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Measurement of variability dynamics in cortical spike trains
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bstract

We propose a method for the time-resolved joint analysis of two related aspects of single neuron variability, the spiking irregularity measured
y the squared coefficient of variation (CV2) of the ISIs and the trial-by-trial variability of the spike count measured by the Fano factor (FF). We
rovide a calibration of both estimators using the theory of renewal processes, and verify it for spike trains recorded in vitro. Both estimators
xhibit a considerable bias for short observations that count less than about 5–10 spikes on average. The practical difficulty of measuring the CV2

n rate modulated data can be overcome by a simple procedure of spike train demodulation which was tested in numerical simulations and in real
pike trains. We propose to test neuronal spike trains for deviations from the null-hypothesis FF = CV2. We show that cortical pyramidal neurons,
ecorded under controlled stationary input conditions in vitro, comply with this assumption. Performing a time-resolved joint analysis of CV2 and
F of a single unit recording from the motor cortex of a behaving monkey we demonstrate how the dynamic change of their quantitative relation

an be interpreted with respect to neuron intrinsic and extrinsic factors that influence cortical variability in vivo. Finally, we discuss the effect of
everal additional factors such as serial interval correlation and refractory period on the empiric relation of FF and CV2.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Variability of neural activity is apparent throughout the
entral nervous system, in all types of electrophysiological
ignals. In the mammalian brain, the degree of variability at
he single-neuron level increases with the stages of sensory
rocessing, being lowest in the periphery and highest in corti-

al structures (Kara et al., 2000). Likewise, variability is also
ower in the motor periphery than in the cortex (Prut and
erlmutter, 2003). Understanding the nature and the origin of
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he observed high variability in the neocortex is essential for
ur understanding of the neural code used for representation
nd processing of information in cortical networks (Stein et al.,
005).

Two types of single neuron variability are usually distin-
uished, reflecting variability on different time scales. Spike
rain irregularity (Holt et al., 1996; Softky and Koch, 1993; Teich
t al., 1997) refers to the random appearance of the sequence of
ction potentials which is statistically expressed in the variance
nd the coefficient of variation (CV) of inter-spike intervals (ISI).
t signifies intra-trial variability on a relatively short time scale,
etermined by the typical ISI, i.e. in the range of tens to hun-
reds of milliseconds. By contrast, the trial-by-trial variability
s measured by the the variance and the Fano factor (FF) of the
pike count across repeated observations that may be separated

y long time intervals (Shadlen and Newsome, 1998; Teich et
l., 1997).

Here, we propose an approach to the investigation of sin-
le neuron spike train variability that can help to distinguish

mailto:stefan.rotter@biologie.uni-freiburg.de
dx.doi.org/10.1016/j.jneumeth.2007.10.013
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ifferent contributing factors to the observed single neuron vari-
bility in vivo. Central to our approach is the null-hypothesis
F = CV2, a theoretic result for renewal models which are
riefly reviewed in the method section. We confirmed this pre-
iction for cortical pyramidal neurons in vitro in a series of
urrent injection experiments where we mimicked stochastic
nputs assuming stationary network conditions. For variability
tudies in vivo we suggest to jointly analyse both aspects of
ariability in a time-resolved manner to uncover task-related
odulations and to detect periods of significant deviation from

he equality of FF and CV2. This is shown for an example of
ingle-unit recordings from motor-cortical neurons in a behav-
ng moneky. In the discussion we resume potential interpretation
or such deviation and discuss sources for the observed high
ariability of cortical activity in vivo. Preliminary results of
his study were presented in abstract form (Nawrot et al., 2001;
otter et al., 2005).

. Methods

.1. Point process theory

We briefly review several aspects of point process theory that
re relevant for the methods and introduce the concept of opera-
ional time that provides the means for the analysis of spike train
rregularity in rate-modulated pocesses.

