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Learning Optimal Adaptation Strategies in Unpredictable

Motor Tasks
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Picking up an empty milk carton that we believe to be full is a familiar example of adaptive control, because the adaptation process of
estimating the carton’s weight must proceed simultaneously with the control process of moving the carton to a desired location. Here we
show that the motor system initially generates highly variable behavior in such unpredictable tasks but eventually converges to stereo-
typed patterns of adaptive responses predicted by a simple optimality principle. These results suggest that adaptation can become
specifically tuned to identify task-specific parameters in an optimal manner.

Introduction
Flexible motor control is an essential feature of biological organ-
isms that pursue their goals in the face of uncertainty and incom-
plete knowledge about their environment. It is therefore not sur-
prising that the phenomenon of adaptive behavior pervades the
entire animal kingdom from simple habituation to complex re-
inforcement learning (Reznikova, 2007). Conceptually, learning
is naturally understood as an optimization process that leads to
efficient motor control. Thus, once learning has taken place and
stable motor responses have formed, complex motor behaviors
can often be understood by simple optimality principles that
trade off attributes such as task success and energy expenditure
(Todorov, 2004). In particular, optimal feedback control models
have been successful in explaining a wide variety of motor behav-
iors on multiple levels of analysis (Todorov and Jordan, 2002;
Scott, 2004; Diedrichsen, 2007; Guigon et al., 2007; Liu and
Todorov, 2007). Optimal control models typically start out with
the dynamics of the environment (e.g., dynamics of the arm or a
tool) and a performance criterion in the form of a cost function
(Stengel, 1994). The optimal control is then defined as a feedback
rule that maps the past observations to a future action. This feed-
back rule minimizes the cost and is usually compared with the
control actions chosen by a human or animal controller in an
experiment (Loeb et al., 1990; Todorov and Jordan, 2002).
Importantly, optimal feedback control requires knowledge of
the environmental dynamics in the form of an internal model.
Consider, for example, that we wish to move a milk carton with
known weight to a new location. An internal model would predict
the future state of the controlled system x,, , (e.g., future carton
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and hand position, velocity, etc.) from the current state x, and the
current action or control u, (e.g., a neural control command to
the muscles). Mathematically, the internal model can then be
compactly represented as a mapping F with x,,, = F(x,, u,).
Experimentally, such internal models have been shown to play a
crucial role in human motor control (Shadmehr and Mussa-
Ivaldi, 1994; Wolpert et al., 1995; Wagner and Smith, 2008).
However, the question arises whether adaptive behavior in an
environment where the dynamics are not completely known can
be understood by the same principles. Mathematically, we can
formalize an adaptive control problem as a mapping x,, ; = F(x,,
u,, a) with unknown system parameters a that have to be esti-
mated simultaneously with the control process (Sastry and Bod-
son, 1989; Astrom and Wittenmark, 1995). For example, in the
case of a milk carton with an unknown weight, the motor system
must adapt its estimate of the carton’s weight (the parameter a in
this case), while simultaneously exerting the necessary control to
bring the carton to a desired location. This raises a fundamental
question as to whether such estimation and control is a generic
process operating whenever the motor system faces unpredict-
able situations or whether the adaptation process itself undergoes
a learning phase so as to become tuned to specific environments
and tasks in an optimal manner. Here we design a visuomotor
learning experiment to test the hypothesis that with experience of
an uncertain environment the motor system learns to perform a
task-specific, stereotypical adaptation and control within indi-
vidual movements in a task-optimal manner. In the following we
will refer to changes in the control policy that occur within indi-
vidual movements as “adaptation” to distinguish them from
“learning” processes that improve these adaptive responses
across trials.

