Correlations in spiking neuronal networks with distance dependent connections
Birgit Kriener1, 2, 4, 5 , Moritz Helias1, 2, Ad Aertsen1, 2 and Stefan Rotter1, 3
(1) |
Bernstein Center for Computational Neuroscience, Albert-Ludwig University, Freiburg, Germany |
(2) |
Neurobiology and Biophysics, Faculty of Biology, Albert-Ludwig University, Freiburg, Germany |
(3) |
Computational Neuroscience, Faculty of Biology, Albert-Ludwig University, Freiburg, Germany |
(4) |
Present address: Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany |
(5) |
Bernstein Center for Computational Neuroscience, Göttingen, Germany |
Received: 10 July 2008 Revised: 11 December 2008 Accepted: 31 December 2008 Published online: 1 July 2009
Action Editor: Alain Destexhe
Abstract Can
the topology of a recurrent spiking network be inferred from observed
activity dynamics? Which statistical parameters of network connectivity
can be extracted from firing rates, correlations and related measurable
quantities? To approach these questions, we analyze distance dependent
correlations of the activity in small-world networks of neurons with
current-based synapses derived from a simple ring topology. We find
that in particular the distribution of correlation coefficients of
subthreshold activity can tell apart random networks from networks with
distance dependent connectivity. Such distributions can be estimated by
sampling from random pairs. We also demonstrate the crucial role of the
weight distribution, most notably the compliance with Dales principle,
for the activity dynamics in recurrent networks of different types.
Keywords Spiking
neural networks - Small-world networks - Pairwise
correlations - Distribution of correlation coefficients
References
Albert, R., & Barabasi, A. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.
|
|
Bair,
W., Zohary, E., & Newsome, W. (2001). Correlated firing in Macaque
visual area MT: Time scales and relationship to behavior. Journal of Neuroscience, 21(5), 1676–1697.
|
|
Ben-Yishai, R., Bar-Or, R., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844.
|
|
Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex.
Journal of Neuroscience, 39(24), 8441–8453.
|
|
Bronstein, I. N., & Semendjajew, K. A. (1987). Taschenbuch der Mathematik (23rd ed.). Thun und Frankfurt/Main: Verlag Harri Deutsch.
|
|
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.
|
|
Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates.
Neural Computation, 11(7), 1621–1671.
|
|
Chklovskii, D. B., Schikorski, T., & Stevens, C. F. (2002). Wiring optimization in cortical circuits. Neuron, 34, 341–347.
|
|
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge: MIT.
|
|
De la
Rocha, J., Doiron, B., Shea-Brown, E., Kresimir, J., & Reyes, A.
(2007). Correlation between neural spike trains increases with firing
rate. Nature, 448(16), 802–807.
|
|
Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751.
|
|
Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137–150.
|
|
Gewaltig, M.-O., & Diesmann, M. (2007). NEST (Neural simulation tool). Scholarpedia, 2(4), 1430.
|
|
Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual
cortex. Biological Cybernetics, 2(82), 111–121.
|
|
Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer.
|
|
Jahnke, S., Memmesheimer, R., & Timme, M. (2008). Stable irregular dynamics in complex neural networks. Physical Review Letters, 100, 048102.
|
|
Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., & Rotter, S. (2008). Correlations and population dynamics in cortical
networks. Neural Computation, 20, 2185–2226.
|
|
Kuhn, A., Aertsen, A., & Rotter, S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. Journal of Neuroscience, 24(10), 2345–2356.
|
|
Kumar, A., Rotter, S., & Aertsen, A. (2008a). Conditions for propagating synchronous spiking and asynchronous firing rates
in a cortical network model. Journal of Neuroscience, 28(20), 5268–5280.
|
|
Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008b). The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43.
|
|
Lee, A., Manns, I., Sakmann, B., & Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron, 51, 399–407.
|
|
Li, Z., & Dayan, P. (1999). Computational differences between asymmetrical and symmetrical networks. Network: Computing Neural Systems, 10, 59–77.
