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Hand Movement Direction Decoded from MEG and EEG
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Brain activity can be used as a control signal for brain–machine interfaces (BMIs). A powerful and widely acknowledged BMI approach,
so far only applied in invasive recording techniques, uses neuronal signals related to limb movements for equivalent, multidimensional
control of an external effector. Here, we investigated whether this approach is also applicable for noninvasive recording techniques. To
this end, we recorded whole-head MEG during center-out movements with the hand and found significant power modulation of MEG
activity between rest and movement in three frequency bands: an increase for �7 Hz (low-frequency band) and 62– 87 Hz (high-� band)
and a decrease for 10 –30 Hz (� band) during movement. Movement directions could be inferred on a single-trial basis from the low-pass
filtered MEG activity as well as from power modulations in the low-frequency band, but not from the � and high-� bands. Using sensors
above the motor area, we obtained a surprisingly high decoding accuracy of 67% on average across subjects. Decoding accuracy started
to rise significantly above chance level before movement onset. Based on simultaneous MEG and EEG recordings, we show that the
inference of movement direction works equally well for both recording techniques. In summary, our results show that neuronal activity
associated with different movements of the same effector can be distinguished by means of noninvasive recordings and might, thus, be
used to drive a noninvasive BMI.
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Introduction
A brain–machine interface (BMI) translates neuronal signals re-
flecting a persons’ intention into commands driving a machine
(prosthesis, cursor, computer, robot, etc.). The brain signals an-
alyzed in a BMI are recorded either with invasive or noninvasive
techniques. Next to the distinction at this technical level, it is an
ongoing issue which type of brain activity should be used and
which paradigm or mental task the BMI should rely on.

Several approaches and brain signals have been used in the
field of noninvasive BMI to drive an external device: the self-
regulation of evoked brain activity [e.g., slow cortical potentials
(Birbaumer et al., 1999) or amplitudes of different frequency
bands (Wolpaw et al., 1991; Wolpaw and McFarland, 2004)];
imagination of movements of different parts of the body
(Pfurtscheller et al., 1993; Pfurtscheller and Neuper, 2006;
Blankertz et al., 2007); performance of different cognitive tasks
(Penny and Roberts, 1999; Curran et al., 2004); or the visually
evoked P300 potential (Farwell and Donchin, 1988; Hoffmann et
al., 2007).

In invasive BMI research, a different approach has been suc-
cessful: the spiking activity of cortical cells related to movements
of one limb is used for equivalent control of an external effector
(Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003;
Hochberg et al., 2006). Such direct BMI control is more precise
and intuitive and has the potential to make extensive subject
training redundant. The basis of this approach is the finding that
the direction of performed arm movements can be inferred from
trial-averaged firing rates of neurons in monkey motor cortex
(Georgopoulos et al., 1983, 1986). Likewise, firing rates of human
motor cortex neurons are tuned to the direction of intended hand
movements (Hochberg et al., 2006). Invasive BMI research also
revealed that movement direction can be inferred from monkey
local field potentials (LFPs) (Mehring et al., 2003) and from hu-
man electrocorticograms (ECoGs) (Leuthardt et al., 2004;
Mehring et al., 2004). So far, however, information about the
directional tuning in noninvasive recordings is lacking.

To use the aforementioned approach also for noninvasive
BMIs, we investigated MEG activity during hand movements and
show that self-chosen movement directions of a single effector
(the hand) can be inferred on a single-trial basis using neuronal
signals measured outside the head. We determined the decoding
performance that can be gained from different sensor locations
and signal components, and characterized brain activity related
to hand movement control. Based on simultaneous MEG and
EEG recordings above contralateral motor areas, we investigated
and compared the decoding performance gained from MEG and
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EEG covering the same brain area. Finally, we discuss the relation
between our classification results (MEG and EEG) and those ob-
tained in invasive studies using single-unit activity (SUA), LFP,
and ECoG.

Materials and Methods
Recording systems
MEG system. The magnetic component of brain activity was measured
using a 151-channel whole-head MEG system (VSM MedTech, Vancou-
ver, British Columbia, Canada) consisting of first-order axial gradiom-
eter with 5 cm baseline and �2.5 cm intersensor spacing. The system was
installed in an electromagnetically shielded room (Vakuumschmelze,
Hanau, Germany); the noise level was 10 fT/�Hz.

EEG system. The electrical component of brain activity was measured
using an AC-coupled EEG system (VSM MedTech). We positioned 20
recording electrodes with �2.5 cm spacing medially above the contralat-
eral motor area. Ground was attached to the neck, and two electrodes
were attached above mastoid processes (to allow re-referencing). During
recordings, the reference electrode was Cz. Impedance for all electrodes
was �5 k�.

MEG and EEG were passed simultaneously through an analog low-
pass filter with a cutoff frequency of 208 Hz and sampled at 625 Hz.