Materials and Methods

Data acquisition. Nineteen healthy naive subjects participated in this
study and gave informed consent after approval of the experimental
procedures by the Ethics Committee of the Albert Ludwig University,
Freiburg. Subjects controlled a cursor (radius 1 cm) on a 17" TFT com-
puter screen with their arm suspended by means of a long pendulum (4
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m) that was attached to the ceiling. Subjects grabbed on to a handle at the
bottom of the pendulum and moved it in the horizontal plane. Move-
ments were recorded by an ultrasonic tracker system (CMS20, Zebris
Medical, 300 Hz sampling, 0.085 mm accuracy). The screen displayed
eight circular targets (radius 1.6 cm) arranged concentrically around a
starting position (center—target distance 8 cm). Subjects were asked to
move the cursor swiftly into the designated target and each trial lasted
two seconds (therefore in early trials subjects often did not reach the
target within the time window).

Experimental procedure. Two groups of subjects underwent two exper-
imental blocks (2000 trials each) in which participants performed reach-
ing movements in an uncertain environment. In both blocks the majority
of trials were standard trials. However, on 20% of randomly selected
trials a visuomotor perturbation was introduced. Each perturbation trial
was always followed by at least one standard trial so that random pertur-
bation trials were interspersed individually among the standard trials. In
the first group (rotation group, 10 subjects) the perturbation was always
a random visuomotor rotation with a rotation angle drawn from a uni-
form distribution over {+30°, =50°, £70°, 90°}. Thus, the majority of
trials had a normal hand-cursor relation and in visuomotor rotation
trials the rotation angle could not be predicted before movement, requir-
ing subjects to adapt online within a single trial to achieve the task. In the
second group (target jump group, 9 subjects) the first block of 2000 trials
were target jump transformations where the target jumped unpredict-
ably to a rotated position (rotation angles drawn randomly again from a
uniform distribution over {*£30°, *=50°, =70°, *=90°}). In target jump
trials the jump occurred when then hand had moved 2 cm away from the
origin. In the second block of 2000 trials the target jump group also
experienced random rotations just like the first group. Thus, all subjects
performed 4000 trials in total. We analyzed the first 2000 trials to assess
how performance changed as subjects learned to adapt to the task re-
quirements. Performance was assessed as the minimum distance to the
target within the 2 s trial period, the magnitude of the second velocity
peak, and movement variability. To calculate movement variability each
two-dimensional positional trajectory was temporally aligned to the
speed threshold of 10 cm/s and then the variance of the x and y positions
were calculated for each time point across the trajectories and subjects
(time 0 s corresponds to 200 ms before the speed threshold). The total
variance was taken as the sum of the variance in x position and y position,
and the square root of the variance (SD) was plotted. The last 2000 trials
of the first group were used for fitting subjects’ stationary patterns of
adaptation to an optimal adaptive control model.

Adaptive optimal control model. To model adaptation and control we
used a linear model of the hand/cursor system and a quadratic cost
function to quantify performance (Koérding and Wolpert, 2004). Full
details of the simulations are provided in the supplemental Methods
(available at www.jneurosci.org as supplemental material). As we include
the effects of signal-dependent noise on the motor commands (Harris
and Wolpert, 1998), the resulting optimal control model belongs to a
class of modified linear quadratic-Gaussian systems (Todorov and Jor-
dan, 2002). The equations we used are as follows:

State update: x,, ; =F[¢]x,+ Gu,+signal-dependent noise
Observation: y,= Hx,+additive noise.

The state x, represents the state of the hand/cursor system (a point-mass
model) and the observation y, represents the delayed sensory feedback to
the controller. The state update equation depends on the current state
(first term), the current motor command (second term), and signal-
dependent noise (details in supplemental Methods, available at www.
jneurosci.org as supplemental material). The observation equation re-
lates the sensory feedback to the current state x, and the additive obser-
vation noise. The important novelty here is that the forward model of the
system dynamics F depends in a nonlinear way on the rotation parameter
¢ between the hand and cursor position. This parameter is unknown to
subjects before each trial and must be estimated online during each
movement.

