Welcome!
To use the personalized features of this site, please log in or register.
If you have forgotten your username or password, we can help.
My Menu
Saved Items

Correlations in spiking neuronal networks with distance dependent connections

Birgit Kriener1, 2, 4, 5 Contact Information, Moritz Helias1, 2, Ad Aertsen1, 2 and Stefan Rotter1, 3

(1)  Bernstein Center for Computational Neuroscience, Albert-Ludwig University, Freiburg, Germany
(2)  Neurobiology and Biophysics, Faculty of Biology, Albert-Ludwig University, Freiburg, Germany
(3)  Computational Neuroscience, Faculty of Biology, Albert-Ludwig University, Freiburg, Germany
(4)  Present address: Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
(5)  Bernstein Center for Computational Neuroscience, Göttingen, Germany

Received: 10 July 2008  Revised: 11 December 2008  Accepted: 31 December 2008  Published online: 1 July 2009

Action Editor: Alain Destexhe
Abstract  Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses derived from a simple ring topology. We find that in particular the distribution of correlation coefficients of subthreshold activity can tell apart random networks from networks with distance dependent connectivity. Such distributions can be estimated by sampling from random pairs. We also demonstrate the crucial role of the weight distribution, most notably the compliance with Dales principle, for the activity dynamics in recurrent networks of different types.

Keywords  Spiking neural networks - Small-world networks - Pairwise correlations - Distribution of correlation coefficients


Contact Information Birgit Kriener
Email: kriener@nld.ds.mpg.de

References

Albert, R., & Barabasi, A. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.
CrossRef
 
Bair, W., Zohary, E., & Newsome, W. (2001). Correlated firing in Macaque visual area MT: Time scales and relationship to behavior. Journal of Neuroscience, 21(5), 1676–1697.
PubMed ChemPort
 
Ben-Yishai, R., Bar-Or, R., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 3844.
PubMed CrossRef ChemPort
 
Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 39(24), 8441–8453.
CrossRef
 
Bronstein, I. N., & Semendjajew, K. A. (1987). Taschenbuch der Mathematik (23rd ed.). Thun und Frankfurt/Main: Verlag Harri Deutsch.
 
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8(3), 183–208.
PubMed SpringerLink ChemPort
 
Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11(7), 1621–1671.
PubMed CrossRef ChemPort
 
Chklovskii, D. B., Schikorski, T., & Stevens, C. F. (2002). Wiring optimization in cortical circuits. Neuron, 34, 341–347.
PubMed CrossRef ChemPort
 
Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge: MIT.
 
De la Rocha, J., Doiron, B., Shea-Brown, E., Kresimir, J., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448(16), 802–807.
PubMed CrossRef
 
Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751.
PubMed CrossRef ChemPort
 
Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137–150.
PubMed SpringerLink ChemPort
 
Gewaltig, M.-O., & Diesmann, M. (2007). NEST (Neural simulation tool). Scholarpedia, 2(4), 1430.
 
Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 2(82), 111–121.
SpringerLink
 
Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer.
 
Jahnke, S., Memmesheimer, R., & Timme, M. (2008). Stable irregular dynamics in complex neural networks. Physical Review Letters, 100, 048102.
PubMed CrossRef
 
Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., & Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20, 2185–2226.
PubMed CrossRef
 
Kuhn, A., Aertsen, A., & Rotter, S. (2004). Neuronal integration of synaptic input in the fluctuation-driven regime. Journal of Neuroscience, 24(10), 2345–2356.
PubMed CrossRef ChemPort
 
Kumar, A., Rotter, S., & Aertsen, A. (2008a). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28(20), 5268–5280.
PubMed CrossRef ChemPort
 
Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008b). The high-conductance state of cortical networks. Neural Computation, 20(1), 1–43.
PubMed CrossRef
 
Lee, A., Manns, I., Sakmann, B., & Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron, 51, 399–407.
PubMed CrossRef ChemPort
 
Li, Z., & Dayan, P. (1999). Computational differences between asymmetrical and symmetrical networks. Network: Computing Neural Systems, 10, 59–77.
CrossRef ChemPort
 
Lund, J. S., Angelucci, A., & Bressloff, P. C. (2003). Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex, 12, 15–24.
CrossRef
 
Mattia, M., & Del Guidice, P. (2002). Population dynamics of interacting spiking neurons. Physical Review E, 66, 051917.
CrossRef
 
Mattia, M., & Del Guidice, P. (2004). Finite-size dynamics of inhibitory and excitatory interacting spiking neurons. Physical Review E, 70, 052903.
CrossRef
 
Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high connectivity network simulation with distributed computing. Neural Computation, 17(8), 1776–1801.
PubMed CrossRef
 
Nawrot, M. P., Boucsein, C., Rodriguez Molina, V., Riehle, A., Aertsen, A., & Rotter, S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of Neuroscience Methods, 169, 374–390.
PubMed CrossRef
 
Papoulis, A. (1991). Probability, random variables, and stochastic processes (3rd ed.). Boston: McGraw-Hill.
 
Ren, M., Yoshimura, Y., Takada, N., Horibe, S., & Komatsu, Y. (2007). Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons. Science, 316, 758–761.
PubMed CrossRef ChemPort
 
Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.
PubMed ChemPort
 
Shea-Brown, E., Josic, K., de la Rocha, J., & Doiron, B. (2008). Correlation and synchrony transfer in integrate-and-fire neurons: Basic properties and consequences for coding. Physical Review Letters, 100, 108102.
PubMed CrossRef
 
Song, S., Per, S., Reigl, M., Nelson, S., & Chklovskii, D. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. Public Library of Science, Biology, 3(3), 0507–0519.
ChemPort
 
Sporns, O. (2003). Network analysis, complexity and brain function. Complexity, 8(1), 56–60.
CrossRef
 
Sporns, O., & Zwi, D. Z. (2004). The small world of the cerebral cortex. Neuroinformatics, 2, 145–162.
PubMed CrossRef
 
Stepanyants, A., Hirsch, J., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2007). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18(1), 13–28.
PubMed CrossRef
 
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.
PubMed CrossRef ChemPort
 
Tchumatchenko, T., Malyshev, A., Geisel, T., Volgushev, M., & Wolf, F. (2008). Correlations and synchrony in threshold neuron models. http://arxiv.org/pdf/0810.2901.
 
Tetzlaff, T., Rotter, S., Stark, E., Abeles, M., Aertsen, A., & Diesmann, M. (2007). Dependence of neuronal correlations on filter characteristics and marginal spike-train statistics. Neural Computation, 20, 2133–2184.
CrossRef
 
Timme, M. (2007). Revealing network connectivity from response dynamics. Physical Review Letters, 98, 224101.
PubMed CrossRef
 
Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Physical Review Letters, 89(25), 258701.
PubMed CrossRef
 
Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373(6514), 515–518.
PubMed CrossRef ChemPort
 
van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724–1726.
PubMed CrossRef
 
van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10, 1321–1371.
PubMed CrossRef
 
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393, 440–442.
PubMed CrossRef ChemPort
 
Yoshimura, Y., & Callaway, E. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8(11), 1552–1559.
PubMed CrossRef ChemPort
 
Yoshimura, Y., Dantzker, J., & Callaway, E. (2005). Excitatory cortical neurons form fine-scale functional networks. Nature, 433(24), 868–873.
PubMed CrossRef ChemPort
 
Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370, 140–143.
PubMed CrossRef ChemPort
 
Export this article
Export this article as RIS | Text
 
Remote Address: 84.159.119.161 • Server: mpweb02
HTTP User Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.1.2) Gecko/20090729 Firefox/3.5.2