|
|
Lund,
J. S., Angelucci, A., & Bressloff, P. C. (2003). Anatomical
substrates for functional columns in macaque monkey primary visual
cortex. Cerebral Cortex, 12, 15–24.
|
|
Mattia, M., & Del Guidice, P. (2002). Population dynamics of interacting spiking neurons. Physical Review E, 66, 051917.
|
|
Mattia, M., & Del Guidice, P. (2004). Finite-size dynamics of inhibitory and excitatory interacting spiking neurons. Physical Review E, 70, 052903.
|
|
Morrison,
A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005).
Advancing the boundaries of high connectivity network simulation with
distributed computing. Neural Computation, 17(8), 1776–1801.
|
|
Nawrot, M. P., Boucsein, C., Rodriguez Molina, V., Riehle, A., Aertsen, A., & Rotter, S. (2008). Measurement of variability
dynamics in cortical spike trains. Journal of Neuroscience Methods, 169, 374–390.
|
|
Papoulis, A. (1991). Probability, random variables, and stochastic processes (3rd ed.). Boston: McGraw-Hill.
|
|
Ren, M., Yoshimura, Y., Takada, N., Horibe, S., & Komatsu, Y. (2007). Specialized inhibitory synaptic actions between nearby
neocortical pyramidal neurons. Science, 316, 758–761.
|
|
Shadlen,
M. N., & Newsome, W. T. (1998). The variable discharge of cortical
neurons: Implications for connectivity, computation, and information
coding. Journal of Neuroscience, 18(10), 3870–3896.
|
|
Shea-Brown, E., Josic, K., de la Rocha, J., & Doiron, B. (2008). Correlation and synchrony transfer in integrate-and-fire
neurons: Basic properties and consequences for coding. Physical Review Letters, 100, 108102.
|
|
Song,
S., Per, S., Reigl, M., Nelson, S., & Chklovskii, D. (2005). Highly
nonrandom features of synaptic connectivity in local cortical circuits.
Public Library of Science, Biology, 3(3), 0507–0519.
|
|
Sporns, O. (2003). Network analysis, complexity and brain function. Complexity, 8(1), 56–60.
|
|
Sporns, O., & Zwi, D. Z. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.
|
|
Stepanyants, A., Hirsch, J., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2007). Local potential
connectivity in cat primary visual cortex. Cerebral Cortex, 18(1), 13–28.
|
|
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.
|
|
Tchumatchenko,
T., Malyshev, A., Geisel, T., Volgushev, M., & Wolf, F. (2008).
Correlations and synchrony in threshold neuron models. http://arxiv.org/pdf/0810.2901.
|
|
Tetzlaff, T., Rotter, S., Stark, E., Abeles, M., Aertsen, A., & Diesmann, M. (2007). Dependence of neuronal correlations on
filter characteristics and marginal spike-train statistics. Neural Computation, 20, 2133–2184.
|
|
Timme, M. (2007). Revealing network connectivity from response dynamics. Physical Review Letters, 98, 224101.
|
|
Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse-coupled
oscillators. Physical Review Letters, 89(25), 258701.
|
|
Vaadia,
E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., &
Aertsen, A. (1995). Dynamics of neuronal interactions in monkey cortex
in relation to behavioural events. Nature, 373(6514), 515–518.
|
|
van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity.
Science, 274, 1724–1726.
|
|
van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10, 1321–1371.
|
|
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.
|
|
Yoshimura,
Y., & Callaway, E. (2005). Fine-scale specificity of cortical
networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8(11), 1552–1559.
|
|
Yoshimura, Y., Dantzker, J., & Callaway, E. (2005). Excitatory cortical neurons form fine-scale functional networks. Nature, 433(24), 868–873.
|
|
Zohary,
E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal
discharge rate and its implications for psychophysical performance. Nature, 370, 140–143.
|
|
|
|