.1.1. Renewal point processes
Stochastic point processes are frequently employed as mathe-

atical models for neuronal spiking (e.g. Johnson, 1996; Perkel
t al., 1967a, b; Tuckwell, 1988). Of particular interest is the
lass of renewal processes (Cox, 1962). Here, the intervals Xi

etween successive points (i.e. spikes) are independent and
dentically distributed (i.i.d.) with a fixed interval distribution
(x), implying a constant point process intensity, or spike rate.
enewal models of spiking can be defined by specifying an
rbitrary interval distribution. One prominent example is the
oisson process. Its points occur at constant rate in a completely
andom fashion and independent of each other. It exhibits an
xponential interval distribution, while the number of points
ncountered during a finite observation interval is Poisson dis-
ributed. Another prominent example for a renewal process is
he spiking of an integrate-and-fire model neuron with station-
ry Poissonian inputs where the inter-spike interval distribution
epends both on the detailed biophysical properties of the model
nd on the synaptic input it receives (Burkitt, 2006; Lindner,
004; Tuckwell, 1988).

The experimental setting in which neuronal activity is
ecorded in behaving animals typically involves repeated trials.
he respective observation period is usually aligned to a tempo-

al marker, e.g. the presentation of a stimulus or the occurrence
f a behavioral event. Thus, the start of the observation interval

enerally represents a ‘random point’ with respect to neuronal
piking, and generally does not coincide with a spike event.
or a renewal process, this implies that the time X0 up to the
rst observed event has a probability density function (p.d.f.)
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(x)/ μ, where

(x) = Pr(X > x) =
∫ ∞

x

f (u) du

s the survivor function, and μ is the mean interval given by first
oment of f (x). All other intervals X1, X2, . . . have p.d.f. f (x).

f these criterions are met we speak of an equilibrium renewal
rocess.

In special cases, however, the start of observation in each
rial might coincide with a spike event at time t = 0 (see Sec-
ion 4). Then one speaks of an ordinary renewal process (Cox,
962; Cox and Isham, 1980; Tuckwell, 1988). Throughout this
anuscript we refer to the equilibrium situation when using the

erm ‘renewal process’ without further specification.

.1.2. Gamma processes
Gamma processes are closely related to the Poisson process,

ith an extra parameter that allows for the adjustment of reg-
larity of its pulse trains. For this reason, they have frequently
een used as a model for neuronal spiking (Baker and Gerstein,
001; Nawrot et al., 2003a; Pauluis and Baker, 2000; Reich et
l., 1998; Stein, 1965; Tuckwell, 1988). In a number of studies,
he gamma process was fitted to experimental data and com-
ared to other models (Baker and Lemon, 2000; Brown et al.,
001; Nawrot, 2003; Teich et al., 1997). They typically feature
relative refractory period of low spike probability following

ach event (cf. Fig. 3). However, since the p.d.f. of a gamma dis-
ribution is strictly positive for all x > 0, it does not incorporate
n absolute refractory period during which the spike probability
s zero.

The gamma process has the interval density

α,ρ(x) =
⎧⎨
⎩

1

Γ (α)
ρ(ρx)α−1 e−ρx, x ≥ 0,

0, x < 0,

here Γ denotes the gamma function, and α > 0 and ρ > 0 are
ts two parameters. The mean interval μ and associated rate λ

f the process are given by

= E[X] = α

ρ
and λ = 1

μ
= ρ

α
.

The variance of the interval distribution is given by

ar[X] = α

ρ2 .

The squared coefficient of variation of the inter-spike interval
istribution

V2[X] = Var[X]

E[X]2 = 1

α

pecifies the relative width of the p.d.f. and, therefore, was used
o parameterize the irregularity of the process. The Poisson pro-

ess represents the special case α = 1, for which the p.d.f. is the
xponential distribution. For α > 1, the process is more regu-
ar, while for 0 < α < 1 the process is more irregular than the
oisson process, and events appear clustered in time.
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Fig. 1. Transformation of time. A renewal process of unit rate is simulated in
operational time (vertical panel). A spike event at time t′ is translated into a
spike event in real time t by the time transformation (center panel, Eq. (2)) given
by the integral of the rate function (top panel). Conversely, a rate modulated
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In this manuscript we employed equilibrium gamma pro-
esses to investigate and calibrate statistical measures of interval
nd counting statistics both by means of analytical treatment
nd numerical simulations. To ensure equilibrium conditions
n numerical simulations of gamma processes we allowed for
n appropriate warm-up by starting the simulation some time
efore the actual measurement began. Alternatively, we started
ur simulation by drawing the first interval X0 from the appropri-
te length biased distribution Fα,ρ(x)/μ. This was conveniently
chieved by a product U Y of two independent random numbers,
here Y had p.d.f. fα+1,ρ(y), and U was uniformly distributed on

