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Abstract

We propose a method for the time-resolved joint analysis of two related aspects of single neuron variability, the spiking irregularity measured
by the squared coefficient of variation (CV?) of the ISIs and the trial-by-trial variability of the spike count measured by the Fano factor (FF). We
provide a calibration of both estimators using the theory of renewal processes, and verify it for spike trains recorded in vitro. Both estimators
exhibit a considerable bias for short observations that count less than about 5-10 spikes on average. The practical difficulty of measuring the CV?
in rate modulated data can be overcome by a simple procedure of spike train demodulation which was tested in numerical simulations and in real
spike trains. We propose to test neuronal spike trains for deviations from the null-hypothesis FF = CV?. We show that cortical pyramidal neurons,
recorded under controlled stationary input conditions in vitro, comply with this assumption. Performing a time-resolved joint analysis of CV? and
FF of a single unit recording from the motor cortex of a behaving monkey we demonstrate how the dynamic change of their quantitative relation
can be interpreted with respect to neuron intrinsic and extrinsic factors that influence cortical variability in vivo. Finally, we discuss the effect of

several additional factors such as serial interval correlation and refractory period on the empiric relation of FF and CV?.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Variability of neural activity is apparent throughout the
central nervous system, in all types of electrophysiological
signals. In the mammalian brain, the degree of variability at
the single-neuron level increases with the stages of sensory
processing, being lowest in the periphery and highest in corti-
cal structures (Kara et al., 2000). Likewise, variability is also
lower in the motor periphery than in the cortex (Prut and
Perlmutter, 2003). Understanding the nature and the origin of
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the observed high variability in the neocortex is essential for
our understanding of the neural code used for representation
and processing of information in cortical networks (Stein et al.,
2005).

Two types of single neuron variability are usually distin-
guished, reflecting variability on different time scales. Spike
train irregularity (Holt et al., 1996; Softky and Koch, 1993; Teich
et al., 1997) refers to the random appearance of the sequence of
action potentials which is statistically expressed in the variance
and the coefficient of variation (CV) of inter-spike intervals (ISI).
It signifies intra-trial variability on a relatively short time scale,
determined by the typical IS, i.e. in the range of tens to hun-
dreds of milliseconds. By contrast, the trial-by-trial variability
is measured by the the variance and the Fano factor (FF) of the
spike count across repeated observations that may be separated
by long time intervals (Shadlen and Newsome, 1998; Teich et
al., 1997).

Here, we propose an approach to the investigation of sin-
gle neuron spike train variability that can help to distinguish
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different contributing factors to the observed single neuron vari-
ability in vivo. Central to our approach is the null-hypothesis
FF = CVz, a theoretic result for renewal models which are
briefly reviewed in the method section. We confirmed this pre-
diction for cortical pyramidal neurons in vitro in a series of
current injection experiments where we mimicked stochastic
inputs assuming stationary network conditions. For variability
studies in vivo we suggest to jointly analyse both aspects of
variability in a time-resolved manner to uncover task-related
modulations and to detect periods of significant deviation from
the equality of FF and CV?2. This is shown for an example of
single-unit recordings from motor-cortical neurons in a behav-
ing moneky. In the discussion we resume potential interpretation
for such deviation and discuss sources for the observed high
variability of cortical activity in vivo. Preliminary results of
this study were presented in abstract form (Nawrot et al., 2001;
Rotter et al., 2005).

2. Methods
2.1. Point process theory

We briefly review several aspects of point process theory that
are relevant for the methods and introduce the concept of opera-
tional time that provides the means for the analysis of spike train
irregularity in rate-modulated pocesses.

2.1.1. Renewal point processes

Stochastic point processes are frequently employed as mathe-
matical models for neuronal spiking (e.g. Johnson, 1996; Perkel
et al., 1967a, b; Tuckwell, 1988). Of particular interest is the
class of renewal processes (Cox, 1962). Here, the intervals X;
between successive points (i.e. spikes) are independent and
identically distributed (i.i.d.) with a fixed interval distribution
f(x), implying a constant point process intensity, or spike rate.
Renewal models of spiking can be defined by specifying an
arbitrary interval distribution. One prominent example is the
Poisson process. Its points occur at constant rate in a completely
random fashion and independent of each other. It exhibits an
exponential interval distribution, while the number of points
encountered during a finite observation interval is Poisson dis-
tributed. Another prominent example for a renewal process is
the spiking of an integrate-and-fire model neuron with station-
ary Poissonian inputs where the inter-spike interval distribution
depends both on the detailed biophysical properties of the model
and on the synaptic input it receives (Burkitt, 2006; Lindner,
2004; Tuckwell, 1988).

The experimental setting in which neuronal activity is
recorded in behaving animals typically involves repeated trials.
The respective observation period is usually aligned to a tempo-
ral marker, e.g. the presentation of a stimulus or the occurrence
of a behavioral event. Thus, the start of the observation interval
generally represents a ‘random point’ with respect to neuronal
spiking, and generally does not coincide with a spike event.
For a renewal process, this implies that the time X¢ up to the
first observed event has a probability density function (p.d.f.)

F(x)/ u, where

Fx) = Pr(X > x) = /00 f(u)du

is the survivor function, and w is the mean interval given by first
moment of f(x). All other intervals X1, X», ...have p.d.f. f(x).
If these criterions are met we speak of an equilibrium renewal
process.

In special cases, however, the start of observation in each
trial might coincide with a spike event at time ¢ = 0 (see Sec-
tion 4). Then one speaks of an ordinary renewal process (Cox,
1962; Cox and Isham, 1980; Tuckwell, 1988). Throughout this
manuscript we refer to the equilibrium situation when using the
term ‘renewal process’ without further specification.

2.1.2. Gamma processes

Gamma processes are closely related to the Poisson process,
with an extra parameter that allows for the adjustment of reg-
ularity of its pulse trains. For this reason, they have frequently
been used as a model for neuronal spiking (Baker and Gerstein,
2001; Nawrot et al., 2003a; Pauluis and Baker, 2000; Reich et
al., 1998; Stein, 1965; Tuckwell, 1988). In a number of studies,
the gamma process was fitted to experimental data and com-
pared to other models (Baker and Lemon, 2000; Brown et al.,
2001; Nawrot, 2003; Teich et al., 1997). They typically feature
a relative refractory period of low spike probability following
each event (cf. Fig. 3). However, since the p.d.f. of a gamma dis-
tribution is strictly positive for all x > 0, it does not incorporate
an absolute refractory period during which the spike probability
is zero.

The gamma process has the interval density

1
—p(px)* e, x>0,

I'(a)
0, x <0,

fa,p(x) =

where I" denotes the gamma function, and @ > 0 and p > 0 are
its two parameters. The mean interval p and associated rate A
of the process are given by

o 1 P
u=E[X]=— and A=—=—.

P nooa

The variance of the interval distribution is given by

Var[X] = —.
o
The squared coefficient of variation of the inter-spike interval
distribution

_ Var[ X] _ 1

CV2[X]

T EXP «

specifies the relative width of the p.d.f. and, therefore, was used
to parameterize the irregularity of the process. The Poisson pro-
cess represents the special case o = 1, for which the p.d.f. is the
exponential distribution. For o > 1, the process is more regu-
lar, while for 0 < « < 1 the process is more irregular than the
Poisson process, and events appear clustered in time.
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In this manuscript we employed equilibrium gamma pro-
cesses to investigate and calibrate statistical measures of interval
and counting statistics both by means of analytical treatment
and numerical simulations. To ensure equilibrium conditions
in numerical simulations of gamma processes we allowed for
an appropriate warm-up by starting the simulation some time
before the actual measurement began. Alternatively, we started
our simulation by drawing the first interval X from the appropri-
ate length biased distribution F ,(x)/u. This was conveniently
achieved by a product U Y of two independent random numbers,
where Yhad p.d.f. fy11,,(y), and U was uniformly distributed on
[0, 1]. All numerical simulations were performed with Matlab
(The MathWorks, Inc.). Parts of the analytical calculations were
performed with the help of Mathematica (Wolfram Research,
Inc.). We provide documented Matlab code for some of the meth-
ods described below within the framework of the FIND toolbox
(Meier et al., 2007; http://find.bcen.uni-freiburg.de).