The hand was modeled as a planar point-mass (m = 1 kg) with posi-
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tion and velocity vectors given by p/’ and v,, respectively. The cursor
position is given by a rotation of the hand position p& = D(bpfl, where D,
is the rotation matrix for a rotation of angle ¢. The two-dimensional
control signal u, is transformed sequentially through two muscle-like
low-pass filters both with time constants of 40 ms to produce a force
vector f, on the hand (with g, representing the output of the first filter)—
see (Todorov, 2005) and supplemental material (available at www.
jneurosci.org) for details. Thus, the 10-dimensional state vector can be
expressed as [p&yv,; £5 g p €], where p '8! corresponds to the target
position in cursor space. Sensory feedback y, is given as a noisy observa-
tion of the cursor position, hand velocity, and force vector with a feed-
back delay of 150 ms. In Results, we also compute the angular momen-
tum as the cross product p! X v, multiplied by the point-mass m = 1kg.
The cost function J can be expressed as follows:

| ,
Cost] = F [DUxTQx,+ulRuy}].

t=0

The matrix Q is designed to punish positional error between cursor and
target and high velocities and is parameterized accordingly with two
scalar parameters w, and w,. The matrix R punishes excessive control
signals and was taken as the identity matrix scaled by a parameter . Since
the absolute value of the cost J does not matter for determining the
optimal control, i.e., only the ratio between Q and R is important, we set
w,= 1. We chose a cost function without a fixed movement time (i.e., an
infinite horizon cost function) so the amount of time required for adap-
tation to reach the target might vary. Such a cost function allows com-
puting the state-dependent optimal policy at each point in time consid-
ering the most recent estimate of ¢. Since the trial duration was relatively
long (2 s) this cost function allowed reasonable fits to the data.

The optimal policy of the above control problem is the feedback rule
that minimizes the cost function J. Since the parameter ¢ is unknown,
this adaptive optimal control problem can only be solved approximately
by decomposing it into an estimation problem and a control problem
(certainty-equivalence principle). The estimation problem consists of
simultaneously estimating the unobserved state x, and the unknown pa-
rameter ¢ from the observations y,. This can be achieved by introducing
an augmented state X, = [x;; ¢,] and using a nonlinear filtering method
(e.g., unscented Kalman filter) for the estimation X, = [%,; ¢,] in this
augmented state space—see supplemental material (available at www.
jneurosci.org) for details. To allow the controller to adapt its estimate of
¢ we model the parameter as a random walk with covariance €}, which
determines the rate of adaptation within a trial. The optimal control
command at every time point can then be computed as a feedback con-
trol law u, = —L[¢,]X,, where L[¢,] is the optimal feedback gain for a
given parameter estimate ¢,. To allow for the uncertainty of the param-
eter estimate to affect the control process (noncertainty-equivalence ef-
fects), we introduce two additional cautiousness parameters A, and A,.
Based on the models uncertainty in the rotation parameter ¢, these re-
duce the gains of the position and velocity components of the feedback
thereby slowing down the controller in the face of high uncertainty
(equivalent to making the energy component of the cost more impor-
tant). Importantly, the cautiousness parameters do not introduce a new
optimality criterion; rather they provide a heuristic to find an approxi-
mation to the optimal solution and are often used in adaptive control
theory when faced with an analytically intractable optimal control prob-
lem (see supplemental material, available at www.jneurosci.org). Ac-
cordingly, the costs achieved by a cautious adaptive controller can be
lower than by a noncautious adaptive controller—see supplemental ma-
terial (available at www.jneurosci.org) for details.

Parameter fit. Some of the parameters of the model were taken from
the literature as indicated above. There were six free scalar parameters
that were fit to the data, and these are (1) the cost parameters w, and r, (2)
the cautiousness parameters ’\p and A,, (3) the adaptation rate €),, and
(4) the signal-dependent noise level. We adjusted these parameters to fit
the mean trajectory of the 90°-rotation trials (by collapsing the +90° and
—90° trials into one angle). These parameter settings were then used to
extrapolate behavior to both the standard trials and all other rotation
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trials. The reason we chose 90° is that the
perturbation has the strongest effect here,
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motor rotation was introduced. Since 1 3 18 1 = 19 1 3 10
these random rotations could not be pre- Batch Batch Batch
dicted (and were zero mean across all ro- Figure 1.  Evolution of within-trial adaptive behavior for random rotation trials. A4, Mean hand trajectories for =90° rotation