0, 1]. All numerical simulations were performed with Matlab
The MathWorks, Inc.). Parts of the analytical calculations were
erformed with the help of Mathematica (Wolfram Research,
nc.). We provide documented Matlab code for some of the meth-
ds described below within the framework of the FIND toolbox
Meier et al., 2007; http://find.bccn.uni-freiburg.de).

.1.3. Operational time and rate modulation
Neurons observed in a living organism typically exhibit tem-

oral changes of their firing rates in response to sensory input, or
n relation to behavior. This important feature of neuronal pro-
essing can be captured by rate modulated renewal processes,
here the process intensity is no longer constant but defined

hrough a (deterministic) function of time. We start with the
ell-known concept of a non-homogenous Poisson process (Cox

nd Isham, 1980; Kass and Ventura, 2001; Tuckwell, 1988) for
hich the intensity is no longer constant in time, but has a time

ourse λ(t) ≥ 0. The number N of events in repeated observa-
ions during a given interval (a, b] is Poisson distributed

r(N = k) = 1

k!

[∫ b

a

λ(s) ds

]k

e−
∫ b

a
λ(s) ds (k = 0, 1, 2, . . .)

(1)

Operational time t′ is defined by the non-linear transforma-
ion of real time t as

′ = Λ(t) =
∫ t

0
λ(s) ds, (2)

hich is one-to-one if λ(t) is strictly positive (Gestri and
etracchi, 1970). In case of a constant intensity this simplifies

o a multiplication of the event times with the intensity. Evi-
ently, in operational time, which is dimensionless, the process
s stationary with unit rate and has a mean interval μ′ = 1. The
xpected number of events in (a, b] then amounts to

[N] = b′ − a′ =
∫ b

a

λ(s) ds. (3)

The concept of operational time is also of practical use in sim-
lating a non-homogenous Poisson process. First, a stationary
ealization t′1 < t′2· · · < t′N is produced in operational time with
ntervals X′ = t′ − t′ drawn from the exponential distribution
i i+1 i

ith unit mean. In a second step, the inverse transformation is
pplied to each single event of the realization:

−1(t′) = min{t|Λ(t) ≥ t′}. (4)

o
(
e
r

ealization of a point process may be demodulated by mapping an event in real
ime t onto the corresponding event in operational time t′.

A similar procedure is applied to transform uniform random
ariables to variables with arbitrary distributions (see Ripley,
987). The rate modulated, or non-homogenous renewal pro-
ess generalizes this concept (Baker and Lemon, 2000; Barbieri
t al., 2001; Berry and Meister, 1998; Brown et al., 2001; Oata,
988; Oram et al., 1999; Reich et al., 1998; Truccolo et al.,
005). Let f (x′) denote the p.d.f. for an arbitrary interval dis-
ribution in operational time t′, and let λ(t) be the rate profile
f the process in real time. Again we first generate a realiza-
ion in operational time on the basis of f (x′) and then ‘warp’
he time axis according to the inverse transformation given by
q. (4) (Fig. 1). Generally, such transformation of independent
tochastic variables results again in an independent set of vari-
bles. By construction, intervals are still mutually independent
ut no longer identically distributed. In fact, the waiting time
istribution of the next upcoming event depends on the time
ourse of the rate function since the most recent event. Note that
alsely assuming identically distributed intervals (i.e. constant
ate) when analyzing the resulting sequence of intervals would
esult in serial correlations among intervals which are, in fact, a
eflection of the time-varying rate function.

Conversely, given such rate-modulated renewal process
ith a time-varying rate function λ(t) (e.g. estimated by a
eri-stimulus time histogram) we can ‘un-warp’ real time to
perational time by applying the transformation given by Eq.