2.1.3. Operational time and rate modulation

Neurons observed in a living organism typically exhibit tem-
poral changes of their firing rates in response to sensory input, or
in relation to behavior. This important feature of neuronal pro-
cessing can be captured by rate modulated renewal processes,
where the process intensity is no longer constant but defined
through a (deterministic) function of time. We start with the
well-known concept of a non-homogenous Poisson process (Cox
and Isham, 1980; Kass and Ventura, 2001; Tuckwell, 1988) for
which the intensity is no longer constant in time, but has a time
course A(f) > 0. The number N of events in repeated observa-
tions during a given interval (a, b] is Poisson distributed

1 b —fh)u()d
Hw=m=z;/xwm e S POY —0,1,2,..)
s Ja
(1)

Operational time ¢’ is defined by the non-linear transforma-
tion of real time ¢ as

t
/:A@:/x@m, )
0

which is one-to-one if A(#) is strictly positive (Gestri and
Petracchi, 1970). In case of a constant intensity this simplifies
to a multiplication of the event times with the intensity. Evi-
dently, in operational time, which is dimensionless, the process
is stationary with unit rate and has a mean interval ;' = 1. The
expected number of events in (a, b] then amounts to

b
ﬂmzy—dz/xmm. 3)

The concept of operational time is also of practical use in sim-
ulating a non-homogenous Poisson process. First, a stationary
realization 1] < t}--- < )y is produced in operational time with
intervals X; = t;, | — t; drawn from the exponential distribution
with unit mean. In a second step, the inverse transformation is
applied to each single event of the realization:

ANy = min{t|A@) > 7). (4)
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Fig. 1. Transformation of time. A renewal process of unit rate is simulated in
operational time (vertical panel). A spike event at time ¢ is translated into a
spike event in real time 7 by the time transformation (center panel, Eq. (2)) given
by the integral of the rate function (top panel). Conversely, a rate modulated
realization of a point process may be demodulated by mapping an event in real
time 7 onto the corresponding event in operational time ¢’

A similar procedure is applied to transform uniform random
variables to variables with arbitrary distributions (see Ripley,
1987). The rate modulated, or non-homogenous renewal pro-
cess generalizes this concept (Baker and Lemon, 2000; Barbieri
et al., 2001; Berry and Meister, 1998; Brown et al., 2001; Oata,
1988; Oram et al., 1999; Reich et al., 1998; Truccolo et al.,
2005). Let f(x') denote the p.d.f. for an arbitrary interval dis-
tribution in operational time ¢, and let A(¢) be the rate profile
of the process in real time. Again we first generate a realiza-
tion in operational time on the basis of f(x") and then ‘warp’
the time axis according to the inverse transformation given by
Eq. (4) (Fig. 1). Generally, such transformation of independent
stochastic variables results again in an independent set of vari-
ables. By construction, intervals are still mutually independent
but no longer identically distributed. In fact, the waiting time
distribution of the next upcoming event depends on the time
course of the rate function since the most recent event. Note that
falsely assuming identically distributed intervals (i.e. constant
rate) when analyzing the resulting sequence of intervals would
result in serial correlations among intervals which are, in fact, a
reflection of the time-varying rate function.

Conversely, given such rate-modulated renewal process
with a time-varying rate function A(f) (e.g. estimated by a
peri-stimulus time histogram) we can ‘un-warp’ real time to
operational time by applying the transformation given by Eq.
(2). As we will show, this latter procedure can be successfully
employed to obtain estimates of interval statistics from neuronal
responses with non-stationary firing rates.
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Note that our approach is to estimate the trial-averaged so-
called unconditional rate function from repeated trials without
making any assumptions about the spiking model before we
rescale the time axis. In a second step we then estimate statisti-
cal parameters from the transformed spike trains. A somewhat
different approach has been suggested by Barbieri et al. (2001)
and Brown et al. (2001) where the conditional intensity func-
tion is estimated directly from single trial spike data. If this
model is accurate, the respective transformation of the individ-
ual spike train will result in a homogenous Poisson process.
Spike train variability may then be computed for the estimated
model (Barbieri et al., 2001; Brown et al., 2001; Wiener, 2003).

2.1.4. Empirical measures of irregularity and variability

Consider an observation interval (a, b] with a < b and dura-
tionT =b—a.Lleta <t <t <...<ty <bdenote a train
of N spikes that occurred during one particular observation.
Then, X1, X2, ..., Xy—1 is the sequence of the N — 1 observed
inter-spike intervals X; = ;41 — t;. Multiple independent repe-
titions of the same experiment result in an ensemble of spike
trains, each with its count of spikes N;. Irregular spiking is
expressed by a variable length of the inter-spike interval X. As a
quantitative measure of this irregularity we employ the squared
coefficient of variation of the ISIs gathered during observations
of length T

2 Var[ X]
©EXP

Variability of activity across multiple observations or
repeated trials expresses itself by a variable spike count N. We
use the Fano factor (Fano, 1947):

Var[N]
F =
E[N]

to quantify the normalized count variance across repeated obser-
vations of length 7. The CV? measures neuronal variability
of intervals collected within observation on a relatively short
time scale which is comparable to the length of the typical ISI.
The Fano factor captures variability on a considerably longer
time scale. It refers to spike count observations of length 7 and
measures the spread of this number across repeated observation
trials, which may be separated by pauses that are large compared
to T. The quantities CVZ2and FF, however, are by no means inde-
pendent variables. Under stationary conditions, a given degree of
spike timing irregularity (short-term) implies a certain amount
of spike count variability (long-term), and vice versa. In par-
ticular, for a stationary renewal process in equilibrium it holds
that

FF = CV? 5)

for the limit of long observations (Cox, 1962; Cox and Lewis,
1966; Ratnam and Nelson, 2000; Tuckwell, 1988). A devia-
tion from this equality indicates a deviation from the stationary
renewal model which cannot be easily detected if only one aspect
of variability is analyzed alone. We will show that in experimen-
tal spike trains it can thus be very useful to compare interval and
count variability as estimated in the same observation window.

The theoretical relation of interval and count variability in point
process theory marks the major advantage of the CV? over other
measures of irregularity.

2.2. Invitro current injection experiments

We performed a series of in vitro experiments where we stim-
ulated regular spiking layer 5 pyramidal neurons of neocortex by
means of somatic injection of fluctuating currents that mimicked
synaptic input from a large number of presynaptic neurons.

Acute slices of 400 wm thickness were prepared from sen-
sorimotor cortex of rats (Long-Evans, P15-P28) as described
previously (Boucsein et al., 2005). Whole cell patch recordings
(pipette resistance 2—-6 M2) were made from layer 5 pyra-
midal neurons which were identified visually using infrared
video microscopy (Dodt and Zieglginsberger, 1990). Current
control signals were sampled at 20 kHz and low-pass fil-
tered at 3—10kHz before application. Voltage recordings were
low-pass filtered at 3-5kHz using an Axoclamp 2B amplifier
(Axon Instruments, Foster City, CA), and sampled at 10-20 kHz
using a CED-1401 Plus device (Cambridge Electronic Design,
Cambridge, UK). Only regular spiking neurons (n = 17) were
considered for analysis.

Synaptic input currents were synthesized as a superposi-
tion of excitatory and inhibitory postsynaptic currents (EPSCs
and IPSCs). Single PSCs were modeled as decaying expo-
nentials with amplitudes of +30 pA and decay time constants
of 3ms or 6 ms for EPSCs and IPSCs. The total charge car-
ried by a single PSC thus amounted to 0.09 and —0.18 pC,
respectively. In a first set of experiments we injected traces of
fluctuating input current with a total duration of either 300s
or 1200s. We assumed independent pools of excitatory and
inhibitory presynaptic neurons, each firing with a stationary rate
and obeying Poissonian statistics. After convolution with the
EPSC and IPSC waveform, respectively, the resulting excita-
tory and inhibitory shotnoise currents were added, yielding a
single current trace (Fig. 2a). In the standard protocol, excita-
tion was counterbalanced by 50% inhibition, leading to a ratio
of mean total inhibition to mean total excitation of r; = 0.5
(Stevens and Zador, 1998). In an alternative protocol we assumed
purely excitatory input (r; = 0). The net depolarizing input
current was calibrated such that Iney = Iexc + linh =100 pA.
Thus, for r; = 0.5 input rates amounted to about 2000 exci-
tatory and 500 inhibitory spikes per second. At the beginning of
each recording we adjusted the effective current amplitude for
each individual neuron to yield comparable sustained response
spike rates in the range of 4-14 spikes/s (cf. Fig. 2b). Before
current injection the neurons did not show spontaneous spik-
ing due to the limited spontaneous network input in the slice
preparation. Therefore, the first 50 s of spiking activity follow-
ing the onset of current injection were discarded from analysis,
allowing for a ‘warm-up’ time that should allow the neuron to
adapt to the increased input and to settle in a renewed state of
equilibrium.

