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A. Supplemental Experimental Procedures

All experimental procedures were approved by the local ethics committee and
subjects provided written informed consent. All subjects were students either at the
University of Cambridge or at the University of Freiburg.

Experiment 1. Subjects controlled a cursor on a computer screen by moving the end of
a long (4m) pendulum that moved in the horizontal plane. Movements of the hand
were tracked by an ultrasonic system (CMS20, Zebris Medical GmbH, Germany, 300
Hz sampling, 0.085 mm accuracy) and displayed to scale in real-time on the screen.
The screen displayed 8 circular targets (radius 1.6 cm) arranged concentrically around
a starting position (center-target distance 8 cm). Subjects were asked to move the
cursor swiftly and in a straight line to each target. For a valid trial, the target had to be
reached within 2s. Movement duration was defined as the time elapsed from the
moment the center of the cursor crossed the circumference of the starting position to
the moment the center of the cursor entered the target circle and remained within the
target for at least 500ms. The structural learning group (26 subjects) was exposed to
800 random trials of visuomotor rotations about the starting position. The rotation

transformation was:
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The rotation angle changed every 8 trials and was drawn randomly from a uniform
distribution between -90° and +90°. Within these 8 trials with a fixed rotation angle,
each of the 8 targets was presented once in pseudo-random order. A naive control
group (18 subjects) performed an equal number of movements with veridical
feedback. A third group (12 subjects) experienced random linear transformations that
were composed of a combined rotation, shearing and scaling. In 50% of the trials an
x-shearing was applied, and in the other 50% of the trials a y-shearing was applied
such that either
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The rotation angle was drawn from the uniform distribution between -90° and +90°,
the shearing parameter was drawn between -5 and +5 and the scaling parameters were
drawn between 0.3 and 3. Additionally, it was made sure that the combined
transformation allowed movements within a 15cm workspace. Importantly, whenever
the randomly selected rotation angle fell between +50° and +70° this group
experienced a +60° rotation, and whenever the randomly selected rotation angle fell
between -50° and -70° this group experienced a -60° rotations. Thus they experienced
as many +60° rotations as the random rotation group. After their different exposures
all three groups then experienced a +60° rotation for 50 trials followed by a -60°
rotation for 50 trials, followed by another +60° rotation for 50 trials. Performance was
assessed as the integrated absolute deviation from a straight line to the target
(cumulative error) and as the angular deviation (rad) at 200ms after movement onset
(defined by a speed threshold at 3cm/s).

Experiment II. Subjects held the handle of a vBOT robotic manipulandum that could
be moved with minimal inertia in the horizontal plane [1]. The positions and
velocities of the hands were calculated on-line at 1000 Hz. The hand position was
displayed as a circular cursor (1 cm radius) in the plane of the arm by means of a rear-
projection system. In every trial one of eight concentrically arranged targets (center-
target distance 9 cm; target radius 2 cm) appeared and the movement to the target had
to be executed within 1800 ms. The rotation group (4 subjects) experienced random
rotations over 400 trials (as defined above). The rotation angle changed every trial and
was drawn from a uniform distribution between -90° and +90°. The shearing group (4
subjects) experienced random horizontal shearings over 400 trials. The shearing

transformation was:
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The shearing parameter & changed every trial and was drawn from a uniform
distribution between -2.0 and +2.0. Both groups then experienced the same kind of
random trials as before on 70% of trials. However, on 30% of the trials they
experienced either a +60°-rotation probe trial or a horizontal 1.5-shearing probe trial.
Shearing probe trials were limited to 4 of the 8 targets and the shearing had a positive
sign for the upper targets and a negative sign for the lower targets — this allowed us
to average the trajectories of these shearing probe trials as they were spatially
identical relative to the line between start point and target. The trajectories were
aligned with a speed threshold criterion at 10cm/s.