tations), participants had to adapt to the
perturbations online during the move-
ment. This online adaptation is different
from online error correction (Diedrichsen
et al., 2005), since the rules of the control
process—i.e., the “control policy” that
maps sensory inputs to motor outputs—
has to be modified. Importantly, the mod-
ification of the control law is a learning
process, whereas online error correction,
e.g., to compensate for a target jump, can take place under the
same policy without learning a new controller. To enforce online
adaptation the vast majority of trials had a standard hand/cursor
relationship and only occasional trials were perturbed. Thus,
movements typically started out in a straight line to the cursor
target because subjects assumed by default a standard mapping
between hand and cursor — see Figure 1 A. However, after a time
delay of 100200 ms into the movement subjects noticed the
mismatch between hand and cursor position in random rotation
trials and started to modify their movements. This adaptive part
of the movement can be seen from the change of direction in the
trajectory and the appearance of a second peak in the speed pro-
file (Fig. 1C).

To assess our hypothesis of task-optimal adaptation, we first
investigated whether subjects showed any kind of improvement
in adapting to the unpredictable perturbations during the move-
ments. Indeed, we found that the adaptation patterns in random
rotation trials were very different in early trials compared with
the same rotations performed later in the experiment (Fig.
1B,D,F).In the beginning, large movement errors occurred more
frequently, i.e., subjects often did not manage to reach the target
precisely within the prescribed 2 s time window (Fig. 1B). The
difference in the minimum distance to the target within this al-
lowable time window between the first and last batch of 200 trials
was significant (p < 0.01, Wilcoxon rank-sum test). In early
trials the second peak of the speed profile was barely visible as
movements were relatively unstructured and cautious, but in
later trials a clear second speed peak emerged (Fig. 1C). Early
trials also showed high variability in the second part of the move-
ment, whereas in later trials adaptive movements were less vari-
able and therefore more reproducible between subjects (Fig.

movement.

trials in the first 10 batches averaged over trials and subjects (each batch consisted of 200 trials, ~5% of which were *90°
rotation trials). The —90° rotation trials have been mirrored about the y-axis to allow averaging. Dark blue colors indicate early
batches, green colors intermediate batches, red colors indicate later batches. B, The minimum distance to the target averaged for
the same trials as A (error bars indicate SD over all trajectories and all subjects). This shows that subjects’ performance improves
over batches. C, Mean speed profiles for ==90° rotations of the same batches. In early batches, movements are comparatively slow
and online adaptation is reflected in a second peak of the speed profile which is initially noisy and unstructured. D, The magnitude
of the second peak increases over batches (same format as B). E, SD profiles for =90° rotation trajectories computed for each trial
batch. F, SD of the last 500 ms of movement. Over consecutive batches the variability is reduced in the second part of the

1 F)—the variability in the last 500 ms of the movement in the
first batch was significantly larger than in the last batch ( p < 0.01,
Ftest). The color code in Figure 1 indicates that the second part of
the movement converged to a stereotyped adaptive response. To
test for the possibility that subjects simply became nonspecifically
better at feedback control, a second group of participants per-
formed a target jump task for the first 2000 trials. In direct cor-
respondence to the random rotation task 20% of the trials were
random target jump trials. Since a target jump does not require
learning a new policy but simply an update of the target position
in the current control law, we would expect to see no major
learning processes in this task. This is indeed what we found. In
Figure 2 we show the same features that we evaluated in the
random rotation trials to assess over-trial evolution of sensori-
motor response patterns.