2). As we will show, this latter procedure can be successfully
mployed to obtain estimates of interval statistics from neuronal
esponses with non-stationary firing rates.

http://find.bccn.uni-freiburg.de
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Note that our approach is to estimate the trial-averaged so-
alled unconditional rate function from repeated trials without
aking any assumptions about the spiking model before we

escale the time axis. In a second step we then estimate statisti-
al parameters from the transformed spike trains. A somewhat
ifferent approach has been suggested by Barbieri et al. (2001)
nd Brown et al. (2001) where the conditional intensity func-
ion is estimated directly from single trial spike data. If this

odel is accurate, the respective transformation of the individ-
al spike train will result in a homogenous Poisson process.
pike train variability may then be computed for the estimated
odel (Barbieri et al., 2001; Brown et al., 2001; Wiener, 2003).

.1.4. Empirical measures of irregularity and variability
Consider an observation interval (a, b] with a < b and dura-

ion T = b − a. Let a < t1 < t2 < . . . < tN ≤ b denote a train
f N spikes that occurred during one particular observation.
hen, X1, X2, . . . , XN−1 is the sequence of the N − 1 observed

nter-spike intervals Xi = ti+1 − ti. Multiple independent repe-
itions of the same experiment result in an ensemble of spike
rains, each with its count of spikes Nj . Irregular spiking is
xpressed by a variable length of the inter-spike interval X. As a
uantitative measure of this irregularity we employ the squared
oefficient of variation of the ISIs gathered during observations
f length T

V2 = Var[X]

E[X]2 .

Variability of activity across multiple observations or
epeated trials expresses itself by a variable spike count N. We
se the Fano factor (Fano, 1947):

F = Var[N]

E[N]

o quantify the normalized count variance across repeated obser-
ations of length T. The CV2 measures neuronal variability
f intervals collected within observation on a relatively short
ime scale which is comparable to the length of the typical ISI.
he Fano factor captures variability on a considerably longer

ime scale. It refers to spike count observations of length T and
easures the spread of this number across repeated observation

rials, which may be separated by pauses that are large compared
o T. The quantities CV2 and FF, however, are by no means inde-
endent variables. Under stationary conditions, a given degree of
pike timing irregularity (short-term) implies a certain amount
f spike count variability (long-term), and vice versa. In par-
icular, for a stationary renewal process in equilibrium it holds
hat

F = CV2 (5)

or the limit of long observations (Cox, 1962; Cox and Lewis,
966; Ratnam and Nelson, 2000; Tuckwell, 1988). A devia-
ion from this equality indicates a deviation from the stationary

enewal model which cannot be easily detected if only one aspect
f variability is analyzed alone. We will show that in experimen-
al spike trains it can thus be very useful to compare interval and
ount variability as estimated in the same observation window.
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he theoretical relation of interval and count variability in point
rocess theory marks the major advantage of the CV2 over other
easures of irregularity.

.2. In vitro current injection experiments

We performed a series of in vitro experiments where we stim-
lated regular spiking layer 5 pyramidal neurons of neocortex by
eans of somatic injection of fluctuating currents that mimicked

ynaptic input from a large number of presynaptic neurons.
Acute slices of 400 �m thickness were prepared from sen-

orimotor cortex of rats (Long-Evans, P15–P28) as described
reviously (Boucsein et al., 2005). Whole cell patch recordings
pipette resistance 2–6 M�) were made from layer 5 pyra-
idal neurons which were identified visually using infrared

ideo microscopy (Dodt and Zieglgänsberger, 1990). Current
ontrol signals were sampled at 20 kHz and low-pass fil-
ered at 3–10 kHz before application. Voltage recordings were
ow-pass filtered at 3–5 kHz using an Axoclamp 2B amplifier
Axon Instruments, Foster City, CA), and sampled at 10–20 kHz
sing a CED-1401 Plus device (Cambridge Electronic Design,
ambridge, UK). Only regular spiking neurons (n = 17) were
onsidered for analysis.