Experiment I1l. Subjects operated a 3 degree of freedom manipulandum (PHANTOM
1.5 Haptic Device, SensAble) with their index finger in a 3D virtual reality
environment. A combination of stereoscopic monitor, mirror and crystal eye shuttered
glasses allowed us to overlay 3D images onto the workspace of the manipulandum.
Hand position and velocity was sampled at 1000 Hz. Four concentric target spheres
(radius 1.25 cm) were projected on a plane orthogonal to the line of sight (depth
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dimension) with an origin-target distance of 10 cm (see figure S1). The target had to
be hit within 800 ms by a cursor (radius lcm) representing the subjects finger tip.
Movements were to be performed in mini-blocks of 4 trials to the four targets in a
random order. Initially, the horizontal-rotation group (6 subjects) was exposed to 400
random rotations around the vertical-axis which corresponds to left-right
displacements. The rotation angle changed over blocks of 4 trials and was drawn from
a uniform distribution between -60° and +60°. The vertical-rotation group (6 subjects)
was exposed to 400 random rotations around the horizontal-axis which corresponds to
up-down displacements. The magnitude of the perturbation was the same for both
groups. Both groups then continued to experience the same blocks of random
rotations on 70% of the trials. However, on 30% of the trials there was a probe block
of either 45°horizontal rotations, or, equally likely, a probe block of 45°vertical
rotations. This probe block was always preceded by a block with veridical feedback,
where a movement to each of the four targets had to be made. Performance in the
probe blocks was assessed by the angle between the target and the cursor position at
9c¢m into the movement. End point spread was assessed as the difference in azimuth
and zenith between the cursor position at 9cm movement distance and the target. To
examine the error evolution we calculated the vector change in error in the xz-plane
between the first and second probe trials at 9cm into the movement, and we plotted
these changes in a circular histogram where the angles were computed from the vector
difference in the xz-plane indicating the direction of adaptation. For the
supplementary figure S2 we computed an initial angular error again at 200ms after
movement onset (defined by a speed threshold at 3cm/s).

B. Structural Learning — A Theoretical Perspective

Structural learning in our experiments means that subjects have learned to extract the
relationship between sensory inputs, hidden task variables and motor output. Formally,
the relationship between the motor command U, the sensory input X and some internal
variable p that represents the hidden task variable can be expressed as U = (X, u).
It should be noted that expressing the control command as U = f(X, ) does not
make any statement about the representation of £, and thus does not necessarily imply
meaningful extrapolation, beyond the points of ¢ and X that were experienced
during training. For instance, the motor command U could be represented by a
mixture of local experts [2], such that U = Zi a,(u)g;(X), where a,(u) is the

weight of each expert g,. In this case, the parameter p defines a low-dimensional
structure made up of local experts. In general, once a structure f(.X,u) is learned,
adaptation and generalization can be conceived of as adapting a meta-parameter p that
shapes the control command according to the learned structure. Several previous
findings can be cast within such a structural learning framework. For example, muscle
synergies [3,4], generalized motor programs [5]and possibly even motor equivalence
[6] can be regarded as structures that are scaled by “activation levels”.

In adaptive control theory U = f(X(¢), u(¢),t) is called a parametric adaptive control

law, because it encapsulates the knowledge of how the unknown parameters z(?) are
structurally related to the other control variables, such that estimating the parameters
M(t) amounts to solving a parametric optimization problem. Conversely, when there is
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no explicit parameterization available that is suitable for a particular environment, the
adaptive control problem is substantially more complex: the dimensionality of the
control problem has to be established, the relevant control variables have to be
extracted as well as their interrelations, range of potential values (e.g. discrete vs.
continuous, etc.), time scales, stochasticity (e.g. noise levels, covariance, etc.) and
other features. These issues constitute the realm of structural adaptive control [7,8].
With regard to our experiments structural learning would correspond to identifying a
useful parameterization of the hand-cursor control (e.g. a rotation parameter for a
visuomotor rotation) and establishing an adaptive control law to cope with the
changing environment. It would be of great interest to investigate such adaptive
control laws within the framework of adaptive optimal feedback control, given that
non-adaptive optimal feedback control has successfully accounted for numerous
motor behaviors in the recent past [9-12].