Experiment
Nine right-handed subjects participated voluntarily in this study,
which was approved by the ethics committee of the University of
Tübingen Medical Faculty. Subjects were instructed to move a joy-
stick from a center position toward one of four targets located at 90°
intervals (center-out paradigm) using right hand and wrist only. In
each trial, the target was self-chosen by the subject. The subject’s
elbow rested on a pillow to prevent upper arm and shoulder move-
ments (Fig. 1a); the head was stabilized by small pillows. Deflection of
joystick was 4.5 cm (19.5°). Targets were arranged in the form of a
square with corners pointing left, right, up, and down relative to the
subject’s frame of reference. The frictionless joystick (without return
springs) very slightly routed the subject’s movement to support the
subject in conceiving the task (reaching in four perpendicular direc-
tions). Visual trigger signals were presented on a screen �65 cm in
front of the subject. These signals were used exclusively to start a trial
or to indicate possible errors. In addition, a red cross was continu-
ously presented for fixation.

The experiment contained three blocks, each containing several trials,
with each trial consisting of the sequence depicted in Figure 1b. Within
the shown time constraints, the sequence was self-paced. Each trial
started with the joystick in the center position and was initiated by pre-
senting a gray circle (diameter: 3 cm) on the screen. After a variable delay
between 1 and 2 s, the disappearance of the circle indicated the “go”
signal. A movement was assigned as a correct trial if the joystick exceeded
an angle of 12° in a certain direction. The position of the joystick was
sampled at 500 Hz. A dark gray circle was displayed if time constraints
(Fig. 1b) were violated; such trials were invalid and not used for further
analysis. To obtain approximately the same number of trials per target,
the subject was told which directions were underrepresented after each of
the first two blocks.

Furthermore, the electrooculogram (EOG) was recorded. Head move-

ments, which may cause artifacts and shifts in
the source-sensor mapping, were monitored us-
ing three head coils (left and right ear preauric-
ular point and nasion); data were analyzed only
if head movement was �1 cm. Subjects were
instructed to sit with their head in a centered
position, which legitimizes averaging in sensor
space across subjects (Kaiser et al., 2000).

Data analysis
Preprocessing: whole-head MEG and contralat-
eral EEG. EEG data were re-referenced to linked
mastoid electrodes (linked ears). Data were
high-pass filtered (0.5 Hz, Butterworth, third-
order, zero phase shift) to remove offset and

trend. We then redefined a trial as the time window from 1000 ms before
to 750 ms after movement onset. Movement onset was defined as the
time point when the subject started to move the joystick (determined as
the beginning of a directed movement extracted from the joystick’s po-
sitional information) to leave the center position and reach a target (de-
termined as 70% of maximal deflection). Eye artifacts were detected in
the EOG by threshold detection. Trials containing eye artifacts were
discarded.

After this preprocessing, on average 68 trials per target and subject
(minimum: 52, 53, 54, and 55 for left, right, up, and down, respectively)
were used for further data analysis.

Time-resolved power spectrum: whole-head MEG. Temporal evolution
of the power of different frequencies was determined by time-resolved
spectral analysis using fast Fourier transform with a sliding Hamming
window of 250 data points (400 ms) width, i.e., at a frequency resolution
of 2.5 Hz. The center of the window was shifted in steps of 10 data points
(16 ms). To reveal power modulations within a trial, the power spectra
were normalized by dividing the time-resolved power by a baseline
power separately for each frequency bin (Rickert et al., 2005). The base-
line power was defined as the mean power of the respective frequency bin
in the interval ranging from 814 to 300 ms before movement onset.

Decoding: whole-head MEG data. MEG activity was decoded on a
single-trial basis by regularized linear discriminant analysis (RLDA)
(Friedman, 1989). The percentage of correctly decoded trials, termed
decoding accuracy (DA), was used to quantify the decoding perfor-
mance. For each subject, the DA was calculated by 10 times 10-fold
cross-validation (Efron and Tibshirani, 1994), where the set of trials used
for training the RLDA and the set of trials used for decoding were mutu-
ally exclusive.

As inputs to the RLDA classification, we used either the MEG sig-
nals in the time domain or the normalized power of different fre-
quency bands. In both cases, the input reflected a time-varying signal
gathered from a certain period of time (different time windows were
used in the following and are described in the respective paragraphs).
For decoding in the time domain, MEG activity of each trial was
low-pass filtered (Butterworth, third-order, zero phase shift) using
cutoff frequencies from 2 to 12 Hz and resampled at the four-fold of
the cutoff frequency. Cutoffs �12 Hz were not applied because DA
decreased with increasing cutoffs. For decoding in the time-frequency
domain, time-resolved normalized power spectra were computed ac-
cording to the procedure described above, with spectra computed
using a window of 400 ms width shifted in time steps of 80 ms. Then,
the normalized power was averaged across all frequency bins belong-
ing to a selected band.