Synaptic input currents were synthesized as a superposi-
ion of excitatory and inhibitory postsynaptic currents (EPSCs
nd IPSCs). Single PSCs were modeled as decaying expo-
entials with amplitudes of ±30 pA and decay time constants
f 3 ms or 6 ms for EPSCs and IPSCs. The total charge car-
ied by a single PSC thus amounted to 0.09 and −0.18 pC,
espectively. In a first set of experiments we injected traces of
uctuating input current with a total duration of either 300 s
r 1200 s. We assumed independent pools of excitatory and
nhibitory presynaptic neurons, each firing with a stationary rate
nd obeying Poissonian statistics. After convolution with the
PSC and IPSC waveform, respectively, the resulting excita-

ory and inhibitory shotnoise currents were added, yielding a
ingle current trace (Fig. 2a). In the standard protocol, excita-
ion was counterbalanced by 50% inhibition, leading to a ratio
f mean total inhibition to mean total excitation of ri = 0.5
Stevens and Zador, 1998). In an alternative protocol we assumed
urely excitatory input (ri = 0). The net depolarizing input
urrent was calibrated such that Inet = Iexc + Iinh = 100 pA.
hus, for ri = 0.5 input rates amounted to about 2000 exci-

atory and 500 inhibitory spikes per second. At the beginning of
ach recording we adjusted the effective current amplitude for
ach individual neuron to yield comparable sustained response
pike rates in the range of 4–14 spikes/s (cf. Fig. 2b). Before
urrent injection the neurons did not show spontaneous spik-
ng due to the limited spontaneous network input in the slice
reparation. Therefore, the first 50 s of spiking activity follow-
ng the onset of current injection were discarded from analysis,
llowing for a ‘warm-up’ time that should allow the neuron to
dapt to the increased input and to settle in a renewed state of

quilibrium.

In a second set of experiments, the injected synthetic currents
eflected a defined temporal modulation of the synaptic input.

e constructed 20 trials of 5 s length each. Background input
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Fig. 2. Noise current injection. (a) Excitatory (top) and inhibitory (bottom)
presynaptic events were generated as independent Poisson processes. Each event
contributed a single EPSC or IPSC to the total current (black curve), carrying
a net charge of 0.09 and −0.18 pQ, respectively. (b) Membrane potential of a
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ayer 5 pyramidal cell (top) measured during the injection of a fluctuating current
bottom) that replaced excitatory and inhibitory synaptic input.

as modeled as stationary excitatory and inhibitory Poisson
rocesses with inhibition ratio of ri = 0.5 and net background
urrent of Inet = 200 pA, equivalent to excitatory and inhibitory
ates of about 4000 and 1000 spikes/s, respectively. In each trial
e added to this a bell-shaped temporal modulation of the exci-

atory input rate before realizing and convolving the spike trains
ith the EPSC kernel. We chose a Gaussian profile with a latency
f 2.5 s, amplitude 200 pA and standard width of either 200 or
00 ms. These trials were interlaced with 20 control trials of
dentical length that did not exhibit any temporal modulation of
he input. All trials were then concatenated, yielding a single
ong current trace of 200 s duration. Again, this was prepended
y a warm-up period (100 s).

.3. Monkey experiment

After the monkey had successfully learned the task (> 85%
orrect performance; see Grammont and Riehle, 2003), a cylin-
rical stainless steel recording chamber (inner diameter: 15 mm)
as implanted above the primary motor cortex under asep-

ic conditions and general halothane anesthesia (< 2.5% in

ir). A stainless steel T-bar was cemented to the skull to
xate the animal’s head during recording sessions. A multi-
lectrode microdrive (Reitböck system, Thomas Recording,
ermany) was used to transdurally insert seven quartz-glass
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nsulated platinum–tungsten electrodes (outer diameter: 80�m,
mpedance: 2–5 M� at 1 kHz). The electrodes were arranged
n a circle, one in the middle and 6 around it (equally spaced
t 330�m). From each electrode, electrical signals were ampli-
ed and band-pass filtered (0.3–10 kHz). Action potentials of
ne single neuron per electrode were then isolated by using a
indow discriminator. Neuronal signals along with behavioral

vents (trial start and end, target information, reaction and move-
ent times, reward, errors) were stored for off-line analysis with
time resolution of 1 kHz.