In a second set of experiments, the injected synthetic currents
reflected a defined temporal modulation of the synaptic input.
We constructed 20 trials of 5s length each. Background input
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Fig. 2. Noise current injection. (a) Excitatory (top) and inhibitory (bottom)
presynaptic events were generated as independent Poisson processes. Each event
contributed a single EPSC or IPSC to the total current (black curve), carrying
a net charge of 0.09 and —0.18 pQ, respectively. (b) Membrane potential of a
layer 5 pyramidal cell (top) measured during the injection of a fluctuating current
(bottom) that replaced excitatory and inhibitory synaptic input.

was modeled as stationary excitatory and inhibitory Poisson
processes with inhibition ratio of r; = 0.5 and net background
current of Iy = 200 pA, equivalent to excitatory and inhibitory
rates of about 4000 and 1000 spikes/s, respectively. In each trial
we added to this a bell-shaped temporal modulation of the exci-
tatory input rate before realizing and convolving the spike trains
with the EPSC kernel. We chose a Gaussian profile with a latency
of 2.5 s, amplitude 200 pA and standard width of either 200 or
300 ms. These trials were interlaced with 20 control trials of
identical length that did not exhibit any temporal modulation of
the input. All trials were then concatenated, yielding a single
long current trace of 200 s duration. Again, this was prepended
by a warm-up period (100 s).

2.3. Monkey experiment

After the monkey had successfully learned the task (> 85%
correct performance; see Grammont and Riehle, 2003), a cylin-
drical stainless steel recording chamber (inner diameter: 15 mm)
was implanted above the primary motor cortex under asep-
tic conditions and general halothane anesthesia (< 2.5% in
air). A stainless steel T-bar was cemented to the skull to
fixate the animal’s head during recording sessions. A multi-
electrode microdrive (Reitbock system, Thomas Recording,
Germany) was used to transdurally insert seven quartz-glass

insulated platinum—tungsten electrodes (outer diameter: 80pum,
impedance: 2-5MQ at 1 kHz). The electrodes were arranged
in a circle, one in the middle and 6 around it (equally spaced
at 330pm). From each electrode, electrical signals were ampli-
fied and band-pass filtered (0.3-10kHz). Action potentials of
one single neuron per electrode were then isolated by using a
window discriminator. Neuronal signals along with behavioral
events (trial start and end, target information, reaction and move-
ment times, reward, errors) were stored for off-line analysis with
a time resolution of 1 kHz.

3. Results
3.1. Bias and variance of estimation

3.1.1. Spike train irregularity

Empirical estimates of inter-spike interval statistics depend
on the length of the observation. Suppose an equilibrium renewal
process with interval density f(x) is observed over a finite time
interval (a, b] of duration T = b — a. Evidently, we can only
observe intervals X that are shorter than the observation interval
T,ie. jAf(x) = 0 for x > T. On the other hand, the encounter of
very short intervals x < T is essentially unaffected by the finite-
length observation window. This effect is commonly known as
right-censoring (e.g. Wiener, 2003). We give here an approxi-
mate expression for the interval distribution 7 (x) corresponding
to this experiment. For all intervals x € (0, T), the likelihood of
their observation is proportional to T — x, the ‘free space’ left
in the observation window. This leads to the expression:

1 _
}(x):{" (T —x) f(x), for xe[0,T], ©

0, otherwise,

where

T
?72/0 (T =) f(s)ds

is a normalization constant. If w is the mean interval, n
approaches T — u for large observation windows 7 > .

In Fig. 3a we compared the full analytic gamma distribution
f(x) of order o« = 2.8 (light gray) with the analytically derived
distribution }‘(x) based on observations within an interval of
length T = 1.5 (dark gray). Fig. 3b shows an ISI histogram
extracted from neuronal spike trains measured in vitro. The full
distribution (light gray) was sampled from a very long record
comprising 4181 intervals in total. Sampling the same spike train
by using short observation intervals of length T’ = 1.5 in oper-
ational time shows the same effect as for the gamma model: The
resulting interval distribution is squeezed, and both its mean and
its variance are reduced.

The distortion of the ISI distribution is more pronounced for
shorter observations. Conversely, for a fixed observation length
T, the effect becomes stronger for a larger mean interval w or,
equivalently, for a lower spike rate. According to Eq. (6), we
can partially correct for the introduced distortion by multiply-
ing }‘(x) with 1/(T — x) on the interval [0, T') (red curves in
Fig. 3). This correction allows us to fit empirical data to a model
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gamma process in vitro

p.d.f.

0 IS 3 O  IsI(ms) 990

(operational time) (real time)

Fig. 3. Inter-spike interval distribution for finite observation time. Analytical
and simulated distributions for a gamma-process (left) and empirical distribu-
tions from a layer 5 pyramidal neuron recorded in vitro (right). The light gray
histogram in the left panel displays the probability density f(x) constructed
from 103 intervals randomly drawn from a gamma distribution (o = 2.8). The
dark gray histogram shows the modified distribution 7 (x) for a finite observation
interval of length 1.5 in operational time. Solid lines show the corresponding
analytical results (Egs. (3) and (6)). The gamma order of 2.8 was estimated
as @ = 1/CV? from the full distribution in vitro (light gray histogram, right),
constructed from 4181 intervals recorded during 1150 s. Short observations of
length 415 ms (1.5 times the mean interval length) yielded the dark gray in vitro
histogram.

distribution on the restricted interval [0, T') and, for instance, to
extract the order of a gamma model. It does not, however, allow
for an unbiased ‘model-free’ estimation of mean, variance and
squared coefficient of variation.

We calibrated the influence of the observation length 7 on
the estimated values of mean interval, variance and CV? for
gamma processes of various orders. Fig. 4, left panels, shows the
analytic results (gray lines) which were confirmed by numeric
simulations (dotted lines). For increasing width of the analysis
window, the CV? approaches the asymptotic value (Cox, 1962;
Cox and Lewis, 1966):

ove =1 @)
®

In the case of a Poisson process (dashed gray line) the
curve saturates beyond 7" = 10, i.e. for an expected spike count
of about 10 within the analysis window (Eq. (3)). The more
regular processes (o > 1) reach the asymptotic level faster,
while the more irregular processes (o« < 1) approach it more
slowly.

For experimental spike trains recorded under stationary input
conditions (see Section 2) we observed the same general bias
with respect to the length of the observation interval. Fig. 4, right
panels, shows the data from five neurons. All neurons exhibited
spiking which was more regular than Poisson, comparable to a
gamma process of order 2—4.

Estimates of spike train irregularity from finite length experi-
mental observations (squared coefficient of variation of the ISIs)
suffer from a general tendency to under-estimate its value. One
should use ‘long enough’ observation windows T > u to avoid
a considerable bias. Our results suggest to use windows that
comprise at least 5-10 spikes. For any specific set of experi-
mental data, information can be gained from calibration curves
as shown in Fig. 4, which depict the dependence of the bias on
observation time.

o

o=0.25

gamma process in vitro
1 o=4
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C
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Fig. 4. Dependence of interval statistics on observation length. All times are
specified in operational time. For gamma processes (left), all three statistical
measures of mean interval 11 (top), variance of intervals o (middle), and squared
coefficient of variation CV? (bottom) show a monotonic dependence on the width
T’ of the analysis window. Shown are the analytic (gray lines) and simulation
(thin black lines) results for gamma processes of order « = 0.25, 0.5, 1, 2, 4. In
the right panels we show the empiric results from five pyramidal neurons that
were stimulated with mixed excitatory/inhibitory shotnoise currents. The more
irregular the process is, the more slowly the CV?2 approaches the asymptotic limit
of 1/« for T" — oo. The Poisson process (dashed gray line) saturates at about
T’ = 10. For stationary input the cortical neurons in vitro typically exhibited a
more regular spiking than a Poisson process. The curves saturate for about 5-7
units of operational time.