Adaptive optimal control models might also enhance our understanding of how
feedforward and feedback components of structural learning are integrated in the
nervous system. In our experiments we examined the initial component of movements
(feedforward) as well as later stages in the movement (feedback) separately and this
indicated that structural learning is evident in both the feedforward and the feedback
pathway. An optimal feedback controller would use an adaptively scaleable internal
model M () in both feedforward and feedback control for adaptive sensorimotor
integration. In a forward pathway an optimal feedback controller would use Bayesian
estimation to obtain an optimal estimate of the state of the environment.(e.g. Kalman
filter). In the beginning of the movement before feedback is available this estimate is
mainly based on an internal model prior M (x) determining feedforward control. In a
feedback pathway an optimal feedback controller would estimate u(¢)online during
the movement and adjust the feedback control law accordingly. Thus, if the motor
system behaves like an adaptive optimal feedback controller then it would rely on

adaptive internal models both in the feedforward and the feedback phase of the
movement.

From a Bayesian point of view, structural learning implies that the learner must
maintain a probability distribution over possible structures that could explain the data.
Such structural learning is typically studied in the framework of Bayesian Networks
(Fig. S3). A Bayesian Network is a graphical method to efficiently represent the joint
distribution of a set of random variables [13-17]. In the case of sensorimotor learning
these random variables could be N variables for the receptor input R, R,,...., R, (e.g.
retinal input, proprioceptive input, or later stages of neural processing) and M
variables for the motor output U,,U,,...,U,, (e.g. muscle activations or earlier stages
of neural processing) (Fig. S3A). The dependencies between these variables are
expressed by arrows in the network indicating the relation between any variable X,

(such as R, or U, ) and its direct causal antecedents denoted as parents(X,). Thus,
depending on a particular network structure S with model parameters u the joint
probability distribution P(X) = P(X,,X,,...., X ,,,) can be split up into a product of
conditional probabilities: P()? | S, ug) = HZ;M P(X, | parents(X,),S,us) . The

structure S of the network determines the dependencies between the variables—that is
the presence or absence of arrows—while the probabilities that specify the actual
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dependencies quantitatively are parameters of that structure. Therefore, ‘structural
learning’ refers to learning the topology of such a network, whereas ‘parametric
learning’” means determining quantitatively the causal connections given by the
structure. In particular, the problem of structural learning is severe in the presence of
hidden variables, because the structure underlying the observations has to be inferred.
This is the standard case in sensorimotor learning. For instance, in the case of the
rotation experiments the hidden variable we are interested in is the rotation angle. If
the nervous system can extract this hidden variable the joint probability distribution
over the sensorimotor space can be efficiently computed

as P(R,U) = P(U | #)P(u | R), where u represents a rotation-specific hidden variable

(Fig. S3B). Formally, the inference process during structural learning is split up into
two steps: (a) computing the posterior probability P(S| X) of a certain structural

model § given the data X, and (b) computing the posterior probability P(ug |S,X) of
the parameter g, given the structural model S and the data X. By using this formalism

the concept of structural learning can be easily incorporated within the framework of
Bayesian sensorimotor integration [18,19]. What is not shown explicitly in Fig.

S3A,B is the time-dependence of the random variables R and U . However, time can
be easily included by extending the graph to a Bayesian Network that represents
sequences of these random variables. This is called a Dynamic Bayesian Network [20]
— compare Fig. S3C. The time dependence is vital for recognizing structural
relationships between sensorimotor variables by means of motor task variation.

