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A. Supplemental Experimental Procedures 
 

All experimental procedures were approved by the local ethics committee and 

subjects provided written informed consent. All subjects were students either at the 

University of Cambridge or at the University of Freiburg. 

 

Experiment I. Subjects controlled a cursor on a computer screen by moving the end of 

a long (4m) pendulum that moved in the horizontal plane. Movements of the hand 

were tracked by an ultrasonic system (CMS20, Zebris Medical GmbH, Germany, 300 

Hz sampling, 0.085 mm accuracy) and displayed to scale in real-time on the screen. 

The screen displayed 8 circular targets (radius 1.6 cm) arranged concentrically around 

a starting position (center-target distance 8 cm). Subjects were asked to move the 

cursor swiftly and in a straight line to each target. For a valid trial, the target had to be 

reached within 2s. Movement duration was defined as the time elapsed from the 

moment the center of the cursor crossed the circumference of the starting position to 

the moment the center of the cursor entered the target circle and remained within the 

target for at least 500ms. The structural learning group (26 subjects) was exposed to 

800 random trials of visuomotor rotations about the starting position. The rotation 

transformation was: 
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The rotation angle changed every 8 trials and was drawn randomly from a uniform 

distribution between -90º and +90º.  Within these 8 trials with a fixed rotation angle,  

each of the 8 targets was presented once in pseudo-random order. A naïve control 

group (18 subjects) performed an equal number of movements with veridical 

feedback. A third group (12 subjects) experienced random linear transformations that 

were composed of a combined rotation, shearing and scaling. In 50% of the trials an 

x-shearing was applied, and in the other 50% of the trials a y-shearing was applied 

such that either 
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The rotation angle was drawn from the uniform distribution between -90º and +90º, 

the shearing parameter was drawn between -5 and +5 and the scaling parameters were 

drawn between 0.3 and 3. Additionally, it was made sure that the combined 

transformation allowed movements within a 15cm workspace. Importantly, whenever 

the randomly selected rotation angle fell between +50º and +70º this group 

experienced a +60º rotation, and whenever the randomly selected rotation angle fell 

between -50º and -70º this group experienced a -60º rotations. Thus they experienced 

as many ±60º rotations as the random rotation group. After their different exposures 

all three groups then experienced a +60º rotation for 50 trials followed by a -60º 

rotation for 50 trials, followed by another +60º rotation for 50 trials. Performance was 

assessed as the integrated absolute deviation from a straight line to the target 

(cumulative error) and as the angular deviation (rad) at 200ms after movement onset 

(defined by a speed threshold at 3cm/s). 

 

Experiment II. Subjects held the handle of a vBOT robotic manipulandum that could 

be moved with minimal inertia in the horizontal plane [1]. The positions and 

velocities of the hands were calculated on-line at 1000 Hz. The hand position was 

displayed as a circular cursor (1 cm radius) in the plane of the arm by means of a rear-

projection system. In every trial one of eight concentrically arranged targets (center-

target distance 9 cm; target radius 2 cm) appeared and the movement to the target had 

to be executed within 1800 ms. The rotation group (4 subjects) experienced random 

rotations over 400 trials (as defined above). The rotation angle changed every trial and 

was drawn from a uniform distribution between -90º and +90º. The shearing group (4 

subjects) experienced random horizontal shearings over 400 trials. The shearing 

transformation was: 
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The shearing parameter k changed every trial and was drawn from a uniform 

distribution between -2.0 and +2.0. Both groups then experienced the same kind of 

random trials as before on 70% of trials. However, on 30% of the trials they 

experienced either a +60º-rotation probe trial or a horizontal 1.5-shearing probe trial. 

Shearing probe trials were limited to 4 of the 8 targets and the shearing had a positive 

sign for the upper targets and a negative sign for the lower targets — this allowed us 

to average the trajectories of these shearing probe trials as they were spatially 

identical relative to the line between start point and target. The trajectories were 

aligned with a speed threshold criterion at 10cm/s. 

 

Experiment III. Subjects operated a 3 degree of freedom manipulandum (PHANTOM 

1.5 Haptic Device, SensAble) with their index finger in a 3D virtual reality 

environment. A combination of stereoscopic monitor, mirror and crystal eye shuttered 

glasses allowed us to overlay 3D images onto the workspace of the manipulandum. 