Decoding: contralateral MEG/EEG data. MEG and EEG activity was
decoded in the time domain according to the procedure described above.
We defined a group of 20 contiguous MEG sensors covering the medial
contralateral motor cortex, i.e., approximately the same area as the EEG
electrodes. Thereby, our analyses of the contralateral MEG and EEG
activity were based on brain activity originating from approximately the
same brain area, and we used the same number of sensors in both MEG
and EEG.

Tuning characteristics. Tuning curves were calculated separately for the
low-pass filtered (3 Hz cutoff frequency) MEG signals of each MEG

Figure 1. a, Photograph of the experimental setup showing the joystick and the positioning of the subject. b, Trial sequence
with time constraints.
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sensor above motor-related areas and separately for each subject. We
distinguished four time windows (pre: �150 to �50 ms; early: 0 –100 ms;
late: 300 – 400 ms; and post: 650 –750 ms; all times relative to movement
onset). The tuning curves reflected the 3 Hz low-pass filtered MEG ac-
tivity averaged across all trials of the corresponding direction. Signifi-
cance of tuning was assessed by a one-way ANOVA. Cosine fits (Geor-
gopoulos et al., 1982) were calculated using least-square sum. The
squared correlation coefficient (r 2) between the cosine fit and the mea-
sured values was used to assess the degree of cosine tuning.

Test of significance. The binomial cumulative distribution was used to
assess the statistical significance of the decoding accuracy. With n being
the number of trials and t the number of targets, the probability to predict
the correct target at least k times by chance is calculated as follows:

P�k� � �
i	k

n � n
i � � �1

t�
i

� � t � 1

t � n�1

. (1)

We used the lowest total number of trials (n 	 233) across subjects to
obtain a statistically conservative significance level l 	 k/n valid for all
subjects.

The Wilcoxon signed-rank test was used (1) to test for statistical dif-
ferences in the decoding performance of MEG and EEG and (2) to assess
the statistical significance of the normalized power modulation in differ-
ent frequency bins. Here, for each subject separately, an n-dimensional
vector was created and used as input to the test. The vector contained n
pairwise power differences (calculated from each trial) obtained between
rest and movement.

Decoded information. For a direct comparison of our decoding results
with those obtained in other related invasive/noninvasive studies, and to
quantify the amount of information about movement direction ex-
tracted from the MEG and EEG signals, we computed the Shannon mu-
tual information (Cover and Thomas, 1991) between the decoded and
real movement directions:

DI�td;tr� � �
td�Td

�
tr�Tr

p�td,tr� � log2

p�td,tr�

p�td� � p�tr�
, (2)

where Td and Tr are the sets of decoded and real targets (movement
directions), p(td) and p(tr) the marginal probability distributions of de-
coded and real targets, and p(td,tr) the joint probability distribution of
decoded and real targets, respectively. We will refer to this measure as
decoded information (DI). It yields a lower bound (Cover and Thomas,
1991) on the mutual information between the MEG/EEG signals and the
movement directions. However, the mutual information estimated from
limited experimental data are biased (Treves and Panzeri, 1995). This
sampling bias was corrected here using bootstrap resampling (Efron and
Tibshirani, 1994).

In addition to the direct calculation of DI, a function DI(DA) can be
derived under the assumptions of (1) equal probabilities for correct pre-
dictions in each class and (2) equal distributions of false predictions
across all classes. Under these assumptions and because of

�
td�Td

�
tr�Tr

p�td,tr� � 1, (3)

the following equations hold:

p�td,tr� �
DA

100 � �Tr�
� td � tr (4)

p�td,tr� �
100 � DA

100 � ��Tr�2 � �Tr��
� td � tr (5)

p�td� �
1

�Tr�
� td (6)

p�tr� �
1

�Tr�
� tr. (7)

Finally, combining Equation 2 with Equations 4 –7 and replacing �Tr� by
100/DAchance results in the following equation:

DI�DA� �
DA

100
� log2

DA

DAchance
	 �100 � DA

100 �
� log2

100 � DA

100 � DAchance
. (8)

This function allows to calculate the dependence of DI on DA across the
whole range of DA given the above assumptions.

Results
Power and signal modulations of MEG activity
Our analysis of the MEG activity revealed clear task-related
power modulation (Fig. 2). We found significant ( p � 0.05)
power modulation between rest and movement for sensors over
motor-related areas in three distinct frequency bands: an increase
for frequencies �7 Hz (low-frequency band) and 62– 87 Hz
(high-� band) and a decrease for frequencies of 10 –30 Hz (�
band) during movement. The modulation was strongest at motor
areas.

With regard to the low-frequency band, a power increase oc-
curred bilaterally �100 ms before movement onset, spanning
from parietal to prefrontal areas, and mainly contralaterally at
motor areas during the movement, followed by a decrease
around movement end (Fig. 3a).