C. Structural Learning —
A Neurophysiological Perspective

How could we imagine the process of structural learning in neurophysiological terms?
As suggested in the introduction, we can imagine the brain as a controller with certain
dials or ‘free variables’, for example the synaptic configurations in the motor cortex.
These free variables fluctuate and can be adjusted to lie on a manifold suitable to
solve a given task [21]. Of course, such a manifold will in general have many
dimensions due to the redundancy arising in the space of synaptic configurations,
redundancy in effector kinematics and dynamics, and possibly task redundancy.
Learning a particular task in this framework can generally be regarded as
‘constraining’ the fluctuations of the weights in the space of synaptic configurations
to a particular manifold. Thus, when several tasks have to be learned by the same
neural circuitry, synaptic weights have to be adjusted to a configuration in the
intersection of the manifolds optimal for these tasks [21]. Interestingly, if we assume
synaptic noise in the motor system, learning more demanding tasks leads to more
stable neural representations, because “when more task constraints are added the
dimension of the manifold reduces, thus reducing the drift in synaptic strengths” [21].

Within this picture, structural learning would mean ‘constraining’ synaptic
configurations to a manifold, which we can conceptualize as dimensionality reduction
(Fig. 1). Accordingly, the on-line estimation process of the hidden variables p can
make use of these “tracks” laid down in the structural learning process. Thus, the
process of on-line adaptation in our experiments is shaped by the structure that has
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been learned before, which is why we observe different adaptation patterns — i.e.
trajectories and variability patterns — depending on the experienced structure (e.g. Fig.
3). Importantly, the random task design imposes much more constraints on the control
process than the traditional block design, because the motor system is forced to come
up with a ‘common explanation’ for a plethora of input/output relationships on a short
time scale. Taking into account synaptic noise as modelled in [21] this can explain
why random exposure leads to better retention (see [22] for similar results in motor
sequence learning) and why visuomotor learning in the traditional block design is
much more susceptible to interference [23-26]: The reason is that many manifolds in
the space of synaptic configurations have to intersect, which leads to a much lower-
dimensional manifold and a more stable representation [21].
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D. Supplemental Figures

Figure S1. Schematic of experimental setup. Four targets (red spheres) were arranged concentrically in
a plane perpendicular to the line of sight (y-dimension). The starting position (green sphere) was 10 cm
away from each target. Rotations were either horizontal (i.e. rotation around z-axis) or vertical (i.e.
rotation around x-axis).
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Figure S2. Structural learning of 3D rotations (initial component at 200ms into the movement). (4)
Error in probe blocks of horizontal (red) and vertical (blue) 45°rotations experienced by a group that
experienced random horizontal rotations before. There is a clear facilitation for learning the horizontal
rotation. The black line indicates performance in the preceding block of standard trials. (B)
Performance error in the same probe blocks for a group that experienced random vertical rotations
before. The facilitation pattern is reversed. (C,D) Initial movement variance for both kinds of probe
blocks. The variance in the task-irrelevant direction—perpendicular to the displacement direction—is
significantly reduced for isostructural probe blocks (ellipses show variances). This suggests that
subjects explored less outside the structure they had learned during the random rotation blocks. (E,F)
Circular histograms of initial movement adaptation from the 1% trial of the probe block to the 2™ trial.
Subjects responded to probe blocks from the same structure in a consistent way correcting towards the
required target. In case of probe trials for a different structure, subjects showed a tendency for less
consistent responses.
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Figure S3. Structural learning in Bayesian Networks. (4) The nodes of the Bayesian Network represent
random variables such as sensory inputs R; and motor outputs U, The arrows indicate causal
dependencies that are usually expressed via parameterized probability density functions. Learning the
parameters of the full joint probability distribution in this network will require substantial computations.
(B) In this network there is a hidden variable p, that corresponds to what we have called a ‘meta-
parameter’. The joint probability distribution over all variables splits up into a product of conditional
distributions with regard to p. This substantially reduces the dimensionality of the parameter space. In
our experiments p corresponds for instance to internal variables specific for rotations. (C) A temporal
Bayesian network where the arrows on top of the variables indicate vector notation and the lower case
indices indicate time steps.