Hand position and velocity was sampled at 1000 Hz. Four concentric target spheres 

(radius 1.25 cm) were projected on a plane orthogonal to the line of sight (depth 
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dimension) with an origin-target distance of 10 cm (see figure S1). The target had to 

be hit within 800 ms by a cursor (radius 1cm) representing the subjects finger tip. 

Movements were to be performed in mini-blocks of 4 trials to the four targets in a 

random order. Initially, the horizontal-rotation group (6 subjects) was exposed to 400 

random rotations around the vertical-axis which corresponds to left-right 

displacements. The rotation angle changed over blocks of 4 trials and was drawn from 

a uniform distribution between -60º and +60º. The vertical-rotation group (6 subjects) 

was exposed to 400 random rotations around the horizontal-axis which corresponds to 

up-down displacements. The magnitude of the perturbation was the same for both 

groups.  Both groups then continued to experience the same blocks of random 

rotations on 70% of the trials. However, on 30% of the trials there was a probe block 

of either 45º-horizontal rotations, or, equally likely, a probe block of 45º-vertical 

rotations. This probe block was always preceded by a block with veridical feedback, 

where a movement to each of the four targets had to be made. Performance in the 

probe blocks was assessed by the angle between the target and the cursor position at 

9cm into the movement. End point spread was assessed as the difference in azimuth 

and zenith between the cursor position at 9cm movement distance and the target. To 

examine the error evolution we calculated the vector change in error in the xz-plane 

between the first and second probe trials at 9cm into the movement, and we plotted 

these changes in a circular histogram where the angles were computed from the vector 

difference in the xz-plane indicating the direction of adaptation. For the 

supplementary figure S2 we computed an initial angular error again at 200ms after 

movement onset (defined by a speed threshold at 3cm/s). 

 

 

B. Structural Learning – A Theoretical Perspective 
 

Structural learning in our experiments means that subjects have learned to extract the 

relationship between sensory inputs, hidden task variables and motor output. Formally, 

the relationship between the motor command U, the sensory input X and some internal 

variable + that represents the hidden task variable can be expressed as ),( +XfU ) . 

It should be noted that expressing the control command as ),( +XfU )  does not 

make any statement about the representation of f, and thus does not necessarily imply 

meaningful extrapolation, beyond the points of +  and X  that were experienced 

during training. For instance, the motor command U  could be represented by a 

mixture of local experts [2], such that ,) i ii XgU )()(+- , where )(+- i  is the 

weight of each expert ig . In this case, the parameter + defines a low-dimensional 

structure made up of local experts. In general, once a structure ),( +Xf  is learned, 

adaptation and generalization can be conceived of as adapting a meta-parameter + that 

shapes the control command according to the learned structure. Several previous 

findings can be cast within such a structural learning framework. For example, muscle 

synergies [3,4], generalized motor programs [5]
 
and possibly even motor equivalence 

[6] can be regarded as structures that are scaled by “activation levels”. 

 

In adaptive control theory )),(),(( tttXfU +)  is called a parametric adaptive control 

law, because it encapsulates the knowledge of how the unknown parameters +(t) are 

structurally related to the other control variables, such that estimating the parameters 

+(t) amounts to solving a parametric optimization problem. Conversely, when there is 
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no explicit parameterization available that is suitable for a particular environment, the 

adaptive control problem is substantially more complex:  the dimensionality of the 

control problem has to be established, the relevant control variables have to be 

extracted as well as their interrelations, range of potential values (e.g. discrete vs. 

continuous, etc.), time scales, stochasticity (e.g. noise levels, covariance, etc.) and 

other features. These issues constitute the realm of structural adaptive control [7,8]. 

With regard to our experiments structural learning would correspond to identifying a 

useful parameterization of the hand-cursor control (e.g. a rotation parameter for a 

visuomotor rotation) and establishing an adaptive control law to cope with the 

changing environment. It would be of great interest to investigate such adaptive 

control laws within the framework of adaptive optimal feedback control, given that 

non-adaptive optimal feedback control has successfully accounted for numerous 

motor behaviors in the recent past [9-12]. 