In the � band, the power decrease started �100 ms before
movement onset at contralateral motor areas and became bilat-
eral (almost symmetrical) at motor areas after movement onset
(Fig. 3b).

In the high-� band, an early (�150 ms before movement on-
set) contralateral prefrontal increase in power was found, fol-
lowed by an increase mainly at contralateral central motor areas
during the movement, which vanished around movement end
(Fig. 3c).

Investigating the low-pass filtered (3 Hz cutoff) magnetic field
strength directly in the time domain, we found a power increase
at the contralateral medial parietal areas at movement onset (Fig.
3d). Shortly after movement onset, this increase spread rostrally
and reached contralateral motor areas. After the movement, a
decrease was observed. This signal type is shown because, in the
end, it yielded the highest DA.

Decoding of movement direction
We decoded low-pass filtered MEG activity and the normalized
power modulations of the three aforementioned frequency bands
using signals from different groups of sensors and from different
time windows. For the low-pass filtered MEG activity, we will
focus on the 3 Hz cutoff in the following paragraphs, because
cutoff frequencies between 2 Hz and 12 Hz were tested addition-
ally, but none yielded higher DA than the 3 Hz cutoff frequency.

First, we investigated the DA that can be obtained if only the
information provided by a single sensor was used (Fig. 4a). For
the 3 Hz low-pass filtered MEG signal, a DA above chance level of
25% was gained from medial sensors reaching from ventral pari-
etal to prefrontal areas �100 ms before movement onset. Around
and after movement onset, sensors showing significant ( p �
0.001) DA cumulated above medial contralateral motor areas. A
maximum single sensor-based DA of 36% was reached for a sen-
sor located above contralateral motor-related areas. Further-
more, sensors above medial ipsilateral and contralateral prefron-
tal areas provided significant DA as well. The normalized power
modulations of the three frequency bands provided significant
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( p � 0.05) DA only for the low-frequency band (Fig. 4a). Here, a
DA of up to 30% was gained from few sensors exclusively above
contralateral motor-related areas after movement onset. No in-
formation about movement directions could be extracted from
the power modulation in the � and high-� bands.

The DA topographies shown in Figure 4a were obtained using
signals from single sensors; i.e., no correlation information was
used. To investigate the effect of local correlations on the spatial

distribution of DA, we decoded the signals of contiguous sensor
triplets and quintuplets: increased DA values with a spatiotem-
poral pattern of DA similar to that for the single sensor decoding
were found (data not shown) (results summarized in Fig. 5).

The trial-averaged 3 Hz low-pass filtered MEG activity of sin-
gle sensors was markedly different for the movements to the dif-
ferent targets (Fig. 4b). The difference was stronger for sensors
with a higher DA value.

Figure 2. Normalized power spectra averaged across all subjects, targets, and trials for each sensor from 630 ms before to 700 ms after movement onset (abscissa) and from 0.5 to 100 Hz
(ordinate) at a frequency resolution of 2.5 Hz. The sensor field covers the whole brain and was projected on a two-dimensional plane for the sake of clarity. The group of sensors above motor-related
areas is indicated by the black solid line. The dotted black line surrounds the position of the contralateral EEG and MEG sensor group. Graph in the top right corner, Normalized power modulation of
sensor * for the frequency bands �7 Hz (low-frequency band, red), 10 –30 Hz (�, blue), and 62– 87 Hz (high-�, green) along with the SEM; abscissa, time relative to movement onset in seconds.

Figure 3. Topography of activation patterns averaged across all subjects, targets, and trials around the indicated time points relative to movement onset. a– c, Power modulation in the three
frequency bands (normalized power). d, Three hertz low-pass (LP) filtered MEG activity (magnetic field strength, in fT). The go signal and movement end were approximately �240 and 500 ms,
respectively. Sensor field is shown from above (in approximation to the head, nose pointing upward); all sensors (black dots) are visible. The group of sensors above motor-related areas is
surrounded by a black line in the top left plot.
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Next, we decoded the signal components that provided signif-
icant directional information (i.e., the 3 Hz low-pass filtered ac-
tivity and the power modulation of the low-frequency band) us-
ing different groups of sensors: a region of interest defined on the
basis of the DA topographies individually for both signal compo-
nents (Fig. 4a, 3 Hz: black line in last panel; power modulation:
black line in first panel) and all sensors from contralateral, ipsi-
lateral, or bilateral motor-related areas as defined in Figures 2
(black solid line) and 3 (black line in the top left plot). The de-
coding results are summarized in Figure 5.