To test whether the change in behavior over trials might
represent an improvement—in the sense of minimizing a cost
function—we computed the costs of the experimentally ob-
served trajectories for 90° rotations. We used the inverse sys-
tem equations to reverse-engineer the state space vector x, and
the control command u, from the experimental trajectories.
We then used a quadratic cost function that successfully cap-
tured standard movements and computed the costs of all the
trajectories of the experiment. We found that the cost of the
trajectories with regard to the quadratic cost function de-
creased over trials (Fig. 3A). This shows that the observed
change in adaptation can be understood as a cost-
optimization process. In contrast to the first group, the second
group showed no trend that would indicate learning—there is
no significant difference between the minimum distance to the
target between the first and the last batch ( p > 0.01, Wilcoxon
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Figure 3. A, Rotation group. Relative cost of subjects’ movements in response to =90°

visuomotor rotations. Over trial batches (200 trials) the cost of the adaptive strategy decreases.
B, Target jump group. Relative cost of subjects’ movements in response to ==90° target
jumps. There is no improvement over trials. In both cases the costs have been computed by
calculating the control command and the state space vectors from the experimental trajectories
by assuming a quadratic cost function. The cost has been normalized to the average cost of the
last five trial batches.

rank-sum test). The reverse-engineered cost function for the
90° target jumps was flat over trial batches (Fig. 3B).

After the first block of target jump trials, the second group
experienced a second block of random rotation trials identical to
the second block the first group experienced. If the first group
learned a feedback control policy specifically for rotations in the
first block of trials then both groups should perform very differ-
ently in the second block of trials where both groups experienced
random rotation trials. Again this hypothesis was confirmed by
our results. The first group that was acquainted with rotations
showed a stationary response to unexpected rotations (Fig. 4A—
C). Performance error, speed profiles, and SD showed no changes
over trials (Fig. 5A—C). Thus, there was no significant difference
between the minimum distance to the target between the first and
the last trial batches (p > 0.01, Wilcoxon rank-sum test). In
contrast the second group initially performed not better than
naive subjects; i.e., their performance was the same as the perfor-

Variance Profiles
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mance of the rotation group in the begin-
ning of the first block (Fig. 4 D-E). Then,
over the first few trial batches this group
substantially improved (Fig. 5D-E) and
the difference in minimum target distance
between the first batch and the last are
highly significant (p < 0.01, Wilcoxon

rank-sum test). Therefore, the experience
of unpredictable target jumps did not al-
0.5 1 low for learning an adaptive control policy

t(s) that is optimized for unpredictable visuo-
motor rotations.

Finally, we investigated whether the
stationary adaptation patterns observed in
later trials of the first group could be ex-
plained by an adaptive optimal feedback
controller that takes the task-specific pa-
rameters of a visuomotor rotation explic-

Evolution of motor responses to random target jumps. A, Mean trajectories for ==90° target jumps over batches of
200 trials, ~5% of which were =-90° target jump trials. Dark blue colors indicate early batches, red colors indicate later batches.
B, The bottom shows that subjects’ performance did not significantly improve over trials. Error bars indicate SD over all trials and
subjects. C, Mean speed profiles for ==90° target jumps of the same trial batches. A second velocity peak is present right from the
start. D, The bottom shows the evolution of the magnitude of the second speed peak. £, SD for =-90° target jumps computed over
the same trial batches. Over consecutive batches the variance remains constant. F, SD over the last 500 ms of movement.

itly into account. Importantly, a nonadap-
tive controller that ignores the rotation
becomes quickly unstable (Fig. S4). The
adaptive optimal controller has to estimate
simultaneously the arm and cursor states
as well as the hidden “visuomotor
rotation”-parameter online (see Materials
and Methods). This results in the online
estimation of the forward model for the
visuomotor transformation. The esti-
mated forward model, in turn, together with the estimated cursor
and hand state can be used to compute the optimal control com-
mand at every point in time. At the beginning of each trial the
forward model estimate of the adaptive controller is initialized to
match a standard hand-cursor mapping without a visuomotor
rotation (representing the prior, the average of all rotations). Due
to feedback delays, any mismatch between actual and expected
cursor position can only be detected by the adaptive controller
some time into the movement. The observed mismatch can then
be used both for the adaptation of the state and parameter esti-
mates and for improved control (supplemental Fig. S3, available
at www.jneurosci.org as supplemental material). To test this
model quantitatively, we adjusted the parameters of the model to
fit the mean trajectory and variance of the 90°-rotation trials and
used this parameter set to predict behavior on both the standard
and other rotation trials. In the absence of the “cautiousness”
parameters which slow down control in the presence of uncer-
tainty about the rotation parameter, the predictions gave hand
speeds that were higher than those in our experimental data (sup-
plemental Fig. S5, available at www.jneurosci.org as supplemen-
tal material). In the presence of the “cautiousness” parameters
not only was the cost of the controller lower, but we also found
that the adaptive optimal control model predicted the main char-
acteristics of the paths, speed and angular momentum, as well as
the trial-to-trial variability of movements, with high reliability
(Fig. 6)—the predictions yielded r* > 0.83 for all kinematic vari-
ables. Both model and experimental trajectories first move
straight toward the target and then show adaptive movement
corrections after the feedback delay time elapsed. Both model and
experiment show a characteristic second peak in the velocity pro-
file, and the model predicts this peak correctly for all rotation
angles. Also the trial-by-trial variability is correctly predicted for
the different rotations.