3.1.2. Spike count variability

Count variance and the Fano factor are also subject to an
estimation bias which depends on the length 7 of the observation
interval. We give here an analytic expression for this dependency.
Let

(1) =) 3 —1)

denote a (random) spike train with spikes at times #;. We assume
that the generating process is stationary and has a finite rate

Ex()] =1 = l < 00.
"
Let

T
Nr = / x(¢)drt
0
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denote the number of events in (0, 7']. We then have, by linearity
of the expectation:

T
E[N7] = / Elx(H)]dt = A T, (8)
0

Similarly, writing ¥(¢) = x(¢#) — A, we obtain

Var[N7] = E[(Ny — A T)?]

o] ([ o)
o] ([ o) ([ )
)

T T
= / / E[%(t) X(w)] dt, du
0 0

T T
= / / Cov[x(t), x(u)] dt du.
0 0

Since the process is stationary, its auto-covariance will
depend only on the time lag, and not on the time of its evaluation:

2

=FE

Cov[x(t + A), x(£)] = yxx(A).

The above double integral can be simplified by the substitu-
tion A =t —u and s = (r 4+ u)/2, yielding

T (T—|A)2
Var[Nr] = / / Yex(A)dsdA
-1 J1A/2|

T
_ /T[T— Al ya(4) dA. ©)

Let f(¢) be the p.d.f. of the ISIs, which in the case of a renewal
process are independent and identically distributed. Let © and
o2 denote their mean and variance, respectively. Let further f;.(7)
denote the p.d.f. of an r-fold sum of independent intervals, given
by the convolution:

Jr(0) = (f - xf)@).
%,_/
r-times

We define fy(¢) = 6(¢). The auto-covariance of the process is
then given by

1 & 1
y(A) = Covlx(t + 4), x(0] = — > f(|A) — —.
[ 2

Thus, for any given renewal process specified by its ISI dis-
tribution, we are now in the position to (numerically) compute
the explicit dependence of the count variance and, therefore, of
the Fano factor on the observation length 7.

In the special case of a Poisson process, the counts are Poisson
distributed for all values of 7. The count variance is then equal
to the mean count, and thus the Poisson process has Fano factor

gamma process in vitro
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Fig. 5. Dependence of count statistics on observation length. (Left) The gray
lines indicate the analytic solutions for the gamma process (o« = 0.25, 0.5, 1, 2,
4, top to bottom), the thin black lines show the corresponding simulation results.
The variance of the Poisson process (gray dashed line) is equal to the expected
mean count corresponding to the operational time on the abscissa Eq. (2). The
Fano factor of the Poisson process is equal to 1, irrespective of the observation
length 7'. For short observation intervals (7" — 0), the estimation tends to
unity, irrespective of a. For large 77, the Fano factor monotonically approaches
the asymptotic value of 1/, saturating for all gamma orders at about 7/ = 10.
(Right) Calibration for the same five recordings as presented in Fig. 4. The count
variance of the neuronal process exhibits a behavior that is very similar to the
more regular point processes with gamma orders o > 2.

FF = 1, independently of the observation length. For general
renewal processes, the situation is different. Only in the limit of
long observations, one has (Cox, 1962)

02
Var[Nr]~— T, (10)
o

which, together with Eq. (8), leads to the equality in Eq. (5).

In Fig. 5, left panels, we show the estimation bias for the
count variance and the Fano factor for gamma processes of vari-
ous orders «, as a function of observation length 7" in operational
time. In addition to the analytically obtained curves (gray lines;
based on Eq. (9)) we performed numerical simulations (thin
black lines), calculating the mean of 10* independent obser-
vations. For increasing window size T’, the function of count
variance quickly approached the linear relation given by Eq.
(10), resulting in straight lines with slope 1 on the double-
logarithmic scale for both the analytical solution and numerical
simulations. The Fano factor saturated at the asymptotic level
of 1/a at T" ~ 10, independently of the gamma order. Note that
for shorter intervals the Fano factor tends to unity, irrespective
of the gamma order (Ratnam and Nelson, 2000). Thus, for pro-
cesses more regular than the Poisson process (« > 1) there is
a tendency to over-estimate the count variability, for processes
less regular than the Poisson process (« < 1) the opposite is the
case. By contrast, the bias in estimating the interval irregularity
is always negative (Fig. 4).

In the right panels of Fig. 5 we investigated how the count
variance and the Fano factor depend on observation time
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Fig. 6. Variance of estimation. The calibration is based on simulated ensembles
of gamma processes. The standard deviation of estimating CV? (top) and FF (bot-
tom) is approximately inversely proportional to the gamma order «. Increasing
the observation length T’ increases the average number of ISIs and, therefore,
decreases the standard deviation of the CV?2 estimator (top left), but does not
influence the reliability of the FF estimator (bottom left). With an increasing
number of trials N (right panels), the standard deviation decreases as 1/+/N for
both estimators. The estimation error is generally smaller for the CV? (top) than
for the FF (bottom). In the left panels we used a fixed N = 100, in the right
panels we used a fixed window width 77 = 100.

in cortical pyramidal neurons. As for the CVZ, all neurons
behaved similar to a gamma process of order 2—4 and we may
again obtain a reasonable good estimate for observation inter-
vals that show an average spike count on the order of 5-10
spikes.

For all stochastic point processes — except for the homoge-
nous Poisson process, but including the Poisson processes with
a dead-time — the Fano factor exhibits a significant bias for
short observations. Under mild regularity assumptions, a value
of FF = 1 is approached for 7" — 0.

Note, that the dependence of FF on the observation length
is not necessarily monotonic (e.g. for gamma processes of high
order, data not shown). Several properties of mathematical or
operationally defined point processes, including biophysically
inspired neuron models, have a bearing on this dependence,
for example the feature of an absolute refractory period (see
Section 4).

3.1.3. Variance of the estimator

So far we calibrated the estimators for CV> and FF only with
respect to their expectation value. We now focus on the variance
of the estimator itself. In practical terms this is of interest because
we want to have some idea about how reliable our estimates of
interval or count variability can be. For this we repeatedly sim-
ulated spike train ensembles of a gamma process and estimated
FF and CVZ2. In Fig. 6, the standard deviation of the estimates
multiplied with the gamma order « is plotted against the window
width 7" in operational time (left) and number of trials N (right).
As a first result, it turned out that the error in estimating both

variables, CV? as well as FF, scales approximately linearly with
the inverse gamma order 1*. Thus, processes that are inherently
more variable due to their stochastic nature imply a larger vari-
ance in estimating that variability. A second result evident from
Fig. 6 is the generally lower error associated with the estimation
of CV? as compared to the FF. This is easily explained by the
fact that we pool ISIs from all trials, which results in samples
that are much larger than that of N spike counts measured from
N repeated trials (see also Section 4).

When increasing the length T’ of the observation window,
the total number of intervals in all trials increases. This larger
sample size resulted in a reduced uncertainty in estimating CV2.
The error in FF, however, turned out to be independent of 7’
(within the range tested) as the number of counting samples N did
not increase with observation time. As expected, an increasing
number of trials equally reduced the estimation error of both FF
and CV2.

3.2. Measuring irregularity in presence of rate modulation

In practice, a clean measurement of spike train irregularity
using the squared coefficient of variation CV? is often impaired
by dynamic changes of the neuron’s firing rate influencing the
length of individual inter-spike intervals. This typically results in
some extra dispersion of the ISI distribution and, consequently,
in an over-estimation of the CVZ. By contrast, the distribution of
spike counts (and, hence, the Fano factor FF) remains unaffected
by rate modulations that repeat identically in each single trial.
The obvious reason is that only the number, but not the individual
timings of spikes enter the spike count statistics.