In general, the DA gained by decoding the 3 Hz low-pass

filtered MEG activity increased with the number of sensors used.
The highest DA on average across subjects was 67%, obtained by
using the signals of all sensors above motor-related areas from a
time window ranging from 0 to 500 ms relative to movement
onset (DA remained at this level when the activity during the 100
ms before movement onset was additionally included). For this
signal component, the DA of single subjects was in the range of
54 – 85% (Table 1, condition C1). The calculated DI was 0.63 bit
on average across all subjects, ranging from 0.27 to 1.20 bit for
individual subjects (Table 1, condition C2).

Decoding the power modulation of the low-frequency band
yielded significant ( p � 0.001) DA after movement onset if the
region of interest or all sensors above motor-related areas were
used. However, the DA for the power modulation of low-
frequency band was very low (34%) and could also not be im-
proved by varying the exact frequency range of this band (ap-
proximately the same DA for the frequency ranges �2.5 Hz and
�5 Hz). As already shown above for single sensor decoding, the
DA gained by decoding the power modulation of the � and
high-� bands never provided significant ( p � 0.05) DA, even if
the signals of multiple sensors were used.

With the 3 Hz low-pass filtered component, we assessed
whether MEG signals from a subject can be decoded if the classi-
fier was trained exclusively on data from other subjects. We tested
this by decoding each of the nine subjects using the RLDA classi-
fier trained on the data from the remaining eight subjects. The
DA was 39% on average across all subjects and for the single
subjects in the range of 35– 47% (Table 1, condition C3).

To verify that the directional information found in the MEG
can also be decoded from the EEG, we decoded the 3 Hz low-pass
filtered, contralateral MEG and EEG activity in a time window
ranging from 0 to 500 ms relative to movement onset. On average
across all subjects, the DAs obtained from the corresponding 20
EEG, 20 MEG, and 10 
 10 MEG/EEG sensors were 55, 60.2, and
59.3%, respectively (Table 1, condition C4/C6/C8), and the DIs

Figure 4. a, Topography of DA for single sensor-based decoding and different time windows. All DA values are averages across subjects. The sensor field is shown from above (in approximation
to the head, nose pointing upward); all sensors (black dots) are visible. The top three panels show the DA for the three frequency bands, and the bottom shows the DA for the 3 Hz low-pass (LP)
filtered MEG activity. Sensors showing significant DA are marked with an “x” [top three panels, 29.4% ( p � 0.05); bottom, 33.7% ( p � 0.001)]. Black lines surround selected regions of interest
(for later decoding) for the low-frequency band (first panel) and the 3 Hz LP filtered activity (last panel). b, Three hertz low-pass filtered MEG activity from two subjects along with DA provided with
each sensor (sensor locations identical for both subjects). The curves depict the trial-averaged signal for each target (blue, right; green, up; red, left; cyan, down), and the transparent color bands
depict the corresponding SEM. The DA topography in the middle is taken from a: 3 Hz LP filtered, 50 –300 ms.

Figure 5. DA (averaged across all subjects, decoded time window: 0 –500 ms) using signals
from different groups of sensors ranging from single sensor-based decoding to decoding of all
sensors above motor-related areas. The DA values for both the 3 Hz low-pass (LP) filtered MEG
activity and the three frequency bands with significant power modulations are shown. Error
bars indicate SEM. MRA, Motor-related area; ROI, regions of interest derived from the single
sensor-based decoding topographies in Figure 4a (for the 3 Hz LP filtered activity: black line in
last panel; for the relative power modulation: black line in first panel of Fig. 4a). The three
horizontal lines indicate the chance, p � 0.05, and p � 0.001 levels.
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were 0.35, 0.46, and 0.43 bit (Table 1, condition C5/C7/C9).
None of these differences was significant ( p � 0.05).

To investigate the temporal evolution of the decoding perfor-
mance, we calculated the time-resolved DA. Here, the signal,
which was decoded, was 3 Hz low-pass filtered until the end of the
corresponding decoding window. By this, we ensured that exclu-
sively data before the current time point were used. Using the
sensor configuration that provided the highest DA for MEG (i.e.,
all sensors above motor-related areas), the time-resolved DA
(Fig. 6a) averaged across all subjects (black line) revealed signif-
icant ( p � 0.05) DA 100 ms before movement onset. Using MEG
and EEG activity of sensors above contralateral motor-related
areas, the time-resolved DA (Fig. 6b) revealed significant ( p �
0.05) DA �100 ms before movement onset for MEG (red) and
MEG
EEG (blue) and around movement onset for EEG (green).
These differences in DA onset of �100 ms were significant ( p �
0.05) for EEG versus MEG and for EEG versus MEG
EEG [p �
0.05 if all 20 MEG 
 20 EEG sensors (data not shown) and
p � 0.10 if 10 MEG 
 10 EEG sensors were used]. With regard to
all signals and sensor configurations shown in Figure 6, DA in-
creased continuously up to �500 ms after movement onset,
which corresponds to the average movement end, and decreased
after that time point.