 

Adaptive optimal control models might also enhance our understanding of how 

feedforward and feedback components of structural learning are integrated in the 

nervous system. In our experiments we examined the initial component of movements 

(feedforward) as well as later stages in the movement (feedback) separately and this 

indicated that structural learning is evident in both the feedforward and the feedback 

pathway. An optimal feedback controller would use an adaptively scaleable internal 

model )(+M  in both feedforward and feedback control for adaptive sensorimotor 

integration. In a forward pathway an optimal feedback controller would use Bayesian 

estimation to obtain an optimal estimate of the state of the environment.(e.g. Kalman 

filter). In the beginning of the movement before feedback is available this estimate is 

mainly based on an internal model prior )(+M determining feedforward control. In a 

feedback pathway an optimal feedback controller would estimate )(t+ online during 

the movement and adjust the feedback control law accordingly. Thus, if the motor 

system behaves like an adaptive optimal feedback controller then it would rely on 

adaptive internal models both in the feedforward and the feedback phase of the 

movement.  

 

From a Bayesian point of view, structural learning implies that the learner must 

maintain a probability distribution over possible structures that could explain the data. 

Such structural learning is typically studied in the framework of Bayesian Networks 

(Fig. S3). A Bayesian Network is a graphical method to efficiently represent the joint 

distribution of a set of random variables [13-17]. In the case of sensorimotor learning 

these random variables could be N variables for the receptor input NRRR ,...,, 21  (e.g. 

retinal input, proprioceptive input, or later stages of neural processing) and M 

variables for the motor output MUUU ,...,, 21 (e.g. muscle activations or earlier stages 

of neural processing) (Fig. S3A). The dependencies between these variables are 

expressed by arrows in the network indicating the relation between any variable iX  

(such as jR  or kU ) and its direct causal antecedents denoted as )( iXparents . Thus, 

depending on a particular network structure S with model parameters S+  the joint 

probability distribution ),...,,()( 21 MNXXXPXP .)
!

 can be split up into a product of 

conditional probabilities: /
.

)
)

MN

i SiiS SXparentsXPSXP
1

),),(|(),|( ++
!

. The 

structure S of the network determines the dependencies between the variables—that is 

the presence or absence of arrows—while the probabilities that specify the actual 
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dependencies quantitatively are parameters of that structure. Therefore, ‘structural 

learning’ refers to learning the topology of such a network, whereas ‘parametric 

learning’ means determining quantitatively the causal connections given by the 

structure. In particular, the problem of structural learning is severe in the presence of 

hidden variables, because the structure underlying the observations has to be inferred. 

This is the standard case in sensorimotor learning. For instance, in the case of the 

rotation experiments the hidden variable we are interested in is the rotation angle. If 

the nervous system can extract this hidden variable the joint probability distribution 

over the sensorimotor space can be efficiently computed 

as )|()|(),( RPUPURP
!!!!

++) , where +0represents a rotation-specific hidden variable 

(Fig. S3B). Formally, the inference process during structural learning is split up into 

two steps: (a) computing the posterior probability )|( XSP  of a certain structural 

model S given the data X, and (b) computing the posterior probability ),|( XSP S+  of 

the parameter S+  given the structural model S and the data X. By using this formalism 

the concept of structural learning can be easily incorporated within the framework of 

Bayesian sensorimotor integration [18,19]. What is not shown explicitly in Fig. 

S3A,B is the time-dependence of the random variables R
!

 and U
!

. However, time can 

be easily included by extending the graph to a Bayesian Network that represents 

sequences of these random variables. This is called a Dynamic Bayesian Network [20] 

– compare Fig. S3C. The time dependence is vital for recognizing structural 

relationships between sensorimotor variables by means of motor task variation.  

 

 

C. Structural Learning – 

A Neurophysiological Perspective 
 

How could we imagine the process of structural learning in neurophysiological terms? 

As suggested in the introduction, we can imagine the brain as a controller with certain 

dials or ‘free variables’, for example the synaptic configurations in the motor cortex. 

These free variables fluctuate and can be adjusted to lie on a manifold suitable to 

solve a given task [21]. Of course, such a manifold will in general have many 

dimensions due to the redundancy arising in the space of synaptic configurations, 

redundancy in effector kinematics and dynamics, and possibly task redundancy. 