To quantify irregularity despite a temporal modulation of the
neuron’s firing rate we measured the CV? in operational time.
Doing so requires two additional steps of analysis. First, we
must obtain an empirical estimate A(f) of the underlying firing
rate profile. Second, we need to transform time ¢ — ¢’ accord-
ing to the empirical rate function as sketched in Fig. 1. Only
then can we measure the variability of the intervals in oper-
ational time. The reliable estimation of the deterministic rate
function is critical. After superimposing all spike trains of a
particular trial ensemble, we used the method of kernel con-
volution (Nawrot et al., 1999; Parzen, 1962) with a symmetric
kernel of triangular shape. The most important parameter of this
method is the width of the kernel, which defines the temporal
resolution of the estimate. To determine the optimal kernel width
we used the iterative method described in Nawrot et al. (1999),
an alternative method was suggested by Paulin and Hoffman
(2001).

We tested the proposed procedure and assessed the quality
of the resulting estimate of CV? using numerical simulations
of rate modulated gamma processes. As intensity function A(z)
we chose a Gaussian response profile, superimposed on a sta-
tionary background, as depicted by the gray curve in Fig. 7b.
Technically, we first simulated a gamma process of order o« = 4
in operational time, i.e. with constant unit rate under equilibrium
conditions. Fig. 7a shows an ensemble of 20 repeated realiza-
tions in operational time and the respective empirical interval
distribution with CV? = 0.21. We then transformed the spike
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Fig. 7. Spike time irregularity quantified in operational time. (a) Raster diagram
of 20 realizations of a gamma process (¢ = 4) simulated in operational time
(left). The ISI distribution (right) is displayed in units of the mean interval p. (b)
Spike density in real time follows the deterministic rate function (gray curve).
The ISI distribution (right) is broadened by the non-stationarity of rate, leading
to an over-estimation of the ‘stationary’ value of CV2. (c) Spike trains after
de-modulation according to the empirical rate estimate (black curve in (b)). The
demodulated ISIs (right) match well the gamma distribution in (a). (d) In the
left panel, the estimates of CV?2 for true (open circles) and empirical (filled
circles) operational time match well, as shown for 10 repeated simulations.
By contrast, the modulated spike trains (open squares) consistently lead to a
considerable over-estimation. This result is independent of the number of trials
(middle panel). The positive estimation bias introduced by rate modulation is
stronger for more regular processes (right).

trains to real time according to the intensity function A(#), as
described by Eq. (4) and shown in Fig. 1.

The resulting set of 20 realizations is shown in the lower panel
of Fig. 7b. Due to the temporal modulation of the firing rate we
obtained an increased estimate of the irregularity CV? = 0.54
in real time, which no longer reflected the imposed value of
the underlying point process. To correct for this problem, we
first estimated the rate function A(f) by averaging over trials as
described above. Subsequent transformation from real time to
estimated operational time resulted in the spike train ensem-
ble shown in Fig. 7c. The measured value of CV? = 0.21 was
close to the correct value of the underlying stationary gamma
process displayed in Fig. 7a. The number of trials entering the
rate profile estimate did not significantly affect the outcome
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Fig. 8. De-modulation of spike trains. (a) Action potentials of one pyramidal
neuron measured during 20 experimental control trials (stationary input condi-
tion) displayed in operational time. (b) The estimated rate function (1) (black
curve) from 20 spike trains recorded during test trials reflect the modulation of
excitatory shotnoise input according to a Gaussian profile with 200 ms standard
width. (¢) Same spike train ensemble as in (b) after de-modulation of time using
the transformation ¢ + ¢’ (Eq. (2), Fig. 1). (d) Estimated cumulative distribu-
tion functions (cdf) of ISIs relative to the mean interval p for control (blue), test
(black) and de-modulated (red). (e) Q-Q plots of cumulative ISI distributions
for test vs. control (black) and de-modulated vs. control (red). Colored values
represent the 5%—-95% inter-quantile range, gray values are outside this range.
Repetition of the same experiment for 10 additional neurons for a modulation
of standard width (f) 200 ms, and (g) 300 ms confirmed the good agreement
of estimated CV? in the control (open circles) and de-modulated test condition
(filled circles). Open squares represent the rate modulated test condition.

of this procedure, as shown in the middle panel of Fig. 7d.
We also verified the excellent performance of this procedure
for processes of different gamma orders « ranging from 0.5 to
8, as depicted in the right panel of Fig. 7d. We further tested
the suggested procedure of measuring CV? in rate modulated
spike trains recorded from cortical pyramidal cells in vitro.
As control condition we chose stationary shotnoise currents as
input. The output rate of the neuron was constant, as shown
in Fig. 8a. The operational time axis was scaled to unit rate,
using the number of spikes during the observation interval (4 s)
averaged across all trials. The resulting ISI distribution yielded
CV? = 0.12. In the test condition, the neurons were stimulated
with non-stationary shotnoise, where the excitatory component
was enhanced by an extra Gaussian profile while the inhibitory
input was unchanged with respect to the control condition (see
Section 2). The spike trains extracted from 20 repeated measure-
ments in one cell are shown in Fig. 8b. The ISI distribution of
the non-stationary spike trains yielded CV> = 0.31, represent-
ing an increase of the irregularity by a factor close to 3 with
respect to the control condition. De-modulation of the spike
trains based on an estimate of the rate function A(¢) resulted in
a spike train ensemble of constant rate (Fig. 8c) and an ISI dis-
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tribution with CV? = 0.11, in good agreement with the control
condition.

In Fig. 8d we show the cumulative ISI distribution of the
test (black), the control (blue), and the de-modulated (red) con-
dition in operational time. The latter two match closely. In the
quantile—quantile (Q- Q) plot (Barbieri et al., 2001; Brown et al.,
2001) in Fig. 8e we scattered the cumulative ISI distributions of
the test condition against the control condition (red curve). The
resulting curve coincides well with the diagonal, indicating very
good agreement between the reconstructed and the true ISI dis-
tribution. Repetition of this experiment in 10 different neurons
with either a Gaussian input profile of standard width 200 ms
(N =5, Fig. 8f) or 300ms (N =5, Fig. 8g) yielded equally
good results.

A certain minimum number of independent trials is required
to obtain a reliable estimate of the unconditional rate function.
In addition, the process under observation must be in equilib-
rium, a requirement met in our simulations as well as in our
in vitro experiments (see Section 4). In practice, due to time
limitations in the experiments, the number of trials is typi-
cally of the order of only a few trials up to several hundreds,
depending on the experiment design. In Fig. 7d we demon-
strated that, for the tested gamma process and for the spike
rates imposed, the value of CV? can be safely estimated from
a minimum of 10 trials. Generally, however, a low number of
trials will yield a low total number of spikes. This has the same
effect as low firing rates: The temporal resolution of the rate
estimate is limited, and fast rate dynamics cannot be captured
adequately (Nawrot et al., 1999). As a consequence, the de-
modulation to operational time will not completely compensate
modulations of the ISIs, and the irregularity of intervals is likely
to be over-estimated. By contrast, over-compensation of rate
fluctuations may occur if the kernel used for rate estimation is
chosen too narrow, implying an inappropriately high temporal
resolution.

3.3. Irregularity vs. count variability

Thus far we discussed the separate estimation of either irreg-
ularity or count variability. According to point process theory,
however, inter-spike interval irregularity (CV?) and spike count
variability (FF) are closely related. This suggests the co-analysis
of both measures in neuronal spike data.

For stationary renewal processes, the prediction FF = CV?
holds for long observations, under only very mild assumptions
on the process. We tested this prediction in our recordings from
layer 5 pyramidal neurons in vitro while injecting either purely
excitatory or balanced excitatory/inhibitory shotnoise currents.
We therefore divided the total recorded spike train of several
hundred seconds duration into trials of equal length. To avoid
a significant estimation bias, we chose a fixed trial length of
T’ = 10 in operational time, i.e. each trial comprised 10 spikes
on average. We then computed the Fano factor of the spike
counts, and the squared coefficient of variation of the ISIs from
ensembles of N = 15 trials. This is a trial number that we can
realistically also expect to obtain in the case of more complicated
experiments in behaving animals.
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Fig. 9. Interval variability vs. count variability. Estimated FF and CV? from
ensembles of 15 trials and for a mean spike count of 10 (see text). Recordings
are from the same five neurons (different symbols) as shown in Figs. 4 and 5, for
two different current stimuli with either balanced input (r; = 0.5, open symbols)
or purely excitatory input (solid symbols). Dark and light gray shading represent
95% and 99% confidence regions from numerical simulations of gamma renewal
processes; 108 of total 111 data points fall within the 95% region. Inset shows
average values of FF (gray) and CV? (white) for both input conditions. Symbols
indicate averages for individual neurons.