On average across all subjects, 6.3, 17.6, 35.9, and 7.6% of the

MEG sensors above motor-related areas
showed significant ( p � 0.001, one-way
ANOVA) tuning within the pre-, early-,
late-, and postmovement phase, respec-
tively. We also investigated the tuning
curves with respect to a possible cosine
tuning (Georgopoulos et al., 1982) and
found that 55.6, 40.8, 26.5, and 24.2% of
the significantly tuned MEG sensors exhib-
ited a tuning curve close to a cosine func-
tion with r 2 � 0.96. Such cosine-like tun-
ing curves might allow for generalization of
directional decoding to movement direc-
tions not contained in the training set, e.g.,
movement directions between the four di-
rections used here. Across all subjects and
movement phases, the six sensors showing
significant tuning curves most frequently
were not only located above the contralat-
eral motor area, but, as expected, were also
identical to those showing the highest sin-
gle sensor-based decoding performance
(Fig. 4a, last panel).

We further decoded the EOG signal and
found that the DA for EOG was very low (�30.7%) and not
significant ( p � 0.01) throughout the whole trial (the signifi-
cance level of p � 0.05 was crossed very briefly (for �90 ms)
around movement end).

Discussion
We showed that the direction of small hand movements can be
inferred from noninvasive MEG recordings on a single-trial basis
with a reliability of 67%. This demonstrates that different move-
ments of the same extremity yield different cortical activation
patterns at the level of neuronal mass activity. Moreover, our
equivalent results from simultaneous MEG and EEG recordings
extend the applicability of directional tuning and the center-out
paradigm from BMIs based on invasive to BMIs based on nonin-
vasive recording techniques.

Noninvasively measured brain activity related to movements
Most previous EEG, MEG, and fMRI studies investigating the
neuronal correlates of movements examined the differences in
neuronal activity associated with the use of different parts of the
body (Obermaier et al., 2001; Blankertz et al., 2003; Pfurtscheller
et al., 2003; Naeem et al., 2006) or neuronal activity associated
with one extremity but different parts of it (Deng et al., 2005).

Table 1. DA and DI values for each subject separately

Signal Condition S1 S2 S3 S4 S5 S6 S7 S8 S9 Ø

Bilateral sensors above motor-related areas
MEG C1 (DA in %) 60.2 74.0 84.9 68.1 82.6 54.0 53.6 67.5 58.3 67.0

C2 (DI in bit) 0.41 0.77 1.20 0.64 1.09 0.27 0.36 0.60 0.36 0.63
C3 (DA in %) 35.3 43.8 46.6 36.3 35.4 36.2 39.0 40.4 37.2 38.9

Contralateral sensors above motor-related areas
MEG C4 (DA in %) 53.9 65.8 77.8 63.6 77.0 51.9 51.1 54.3 46.1 60.2

C5 (DI in bit) 0.32 0.53 0.96 0.51 0.90 0.27 0.24 0.28 0.15 0.46
EEG C6 (DA in %) 53.8 61.0 66.4 69.2 49.1 49.8 50.1 48.7 46.6 55.0

C7 (DI in bit) 0.33 0.41 0.70 0.69 0.19 0.23 0.20 0.20 0.17 0.35
EEG/MEG C8 (DA in %) 52.4 63.7 76.0 64.7 67.4 49.7 57.0 54.2 48.8 59.3

C9 (DI in bit) 0.28 0.49 0.95 0.52 0.59 0.24 0.33 0.28 0.22 0.43

DA and DI for each subject Sx. Results were obtained by decoding the corresponding 3 Hz low-pass filtered signals in a time window ranging from 0 to 500 ms relative to movement onset. All but C3: classifier trained and tested within each
subject S1–S9 separately; C3: classifier trained on eight subjects and tested on the excluded subject, e.g. training on S1–S8 and decoding of S9; C4 –C7: using 20 sensors; C8, C9: using 10 EEG and 10 MEG sensors.

