
if Dkl < 2κ

γ (pr)
(

p2
2(pr) (N − 2κ)/κ + 2 p1(pr) p2(pr)

)
otherwise

we obtain analogously to the linear case Appendix B,
Eq. (39)

Lexp(pr) = γ (pr) J2 (β − g(1 − β))2 νo φ(0)

×
(

p2
1(pr)

2
(
eη (1−κ) + eη(κ − 1) − κ

)

(1 − eη)2

+ p2(pr)
3

(κ − 1)
(

p2(pr) (3N − 4κ − 1)

+ 2 p1(pr) (κ + 1)
) )

, (69)

and for pr = 0:

Mexp(d, 0) =
N∑

i=1

N∑

j&=i

WkiWlj cs,exp
ij (0, d, 0) (70)
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We once more omit the explicit modulo-notation
due to periodic boundary conditions and obtain anal-
ogously to the linear case, Appendix B:

N∑

i=1

N∑

j&=i

e−η DijΘ
[
2κ − |k − l|

]
Θ
[
κ/2 − |i − k|

]
Θ
[
κ/2 − | j − l|

]
Θ
[
κ − |i − j|

]

=
d∑

q=0

κ∑

p=d−q

e−η pΘ[κ − q]+
d∑

q=1

κ−q∑

p=1

e−η pΘ[κ − q − d]+
q∑

p=1

e−η pΘ[κ − q − d]+
κ−2d∑

q=1

κ−d−q+1∑

p=1

e−η p+
d+q−1∑

p=1

e−η p

= 1
(1 − eη)2



e
−η(d+κ) ·






(1 + d)eη d(1 − eη) + eη(1+κ)(eη(1+d) − 1) − (1 − eη)2 if 0 ≤ d ≤ κ∗

e2η(1+κ) + eη d
(

1 − d + 2κ + eη
(
d − 2(1 + κ)

))
if κ < d ≤ 2κ

0 otherwise

+ + +++ + + +






eη(1−κ)(1 − eη d) + e−η d − 2d(1 − eη) − 1 if 0 ≤ d ≤ κ − d
2(d − κ)(1 − eη) + eη(d−κ) + eη(1−κ) − eη(1−d) − 1 if κ − d < d < κ

0 otherwise

+ + +++ + + +
{

(1 + eη)(eη(d−κ) − e−η d) + 2(2d − κ)(1 − eη) if 0 < d < κ/2

0 otherwise





= Mexp(d, 0)

γ (0) J2 (β − g(1 − β))2 νo φ(0)
(71)

(*) The minus (1 − e−η)2 contribution comes about by
correcting for the omission of neurons k and l during
summation over the κ neighbors.

In general we numerically evaluated:

Mexp(0, Dkl, pr)= EW




N∑

i=1

N∑

j&=i

WkiWlj cs,exp
ij (0, Dij, pr)





(72)

Appendix D: Distribution of correlation coefficients
in the hybrid ring and random network

In the hybrid random network case we get a
distribution

P(Q) =

(
κ

Q

)(
N − κ

κ − Q

)

(
N
κ

) , (73)

for the distribution of the number of total common
inputs Q. κ is the total number of input synapses per
neuron. Given that common input pool of size Q, we
then ask for the probability to have ni+ incoming excita-

tory synapses to neuron Ni and n j+ incoming excitatory
synapses to neuron N j. We have

P(ni+/j+) =

(
Q

ni+/j+

)(
κ − Q

KE − ni+/j+

)

(
κ

KE

) , (74)

If we, moreover, know n++, i.e. the number of incoming
synapses from Q that are excitatory for both Ni and
N j, we know the residual possible combinations of signs
(cf. Fig. 9). n++ follows the probability distribution

P(n++) =

(
N+
n++

)(
Q − N+

n+ − n++

)

(
Q

N+

) , (75)

with N+ = max{ni+, n j+} and n+ = min{ni+, n j+}. We
get

n−+ = ni+ − n++, n+− = n j+ − n++ and

n−− = Q − (ni+ + n j+ − n++) . (76)
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Fig. 9 Sketch how to derive
n−+, n+− and n−−, given ni+,
n j+ and n++

Hence, the correlation coefficient given ni+, n j+ and
n++ yields (ζ = KE + g2 KI)

Cin,hyb = n++ − g(n+− + n−+) + g2n−−
KE + g2 KI

= 1
ζ

(
(1+g)2n++ − g(1 + g)(ni+ + n j+) + g2 Q

)
.

(77)

The probability distribution is then given by

P(Cin,hyb = c)

=
κ∑

Q=0

Q∑

ni+,n j+=0

n+∑

n++=0

δCin,hyb(n++,ni+,n j+,Q),c . . .

. . . P(Q) P(n j+) P(ni+) P(n++) . (78)

The hybrid ring case is obtained analogously by
taking into account that all nontrivial overlaps Q ∈
{1, ..., κ − 1} occur exactly twice, hence the probability
P(Q) for all possible non-trivial Q is 2/(N − 1). Addi-
tionally, there are (N − 2κ − 1) possible neuron pairs
drawn with probability 1/(N − 1) that do not share
common input and are hence zero.
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