The results for five neurons recorded under the two aforemen-
tioned conditions are shown in Fig. 9, where FF was scattered
against CV?2. Each data point represents one ensemble of trials,
open symbols stand for pure excitation (n = 48), filled sym-
bols stand for balanced excitation/inhibition (n = 63). In the
mean across all samples both measures of FF and CV? are
approximately equal with (FF) = 0.29 (geometric mean 0.25)

and (CV?) = 0.27 (geometric mean 0.24). For purely excitatory
input the neuronal responses were more regular and exhibited
less trial-by-trial variability of their spike counts than for bal-
anced input, as shown in the inset of Fig. 9. The individual
estimates scatter arround the identity line indicating FF = CV?2.
This variability largely represents the uncertainty of the estima-
tor due to a limited number of trials (cf. Fig. 6) and, as expected,
for individual neurons the variance of estimation is typically
larger for the FF. To verify this we again performed numeric sim-
ulations of gamma processes. For each data point we estimated
the corresponding gamma order by « = 1/CV? (see Section 2)
and repeatedly simulated ensembles of 15 trials with an expected
mean count of 10 spikes. From the resulting simulations we con-
structed the 95% and 99% confidence regions, indicated in Fig. 9
by dark gray and light gray shading, respectively.

Our results show that the responses of cortical neurons
recorded under stationary input conditions in vitro are in very
good agreement with the predictions from renewal theory, with
respect to second order interval and counting statistics. The
variance in estimating FF and CV? could be well predicted by
numeric simulations of gamma-type renewal processes.
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Fig. 10. Time resolved analysis of irregularity and variability. (a) Top panel shows 20 realizations of a rate modulated gamma process (¢ = 2) in real time. Empirical
estimates of rate function, CV? and FF are based on 100 trials, respectively. The horizontal bar indicates the analysis window of width 7' = 385 ms. The gray
horizontal line shows the asymptotic value. (b) De-modulated spike trains and time resolved measurement in operational time with a fixed window of length 7/ = 4.
(c) Spike output of a cortical neuron during 20 repeated trials of modulated input current and time resolved measurement of CV? and FF (T = 661 ms). The gray
line represents the empiric values as estimated during 20 control trials (see Section 2). (d) Demodulated spike trains as in b with 77 = 5.

3.4. Time resolved joint analysis of irregularity and count
variability

To study dynamic changes of neuronal variability we mea-
sured the CV? and the FF in a sliding window of length T.
The time resolved Fano factor has been employed in the anal-
ysis of experimental data in several earlier studies (Kara et al.,
2000; Nawrot et al., 2003a; Oram et al., 2001). In practice, it is
desirable to measure dynamic changes of variability with a time
resolution 7 that also captures the relevant rate dynamics. In case
of short analysis windows chosen for the sake of high temporal
resolution this might result in a considerable estimation bias for
both CV?2 and FF, as discussed before. In general, this bias will
change in time since for a non-stationary rate A(¢) a fixed win-
dow width T in real time translates into a variable interval T’ in
operational time. However, in operational time we can expect

this bias to stay constant which enables a faithful assessment of
the temporal changes of spike train irregularity and spike count
variability.

3.4.1. Rate modulated gamma simulation

We first demonstrate the performance of this procedure in
numerical simulations. Each spike train depicted in Fig. 10a
presents one realization of a rate modulated gamma process with
the same intensity function as in Fig. 7b. The time resolved mea-
surement of CV2(r) in Fig. 10a is badly corrupted. We observe a
strong modulation, coinciding with the bell shaped rate response.
As expected, the absolute value is highest where the change in
rate dA(¢)/dt and, thus, the modulation of the ISIs is strongest. In
addition, we observe a bias leading to a slight under-estimation
of the theoretical expectation value CVgO =1/ = 0.5 (gray
line) during the early and late phase of the trial. This effect is
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explained by the rather short analysis window of 7 = 385 ms,
equivalent to an average of T’ = 4 in operational time. After
transformation to operational time (Eq. (2)) on the basis of the
empirical rate function A(r) displayed in Fig. 10a, the resulting
function CV2(r) as measured in a window of width 7/ = 4 is
flat, as shown in Fig. 10b. Also, the bias is now reduced and
constant throughout the trial.

The influence of rate modulation on the time resolved mea-
surement of FF(¢) in real time is explained by the estimation
bias according to the calibration curve depicted in Fig. 5. Dur-
ing a phase of low rate the bias was relatively high, for high rate
the bias was reduced. This bias-induced modulation is barely
visible in the bottom curve of Fig. 10a as the analysis window
was of sufficient length to avoid a significant bias. In operational
time, the bias again remained constant over time by construction
(Fig. 10b).

3.4.2. Modulated synaptic input currents in vitro

We repeated the time resolved measurement for a sample
of our in vitro data, where the excitatory shotnoise input was
modulated following a bell shaped profile (see Section 2). This
resulted in a similar bell shaped modulation of the neuronal firing
rate, as depicted in Fig. 10c. As for the model simulations, the
dynamic changes of the Ccv? suggest a strong modulation and an
overall increase of spiking irregularity. However, in operational
time, this effect is annihilated (Fig. 10d). Rather, the neuron now
exhibited a slight reduction of CV2. This shows that the irregu-
larity is actually slightly reduced during the period of increased
excitatory drive. This result is consistent with the observation
that unbalancing of excitation and inhibition towards more exci-
tation results in a more regular spike output of cortical layer 5
pyramidal neurons (cf. Fig. 9; Stevens and Zador, 1998).

3.4.3. Single unit recording in monkey motor cortex

Finally, we analyzed the task-related modulation of CV? and
FF in an example of an in vivo single neuron recording from
the primary motor cortex of a monkey performing a center-out
reaching task (see Section 2). In each experimental trial, the
monkey was presented with a preparatory signal (PS) at time
t = 0 which indicated the required movement direction, which
was chosen randomly as 1 out of 6 possible direction targets.
The monkey was not allowed to move his hand from the central
resting point, however, before the reaction signal (RS) appeared
after a variable preparatory period of either 600 ms or 1200 ms
which was chosen at random. The spike raster in Fig. 11a shows
the recorded spike activity during 19 trials of one specific move-
ment direction and for the short preparatory period of 600 ms.
Trials were aligned to PS. Movement onset (MO) is indicated
in each trial by a blue circle. Short before MO the neuron’s
firing rate shows a movement-related peak which is direction
dependent (not shown).

The time-resolved measurements of FF and CV? reveal task-
related modulations of variability in Fig. 11c—f. The blue curves
show the estimate on the original time axis of the experiment,
the red curves show the estimate in operational time after back-
transformation to the experimental time axis according to Eq.
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Fig. 11. Task-related changes of variability in monkey motor cortex. (a) Spiking
activity of a motor cortical neuron during repeated trials which were aligned to
the preparatory signal (PS) at time # = 0. Blue circles indicate the time of move-
ment onset. (b) Estimated firing rate shows clear task-related modulation with
a strong response shortly before movement onset. (c—f) Blue curves show vari-
ability measured in original time (window width 7' = 590 ms), red curves show
variability as measured in operational time (7’ = 5) after back-transformation
to the experimental time axis. (c) The CV? exhibits modulations in relation
to rate changes when measured on the original time axis (blue). These mod-
ulations are largely diminished when measured in operational time (red) with
mean CV? = 0.69 smaller than unity. (d) Measuring the CV? in each trial sep-
arately (see text) leads to a significantly reduced trial-averaged CV‘Zrial which
now appears to be almost constant throughout the task with an average of 0.50
in operational time (red). (e) Task-related Fano factor is highest at the beginning
of the task but strongly decreases during the period of movement preparation.
At the rate response peak shortly before onset of the center-out movement the
Fano factor reaches a minimum at FF ~ 0.5-0.6. (f) The ratio of CVtzmn and FF,
both measured in operational time, is close to unity during the task-related rate
response.