Figure 6. Time-resolved decoding accuracy using 3 Hz low-pass filtered signals. a, Result of decoding MEG signals from
sensors above bilateral motor areas, averaged across all subjects (black) and for each subject separately (gray). b, Results of
decoding EEG, MEG, and MEG
EEG signals from sensors above contralateral motor areas, along with corresponding SEM (trans-
parent color bands). Graphs show DA of epochs of 250 ms length immediately before the time indicated on the abscissa; temporal
resolution is 25 ms. The time points of the go signal and target reached along with SDs are indicated by gray diamonds. The three
horizontal lines indicate the chance, p � 0.05, and p � 0.001 levels.
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Here, we demonstrate that it is possible to distinguish four
brain activity patterns related to four distinct reaching move-
ments of one and the same body part on the basis of both single-
trial MEG and EEG recordings. So far, only very few MEG and
fMRI (Kelso et al., 1998; Georgopoulos et al., 2005; Schaechter et
al., 2006; Jerbi et al., 2007) and no EEG studies investigated the
neuronal coding of kinematic parameters of a single effector by
means of noninvasive recordings. Kelso et al. (1998) and Jerbi et
al. (2007) found a relationship between MEG activity and move-
ment speed but did not predict movements from neuronal activ-
ity. Georgopoulos et al. (2005) inferred movement trajectories
from the MEG, recorded while subjects continuously copied a
pentagon. Our study distinguishes from this investigation by a
different movement paradigm, simultaneous MEG and EEG re-
cordings, and an analysis of the topography of directional infor-
mation: sensors providing relevant information cumulated
above contralateral motor areas and the decoding performance
decreased with distance to this area. The early (�200 to 50 ms)
(Fig. 4a) increase of decoding performance at medial motor areas
might reflect the activation of the supplementary motor area be-
fore primary motor cortex at which the directional information
increases later (50 –300 ms) (Fig. 4a) (cf. Amo et al., 2007).

Inferring movement directions in the time domain and
comparison to other recording techniques
We gained the highest DA (67%) from the 3 Hz low-pass filtered
MEG activity at bilateral motor areas. In Figure 7, the DA and DI
for center-out movements are compared between different re-
cording techniques.

The decoding accuracies for MEG were lower but still surpris-
ingly close to those obtained from invasive recordings (Fig. 7).
For the decoded information, however, the differences between
invasive and noninvasive recordings were larger: the DI of ECoG
was nearly twice and the DI of SUA and LFP was approximately
thrice as high as for MEG. In addition, the DA for SUA (and to a
lesser extent also for LFP and ECoG) might be increased by using
additional recording sites, thanks to relatively little redundancy

between channels. Most likely, the DA for MEG/EEG will profit
less from a higher number of sensors. Based on the technologies
currently available, these results demonstrate the superiority of
invasive measurements for the development of BMIs. Neverthe-
less, our findings demonstrate that the clinically favorable non-
invasive recording techniques, along with their inherent advan-
tages, could be applied in BMIs using directional decoding.

In addition, the found DA of 67% for MEG might possibly be
increased by combining different signal components (Rickert et
al., 2005) and automatically selecting an optimal subset of sensors
(Lal et al., 2004) and/or features (Garrett et al., 2003; Dornhege et
al., 2004). Neuronal adaptation and habituation together with
automatization during BMI control can increase classification
performance further (Taylor et al., 2002; Carmena et al., 2003).
With direct cuing of the four responses required after extensive
training, components of the MEG/EEG pattern related to goal-
directed motivational factors irrelevant for the specific move-
ment direction might decrease and “pure” response-correlated
components encoding directional tuning remain (Wood and
Neal, 2007) and, hence, effectively become amplified.

A direct comparison under identical conditions (simulta-
neous recording from the same brain area) revealed that the DA
and the DI for MEG and EEG did, effectively, not differ.

Interestingly, before movement onset significant directional
information was available in the MEG but not in the EEG. Possi-
ble explanations might be the higher signal-to-noise ratio for
MEG or directionally unspecific brain activity affecting EEG
(noise contamination) but not MEG. The latter might occur if the
corresponding brain activity originates from radial sources to
which MEG is less sensitive (Hämäläinen et al., 1993).

Applying a classifier trained exclusively on data from known
subjects to a novel, unknown subject without any further adap-
tation provided significant but very low DA (39%). This under-
pins the necessity of additional training of the classifier on data
from the individual subject. In this respect, adaptive classification
algorithms (Li and Guan, 2006; Shenoy et al., 2006; Vidaurre et
al., 2006; Blumberg et al., 2007) initialized with training data
from other subjects could be beneficial.

The substantial information about movement kinematics in
the 3 Hz low-pass filtered MEG activity might reflect a general
feature of neuronal population signals as corroborated by find-
ings in LFP (Mehring et al., 2003; Rickert et al., 2005), ECoG
(Schalk et al., 2007; Pistohl et al., 2008), and MEG (Jerbi et al.,
2007) recordings. As can be seen in Figure 4b (subject 8), the 3 Hz
low-pass filtered MEG signals differ with movement direction in
peak amplitude, peak latency, and onset time of the evoked po-
tential (all these parameters can be used by the RLDA classifier).
The premovement part of this directionally sensitive signal might
be related to the Bereitschaftspotential (BP) or readiness poten-
tial (Kornhuber and Deecke, 1965; Brunia and Van Boxtel, 2000),
a term mostly used for self-paced but also for paced movements
(Rockstroh et al., 1989). Previously, it has been shown that the BP
can vary considerably depending on parameters of the movement
(Birbaumer et al., 1990), and, thus, it might also be directionally
modulated as the premovement signal observed here. Slow cor-
tical potentials such as the BP occurring before and after a motor
response consist of eight components with different neuronal
sources and latencies. The lateralized component of the BP begins
500 ms before movement onset, originates in the cerebellar-
thalamo-cortical loop [the “lateral system” of Goldberg (1985)],
and provides context dependent adjustments of movement pa-
rameters as required in this experiment.