Learning a particular task in this framework can generally be regarded as 

‘constraining’ the fluctuations of the weights in the space of synaptic configurations 

to a particular manifold. Thus, when several tasks have to be learned by the same 

neural circuitry, synaptic weights have to be adjusted to a configuration in the 

intersection of the manifolds optimal for these tasks [21]. Interestingly, if we assume 

synaptic noise in the motor system, learning more demanding tasks leads to more 

stable neural representations, because “when more task constraints are added the 

dimension of the manifold reduces, thus reducing the drift in synaptic strengths” [21]. 

 

Within this picture, structural learning would mean ‘constraining’ synaptic 

configurations to a manifold, which we can conceptualize as dimensionality reduction 

(Fig. 1). Accordingly, the on-line estimation process of the hidden variables + can 

make use of these “tracks” laid down in the structural learning process. Thus, the 

process of on-line adaptation in our experiments is shaped by the structure that has 
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been learned before, which is why we observe different adaptation patterns – i.e. 

trajectories and variability patterns – depending on the experienced structure (e.g. Fig. 

3). Importantly, the random task design imposes much more constraints on the control 

process than the traditional block design, because the motor system is forced to come 

up with a ‘common explanation’ for a plethora of input/output relationships on a short 

time scale. Taking into account synaptic noise as modelled in [21] this can explain 

why random exposure leads to better retention (see [22] for similar results in motor 

sequence learning) and why visuomotor learning in the traditional block design is 

much more susceptible to interference [23-26]: The reason is that many manifolds in 

the space of synaptic configurations have to intersect, which leads to a much lower-

dimensional manifold and a more stable representation [21].  
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D. Supplemental Figures 
 

 

 
 

 

 
Figure S1. Schematic of experimental setup. Four targets (red spheres) were arranged concentrically in 

a plane perpendicular to the line of sight (y-dimension). The starting position (green sphere) was 10 cm 

away from each target. Rotations were either horizontal (i.e. rotation around z-axis) or vertical (i.e. 

rotation around x-axis). 

 



Current Biology, Volume 19 

 

1 2 3 4
0

0.5

Trial

E
rr

or
 (

ra
d)

0 0.5 1

0

0.5

1

Azimuth (rad)

Z
en

ith
 (

ra
d) 30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

1 2 3 4
0

0.5

Trial

E
rr

or
 (

ra
d)

0 0.5 1

0

0.5

1

Azimuth (rad)

Z
en

ith
 (

ra
d) 30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0
ho

riz
on

ta
l g

ro
up

ve
rt

ic
al

 g
ro

up

A C E

B D F

 
 

Figure S2. Structural learning of 3D rotations (initial component at 200ms into the movement). (A) 

Error in probe blocks of horizontal (red) and vertical (blue) 45º-rotations experienced by a group that 

experienced random horizontal rotations before. There is a clear facilitation for learning the horizontal 

rotation. The black line indicates performance in the preceding block of standard trials. (B) 

Performance error in the same probe blocks for a group that experienced random vertical rotations 

before. The facilitation pattern is reversed. (C,D) Initial movement variance for both kinds of probe 

blocks. The variance in the task-irrelevant direction—perpendicular to the displacement direction—is 

significantly reduced for isostructural probe blocks (ellipses show variances). This suggests that 

subjects explored less outside the structure they had learned during the random rotation blocks. (E,F) 

Circular histograms of initial movement adaptation from the 1st trial of the probe block to the 2nd   trial. 

Subjects responded to probe blocks from the same structure in a consistent way correcting towards the 

required target. In case of probe trials for a different structure, subjects showed a tendency for less 

consistent responses. 
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Figure S3. Structural learning in Bayesian Networks. (A) The nodes of the Bayesian Network represent 

random variables such as sensory inputs Rj and motor outputs Uk. The arrows indicate causal 

dependencies that are usually expressed via parameterized probability density functions. Learning the 

parameters of the full joint probability distribution in this network will require substantial computations. 

(B) In this network there is a hidden variable +10that corresponds to what we have called a ‘meta-

parameter’. The joint probability distribution over all variables splits up into a product of conditional 

distributions with regard to0+. This substantially reduces the dimensionality of the parameter space. In 

our experiments +0corresponds for instance to internal variables specific for rotations. (C) A temporal 

Bayesian network where the arrows on top of the variables indicate vector notation and the lower case 

indices indicate time steps. 
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