Spike train irregularity in Fig. 11c measured in experimen-
tal time exhibits strong rate-related modulations, as expected.
Measurement in operational time (red curve) yields a CV? that
is smaller than unity throughout the trial. In Fig. 11d we used
a different estimator for the irregularity. Rather than pooling
intervals from all trials, we now measured the CVi2 in each trial
i separately and then computed the trial-averaged CVyi,). This
lead to further reduction to an almost constant value (average
CVigia1 = 0.50).

Trial-by-trial count variability in Fig. 11eis large in the initial
phase of the experiment with FF > 3 but decreases throughout
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the period of movement preparation. During the movement-
related activity the Fano factor reaches a minimum at FF =
0.5-0.6. This result is consistent with previous findings of task-
modulated trial-by-trial variability in motor cortical neurons
(Churchland et al., 2006; Nawrot et al., 2001, 2003a).

Thus, during the actual task-relevant and directionally tuned
response both measures of trial-by-trial count variability and
spike train irregularity are smaller than unity and become
approximately equal with values arround FF ~ CV? a2 0.5 (cf.
Fig. 11f). The constant low value of CVfrial ~ 0.4-0.6 indicates
that the nature of this neuron is less variable than a Poisson
process.

4. Discussion
4.1. Operational time vs. real time

Observing a point process in finite windows may be asso-
ciated with a considerable bias in the estimation of spike train
irregularity, CV2, and spike count variability, FF, with respect to
the theoretical value assumed in the limit of infinite observation
length. Our results from the analytical treatment of renewal pro-
cesses were confirmed in numeric simulations of gamma-type
renewal processes. The observed bias was found to depend on the
length of the observation in operational time, i.e. on the expected
spike count within that interval. From a theoretical point of view
it is, thus, of advantage to estimate CV? and FF in operational
time rather than in real time.

Analysis of spike trains recorded from cortical pyramidal
neurons under stationary input conditions in vitro confirmed the
same bias dependencies of CV? and FF on the mean spike count
(cf. Figs. 4 and 5). In the case of non-constant firing rate profiles
we suggested to de-modulate the spike trains by using a non-
linear transformation of real time to operational time (Eq. (2)).
This enables the time resolved analysis of spike train irregular-
ity and trial-by-trial count variability. Back-transformation from
operational to real time (Eq. (4), Fig. 11) allows for a compari-
son of the time resolved variability to other observables in real
time.

The estimation bias of measuring variability in experimental
spike trains has practical consequences. First of all, itis desirable
to avoid a significant bias by choosing sufficiently long obser-
vation intervals. Our calibrations of the gamma-type renewal
process and of experimental spike trains in vitro suggest to use
windows that comprise not less than 5-10 spikes on average.
A number of previous experimental as well as model stud-
ies have analyzed interval or count variability in considerably
shorter windows (e.g. Amarasingham et al., 2006; Britten et al.,
1993; Churchland et al., 2006; Dean, 1981; Geisler and Albrecht,
1997; Kara et al., 2000; Kargo and Nitz, 2004; Lee et al., 1998;
Mazurek and Shadlen, 2002; Murthy and Fetz, 1996; Snowden
et al., 1992; Vogels and Orban, 1991; Vogels et al., 1989). In
a few examples the mean count was as small as T’ ~ 0.1-0.5
and thus parts of the results are likely to be affected by a strong
estimation bias.

Under certain circumstances we cannot avoid short observa-
tions, in particular for the time resolved analysis of variability

dynamics. We may then use the calibration curves (cf.
Figs. 4 and 5) to obtain an estimate of and possibly correct for
the introduced error. The more practical decision is to accept a
certain bias which, for a fixed observation length in operational
time, can be assumed to be constant and allow for a fair com-
parison of second order count and interval statistics across time
and among different data samples (cf. Figs. 10 and 11). How-
ever, this condition often was not considered in earlier studies
(see also discussion in Wiener, 2003 and Chelvanayagam and
Vidyasagar, 2006). In several examples spike count variabil-
ity in a single neuron was compared for different experimental
conditions, implying that different firing rates and/or different
observation windows were used (e.g. Kara et al., 2000; Kargo
and Nitz, 2004; Mazurek and Shadlen, 2002; Murthy and Fetz,
1996). The same criticism applies to studies that compared vari-
ability of different neurons that exhibited different firing rates
in a fixed time window (e.g. Kara et al., 2000; Lee et al., 1998;
Oram et al., 2001). A series of studies that investigated corti-
cal trial-by-trial variability first normalized the spike count to
obtain an estimate of the spike rate, and only then computed the
trial-by-trial standard deviation and the coefficient of variation
of the rate variable (e.g. Lee et al., 1998; Maynard et al., 1999;
Oram et al., 2001) or the trial-by-trial rate variance normalized
by the mean rate (Churchland et al., 2006). When normalizing
to rate, however, the information about spike count and inter-
val duration is lost, and bias effects due to low spike counts are
concealed. This marks the advantage of count-based statistics
over rate-based statistics. Several studies investigated Fano fac-
tor vs. time curves FF(T') to characterize the spiking of cortical
neurons (Baddeley et al., 1997; Buracas et al., 1998; Kara et
al., 2000; Oram et al., 2001; Ratnam and Nelson, 2000; Teich
et al., 1996). In all cases, however, this was studied in depen-
dence on the width of the analysis window in real time rather
than in operational time, which complicates the interpretation
particularly for small values of 7.

4.2. Renewal assumption

In this work, the analytic treatment and all numerical simula-
tions were based on the model of a renewal process. A process
which has dependent ISIs, however, violates this assumption and
generally also exhibits a different behavior in its second order
count and interval statistics. In particular, the equality FF = CV?
discussed in Eq. (5) holds only for independent intervals. A pro-
cess with correlated ISIs (but which is still stationary and in
equilibrium) satisfies the slightly more general equality

1+ 225,1 : (11)
i=1

where &; denotes the ith order serial correlation coefficient, and
CVtzh is computed from the ‘theoretical’ ISI variance if all inter-
vals were independent (Chacron et al., 2001; Cox and Lewis,
1966; Ratnam and Nelson, 2000).

We showed elsewhere (Nawrot et al., 2007) that the
spontaneous activity of neocortical neurons recorded in the anes-
thetized rat typically exhibited a moderate negative correlation

lim FF = CV3
T—o0
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coefficient for consecutive intervals (§; < 0), but no significant
correlation for higher-order pairs (§; & 0 for i > 2). This result
could be well explained by the same cellular mechanisms that are
also responsible for spike frequency adaptation. The observed
negative ISI correlation lead to an empirical FF that was reduced
in comparison to a renewal control of randomly shuffled ISIs,
and also smaller than the empirical CV?, in accordance with Eq.
(11). Layer 5 pyramidal neurons in vitro stimulated by noise cur-
rent injection showed only a relatively weak negative first order
serial correlation (Nawrot et al., 2007). Such ‘small deviations’
from the renewal model did not significantly affect the equal-
ity FF = CV?, which still agreed well with the prediction from
gamma renewal processes (cf. Fig. 9).

4.3. Equilibrium condition

In this work, we treated renewal processes in equilibrium.
This means that our observation started at a ‘random point” with
respect to the realization of the process, as if the process had been
running for a long time already. In an ‘ordinary’ renewal process,
by contrast, each observation (‘trial”) begins with a spike. In this
case (and generally for processes that are not in equilibrium),
the bias of FF and CV? for short windows is altered due to
artificial onset synchronization. Somewhat larger observation
intervals are then required for a reliable empirical estimate (data
not shown).

It depends on the experimental protocol whether the equilib-
rium or the ordinary renewal model more adequately describes
the observed neuronal responses. The former might apply to
experimental settings with a certain level of spontaneous spiking
and smooth changes of activity associated with sensory input or
motor output. However, in the case of low spontaneous activity
and a sharp response onset that is tightly locked to the stimulus
or behavioral event, the latter might be a more adequate descrip-
tor. Similarly, the intracellular injection of a current step can
lead to a sharp onset-locking of the leading spike which closely
resembles an ordinary process.