Despite the observed modulations at parietal areas, little di-

Figure 7. Comparison of MEG, EEG, ECoG, LFP, and SUA with respect to DI about movement
direction. The dotted curve reflects the function DI(DA) valid under certain assumptions (see
Materials and Methods) and for a four-target paradigm. Decoding performances of MEG/EEG
from this study, of ECoG (T. Ball, A. Schulze-Bonhage, A. Aertsen, and C. Mehring, unpublished
observations), and of LFP and SUA (Mehring et al., 2003) are shown. DI values of LFP/SUA were
computed from DA values obtained for an eight-target center-out movement paradigm (Meh-
ring et al., 2003) by using Equation 8 (see Materials and Methods), because DA/DI values for a
four-target center-out movement were not available from the literature.
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rectional information could be extracted from MEG sensors
above this region. In contrast, previous studies obtained good
directional decoding results using SUA/LFP recorded in the pa-
rietal reach region (PRR) (Andersen et al., 2004). The following
reasons might account for this difference: First, no movement
selective visual cues were presented in our study. The PRR exhib-
its several features of a movement-related area; however, with the
PRR receiving direct visual input, directional- or target-
dependent activity in this area might only be present if visual
information about possible directions is provided. Second, the
spatial organization of directional tuning in the PRR might pre-
vent the detection of directionally dependent activity with the
weaker spatial resolution of MEG.

The movement-related MEG signal in the
time–frequency domain
We observed a power increase for low frequencies, which was also
found in LFP recordings during center-out movements (Rickert
et al., 2005). The observed decrease of � oscillations at sensori-
motor areas shortly before up to the end of the movement is
consistent with previous studies [e.g., LFP (Donoghue et al.,
1998); ECoG (Crone et al., 1998a); EEG (Pfurtscheller, 1989);
MEG (Salmelin et al., 1995)]. Furthermore, we observed a high-�
band MEG power increase during movement centered at con-
tralateral motor cortex, consistent with previous ECoG and LFP
studies (Arroyo et al., 1993; Crone et al., 1998b, 2006;
Pfurtscheller et al., 2003; Mehring et al., 2004; Rickert et al., 2005)
and a recent EEG study using visually cued finger movements
(Gonzalez et al., 2006). However, there are differences in the
exact frequency ranges in previous LFP/ECoG studies (Mehring
et al., 2004; Rickert et al., 2005) using the same paradigm (center-
out) as here and in contrast to the invasive studies, the MEG
activity investigated here did not reveal any modulation in fre-
quencies �90 Hz. A possible explanation for this effect might be
that the recording situation in noninvasive measurements resem-
bles that of a low-pass filter.

Inferring movement directions in the
time–frequency domain
Decoding the MEG power modulations of the low-frequency
band provided only little DA (34%), much less than the low-pass
filtered activity in the time domain (67%). The reason for this
difference might be the missing phase information.

Power modulations in the � and high-� bands did not allow
extracting any information about movement direction. In con-
trast, in similar studies using LFP (Rickert et al., 2005) and ECoG
(Leuthardt et al., 2004), the high-� band was informative. If the �
band modulations observed in the different studies originate at
least partially from the same neuronal sources, one reason for the
difference could be the lower signal-to-noise ratio for noninva-
sive recordings in combination with attenuated amplitudes for
higher frequencies. Another reason might be that the directional
tuning of high-frequency activity is averaged out if measured
noninvasively: if the tuning changes spatially on a small scale, it
might not be accessible anymore with the weaker spatial resolu-
tion of noninvasive recordings. In any case, the different proper-
ties of invasively and noninvasively measured � band activity
deserve further investigation.

In summary, our results show that single-trial decoding of
hand movement direction can be achieved using noninvasive
measurements of cortical activity. This indicates that also for
noninvasive BMIs, neuronal signals related to specific movement

parameters of hand control might be usable for equivalent con-
trols of an external effector.
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Vidaurre C, Schlögl A, Cabeza R, Scherer R, Pfurtscheller G (2006) A fully
on-line adaptive BCI. IEEE Trans Biomed Eng 53:1214 –1219.

Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement
signal by a noninvasive brain-computer interface in humans. Proc Natl
Acad Sci USA 101:17849 –17854.

Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based
brain-computer interface for cursor control. Electroencephalogr Clin
Neurophysiol 78:252–259.

Wood W, Neal DT (2007) A new look at habits and the habit-goal interface.
Psychol Rev 114:843– 863.

1008 • J. Neurosci., January 23, 2008 • 28(4):1000 –1008 Waldert et al. • Directional Decoding of MEG and EEG