1 5 10
Batch
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Discussion

Our results provide evidence that the
motor system converges to task-specific
stereotypical adaptive responses in un-
predictable motor tasks that require si-
multaneous adaptation and control.
Moreover, we show that such adaptive
responses can be explained by adaptive
optimal feedback control strategies.
Thus, our results provide evidence that
the motor system is not only capable of
learning nonadaptive optimal control
policies (Todorov and Jordan, 2002;
Diedrichsen, 2007) but also of learning
optimal simultaneous adaptation and
control. This shows that the learning
process of finding an optimal adaptive
strategy can be understood as an optimi-
zation process with regard to similar
cost criteria as proposed in nonadaptive
control tasks (Kording and Wolpert,
2004).

Previous studies have shown that opti-
mal feedback control successfully predicts
behavior of subjects that have uncertainty
about their environment (e.g., a force-
field) that changes randomly from trial to
trial (Izawa et al., 2008). However, in these
experiments subjects did not have the op-
portunity to adapt efficiently to the pertur-
bation within single trials. Rather the per-
turbation was modeled as noise or
uncertainty with regard to the internal
model. In our experiments subjects also
have uncertainty over the internal model,
but they have enough time to resolve this
uncertainty within the trial and adapt their
control policy accordingly. Another recent
study (Chen-Harris et al., 2008) has shown
that optimal feedback control can be suc-
cessfully combined with models of motor
learning (Donchin et al., 2003; Smith et al.,
2006) to understand learning of internal
models over the course of many trials.
Here we show that learning and control
can be understood by optimal control
principles within individual trials.

Optimal within-trial adaptation of the
control policy during a movement presup-
poses knowledge of a rotation-specific in-
ternal model x,,, = F(x, u,, a), where a
denotes the system parameters the motor
system is uncertain about (i.e., a rotation-
specific parameter). This raises the ques-
tion of how the nervous system could learn
that a is the relevant parameter and that F
depends on a in a specific way. In adaptive

control theory this is known as the structural learning problem
(Sastry and Bodson, 1989; Astrom and Wittenmark, 1995) as
opposed to the parametric learning problem of estimating a given
knowledge of F(*, a). In our experiments, subjects in the rotation
group have a chance to learn the structure of the adaptive control
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distance to target in ==90° rotation trials averaged over batches of 200 trials for the group that had experienced unexpected
rotation trials already in the previous 2000 trials. This group shows no improvement. Error bars show SD over all trials and subjects.
B, Mean magnitude of the second velocity peak over batches of 200 trials for the rotation group. C, SD in the last 500 ms of
movement for ==90° rotations computed over the same trial batches for the rotation group. There is no trend over consecutive
batches. D, Minimum distance to target in =90° rotation trials averaged over batches of 200 trials for the group that had
experienced unexpected target jump trials in the previous 2000 trials. This group shows a clearimprovement. £, Mean magnitude
of the second velocity peak over batches of 200 trials for the target jump group. F, SD in the last 500 ms of movement for ==90°
rotations computed over the same trial batches for the target jump group. The SD clearly decreases over consecutive batches.