In our in vitro experiments it was important to allow the
recorded neuron to settle in a state of equilibrium after having
started the somatic current injection. The onset of the shotnoise
current, in fact, had severe effects on the neuron’s internal state.
It induced a transition from rest to an active state. At rest the
neuron received only negligible synaptic input due to sparse
spontaneous activity typical for acute neocortical slices. The
active state, by contrast, was associated with a net depolariza-
tion and strong fluctuations of the membrane potential, and with
the generation of action potentials at a moderate rate. To exclude
any transient or adaptation phenomena, our experimental pro-
tocol allowed for a long (> 50s) initial period of continuous
injection of the synthetic fluctuating current before we started to
analyze the data, and the stimulation was never halted through-
out the experiment. This procedure is distinct from protocols
that had been used in several previous in vitro studies of interval
and count variability in cortical neurons (Harsch and Robinson,
2000; Nowak et al., 1997, Stevens and Zador, 1998). In these
studies, current injection went through cycles of stimulation
alternating with pauses of no stimulation, leading to fast input

transients at the beginning of each trial and a typical trial duration
of only a few seconds.

4.4. Refractory period

Our analytical results for non-stationary renewal processes
were based on the assumption that the process dynamics is con-
sistent with the notion of ‘operational time’, as expressed by
Eq. (2). In real neurons, however, some aspects of the dynam-
ics may be incompatible with the associated transformation. One
candidate for this kind of problem is the absolute refractory time
of neurons, which is fixed in real time since it is the result of
sodium channel inactivation. The associated ‘dead time’ follow-
ing each spike of the neuron does not scale with the firing rate,
and hence it does not transform well to operational time (Berry
and Meister, 1998; Kara et al., 2000; Reich et al., 1998; Teich
et al., 1997). If we ignore this problem, we obviously violate
the constraint of a fixed dead time and, consequently, introduce
a (small) error in our estimate of the CV?in operational time.
This error will, however, increase with increasing rate. This was
recently demonstrated for a related measure of interval vari-
ability by Chelvanayagam and Vidyasagar (2006). In cortical
neurons where the dead time is small (a few milliseconds) this
effect may be neglected as long as the ISIs are long (tens or
hundreds of milliseconds).

4.5. Non-stationarity across trials

An empirical estimate of the temporal firing rate profile is
commonly obtained from experimental data by means of a trial
averaging procedure, e.g. the PSTH. Doing so makes the implicit
assumption that the rate function is the same in all trials, because
only then the trial averaged estimate faithfully reflects the rate
profile which underlies the generation of action potentials in
individual trials (Aertsen et al., 1989; Knoblauch and Palm,
2005; Masuda and Aihara, 2003; Ventura et al., 2005). This cri-
terion was clearly met in all our simulations where we imposed
the same intensity function in all trials. Thus, the statistical vari-
ations in spike count and in ISI length were only due to the
stochastic nature of the point process.

In our in vitro experiments the statistical fluctuations in the
spike responses were due to a combination of stochastic exter-
nal inputs and noise intrinsic to the neuron. The fluctuations
of the input current were matched to mimic the activity of a
large presynaptic population following some predefined rate
profile, which was strictly the same in all trials. In the liv-
ing brain, however, the level of input that a neuron receives
may vary from trial to trial even if experimental conditions are
unchanged. In the context of point process models, this can
be interpreted as a trial-to-trial change of the underlying fir-
ing rate, either due to variations of the stimulus-related input or
to changes of ongoing activity that are not locked to the time
frame of the experiment (Arieli et al., 1996; Azouz and Gray,
1999; Kisley and Gerstein, 1999; Nawrot, 2003; Nawrot et al.,
2001). This obfuscates a faithful estimation of the rate function
by any procedure that relies on trial averaging. One obvious
problematic consequence of this is an imperfect de-modulation
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of the single-trial spike trains (Eq. (4)) and an over-dispersed ISI
distribution.

In cases where non-stationary firing rate profiles across trials
are suspected it may be useful to obtain an individual estimate of
the CV? in each trial and only then average across trials, rather
than pooling the ISIs from all trials (cf. Fig. 11). This is equiv-
alent to normalizing by the total spike count on a trial-to-trial
basis. This procedure diminishes but cannot completely abol-
ish the effect of trial-by-trial changes of firing rate. A similar
strategy was recently followed by Davies et al. (2006). They
introduced a new local metric for measuring irregularity, which
was normalized separately in each trial. In a second step, aver-
aging in time and across trials was performed. Trial-to-trial
changes in firing rate has an even stronger increasing effect
on the spike count variance, and thus on the Fano factor. For
the co-analysis of both types of variability we must therefore
expect that FF > CV2. In fact, one can make use of this non-
identity of FF and CV? as a quantitative measure for across-trial
non-stationarities. In a next step one can develop a model of
such non-stationarities, develop appropriate correction proce-
dures and use those to test the model (Nawrot, 2003; Nawrot
et al., 2001). The sample time-resolved variability analysis of
the single unit recording from the motor cortex of the behaving
monkey presented in Fig. 11 is suggestive of across-trial non-
stationarity in the early part of the trial. Further investigation
of the nature and possible mechanisms of this phenomenon is
currently under way (Nawrot et al., in preparation).

A special case of across trial non-stationarity is caused by
the misalignment of individual trials. Repeated trials recorded
in one experiment need to be aligned in time with respect to a
meaningful reference, such as the occurrence of a stimulus or
a behavioral event. Trials may be misaligned if the observed
brain processes result in a neuronal response of variable latency
with respect to that particular trigger event (Baker and Gerstein,
2001; Bollimunta et al., 2007; Brody, 1999; Nawrot et al., 2003a;
Ventura, 2004). In this case, the trial averaged rate estimate
will be smeared out in time and, again, rate estimate and de-
modulation is imperfect. This leads to an over-dispersed ISI
distribution and, therefore, to an increased value of the empiri-
cal CV2. The Fano factor will also be affected if the observation
interval falls into a period of significant rate change, effectively
leading to a trial-by-trial non-stationarity of the rate and, conse-
quently, to an artificially increased spike count variance (Nawrot
et al., 2003a).

4.6. Variability in cortical neurons

We showed that, in line with previous studies (Harsch and
Robinson, 2000; Nawrot et al., 2003b; Stevens and Zador, 1998),
regular spiking cortical pyramidal neurons in vitro stimulated
with stationary realistic fluctuating current input exhibited mod-
erate Fano factors in the range 0.2-0.5. These numbers are
compatible with the spike train irregularity observed in simi-
lar recordings (Arsiero et al., 2007; Badoual et al., 2005; Harsch
and Robinson, 2000; Holt et al., 1996; Nawrot et al., 2003b;
Nowak et al., 1997; Stevens and Zador, 1998). Balancing excita-
tory and inhibitory inputs increased both the spike count interval

variability by approximately 30%, but did not disrupt the equal-
ity of the two parameters (cf. Fig. 9). Similarly, our in vivo
recordings of stationary spontaneous activity of single cortical
neurons in the anesthetized rat had shown moderate count and
interval variability in the very same range (Nawrot et al., 2007).
We conclude that, for stationary input conditions, cortical neu-
rons are clearly less variable than the Poisson process, and that
single-neuron spiking is better approximated by gamma renewal
processes with order parameters in the range of 2-5. This result
contradicts the high trial-by-trial variability measured in awake
animals where single neurons were found to be more variable
than the Poisson process (FF > 1) in the visual (for references
see Shadlen and Newsome, 1998; Teich et al., 1996) and motor
areas (Lee et al., 1998; Maynard et al., 1999), with few excep-
tions (Amarasingham et al., 2006; Gur et al., 1997; Kara et al.,
2000).

In this paper we outlined a strategy of data analysis that helps
to identify sources that contribute to the observed high trial-
by-trial variability of cortical single neuron output in vivo. It
involves (1) the joint analysis of spike train irregularity (CV?)
and trial-by-trial count variability (FF) in operational time and
(2) the investigation of the task-related dynamics of both aspects
on the same time scale.
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