problem (i.e., visuomotor rotations with a varying rotation an-
gle) in the first 2000 trials of the experiment in which they expe-
rience random rotations. As previously shown (Braun et al.,
2009), such random exposure is apt to induce structural learning
and can lead to differential adaptive behavior. Here we explicitly
investigate the evolution of structural learning for the online ad-
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Predictions of the adaptive optimal control model compared with movement data. Averaged experimental hand trajectories (left column), speed profiles (second column), angular

momentum (third column), and trajectory variability (right column) for standard trials (black) and rotation trials [ +=30° (blue), +=50° (red), ==70° (green), =-90° (magenta)]. The second peak in
the speed profile and the magnitude of the angular momentum (assuming m = 1kg) reflect the corrective movement of the subjects. Higher rotation angles are associated with higher variability
inthe movement trajectories in the second part of the movement. The variability was computed over trials and subjects. The trajectories for all eight targets have been rotated to the same standard
target and averaged, since model predictions were isotropic. The model consistently reproduces the characteristic features of the experimental curves.

aptation to visuomotor rotations (Fig. 1) and, based on an opti-
mal adaptive feedback control scheme, show that this learning
can be indeed understood as an improvement (Fig. 3) leading to
optimal adaptive control strategies. It should be noted, however,
that learning the rotation structure does not necessarily imply
that the brain is learning to adapt literally a single neural param-
eter, but that exploration for online adaptation should be con-
strained by structural knowledge leading to more stereotype
adaptive behavior. In the latter 2000 trials, when subjects know
how to adapt efficiently to rotations, their behavior can be de-
scribed by a parametric adaptive optimal feedback controller that
exploits knowledge of the specific rotation structure.

In the literature there has been an ongoing debate whether
corrective movements and multiple velocity peaks indicate dis-
cretely initiated submovements (Lee et al., 1997; Fishbach et al.,
2007) or whether multimodal velocity profiles are the natural
outcome of a continuous control process interacting with the
environment (Kawato, 1992; Bhushan and Shadmehr, 1999).
Our model predictions are consistent with the second view. Al-
though corrective movements in our experiments are certainly
induced by unexpected perturbations, the appearance of correc-
tions and multimodal velocity profiles can be explained by a con-
tinuous process of adaptive optimal control.

As already described, online adaptation should not to be con-
fused with online error correction (Diedrichsen et al., 2005). On-
line correction is, for example, required in the case of an unpre-
dicted target jump. Under this condition the same controller can
be used, i.e., the mapping from sensory input to motor output is
unaltered. However, unexpectedly changing the hand—cursor re-
lation (e.g., by a visuomotor rotation) requires the computation
of adaptive control policies. This becomes intuitively apparent in
the degenerate case of 180° rotations, as any correction of a naive
controller leads to the opposite of its intended effect. However, it
should be noted that the distinction between adaptation and er-
ror correction can be blurry in many cases. Strictly speaking, an
adaptive control problem is a nonlinear control problem with a
hyper-state containing state variables and (unknown) parame-
ters. This means in principle no extra theory of adaptive control is
required. In practice, however, there is a well established theory

of adaptive control (Sastry and Bodson, 1989; Astrom and Wit-
tenmark, 1995) that is built on the (somewhat artificial) distinc-
tion between state variables and (unknown) parameters. The two
quantities are typically distinct in their properties. In general, the
state, for example the position and velocity of the hand, changes
rapidly and continuously within a movement. In contrast, other
key quantities change discretely, like the identity of a manipu-
lated object, or on a slower timescale, like the mass of the limb.
We refer to such discrete or slowly changing quantities as the
“parameters” of the movement. Therefore, state variables change
on a much faster timescale than system parameters and the latter
need to be estimated to allow for control of the state variables.
This is exactly the case in our experiments where the parameters
(rotation angle) change slowly and discretely from trial to trial,
but the state variables (hand position, velocity, etc.) change con-
tinuously over time (within a trial). Thus, estimating uncertain
parameters can subserve continuous control in an adaptive man-
ner. In summary, our results suggest that the motor system can
learn optimal adaptive control strategies to cope with specific
uncertain environments.
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