. Results

.1. Bias and variance of estimation

.1.1. Spike train irregularity
Empirical estimates of inter-spike interval statistics depend

n the length of the observation. Suppose an equilibrium renewal
rocess with interval density f (x) is observed over a finite time
nterval (a, b] of duration T = b − a. Evidently, we can only
bserve intervals X that are shorter than the observation interval
, i.e. f̂ (x) = 0 for x > T . On the other hand, the encounter of
ery short intervals x � T is essentially unaffected by the finite-
ength observation window. This effect is commonly known as
ight-censoring (e.g. Wiener, 2003). We give here an approxi-
ate expression for the interval distribution f̂ (x) corresponding

o this experiment. For all intervals x ∈ (0, T ), the likelihood of
heir observation is proportional to T − x, the ‘free space’ left
n the observation window. This leads to the expression:

ˆ (x) =
{

η−1 (T − x) f (x), for x ∈ [0, T ],

0, otherwise,
(6)

here

=
∫ T

0
(T − s) f (s) ds

s a normalization constant. If μ is the mean interval, η

pproaches T − μ for large observation windows T 	 μ.
In Fig. 3a we compared the full analytic gamma distribution

(x) of order α = 2.8 (light gray) with the analytically derived
istribution f̂ (x) based on observations within an interval of
ength T = 1.5 (dark gray). Fig. 3b shows an ISI histogram
xtracted from neuronal spike trains measured in vitro. The full
istribution (light gray) was sampled from a very long record
omprising 4181 intervals in total. Sampling the same spike train
y using short observation intervals of length T ′ = 1.5 in oper-
tional time shows the same effect as for the gamma model: The
esulting interval distribution is squeezed, and both its mean and
ts variance are reduced.

The distortion of the ISI distribution is more pronounced for
horter observations. Conversely, for a fixed observation length
, the effect becomes stronger for a larger mean interval μ or,

quivalently, for a lower spike rate. According to Eq. (6), we
an partially correct for the introduced distortion by multiply-
ng f̂ (x) with 1/(T − x) on the interval [0, T ) (red curves in
ig. 3). This correction allows us to fit empirical data to a model
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p.
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f.

ISI
(operational time)

gamma process

0 3 ISI (ms)
(real time)

in vitro

0 900

Fig. 3. Inter-spike interval distribution for finite observation time. Analytical
and simulated distributions for a gamma-process (left) and empirical distribu-
tions from a layer 5 pyramidal neuron recorded in vitro (right). The light gray
histogram in the left panel displays the probability density f (x) constructed
from 105 intervals randomly drawn from a gamma distribution (α = 2.8). The
dark gray histogram shows the modified distribution f̂ (x) for a finite observation
interval of length 1.5 in operational time. Solid lines show the corresponding
analytical results (Eqs. (3) and (6)). The gamma order of 2.8 was estimated
as α = 1/CV2 from the full distribution in vitro (light gray histogram, right),
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onstructed from 4181 intervals recorded during 1150 s. Short observations of
ength 415 ms (1.5 times the mean interval length) yielded the dark gray in vitro
istogram.

istribution on the restricted interval [0, T ) and, for instance, to
xtract the order of a gamma model. It does not, however, allow
or an unbiased ‘model-free’ estimation of mean, variance and
quared coefficient of variation.

We calibrated the influence of the observation length T on
he estimated values of mean interval, variance and CV2 for
amma processes of various orders. Fig. 4, left panels, shows the
nalytic results (gray lines) which were confirmed by numeric
imulations (dotted lines). For increasing width of the analysis
indow, the CV2 approaches the asymptotic value (Cox, 1962;
ox and Lewis, 1966):

V2
∞ = 1

α
. (7)

In the case of a Poisson process (dashed gray line) the
urve saturates beyond T ′ = 10, i.e. for an expected spike count
f about 10 within the analysis window (Eq. (3)). The more
egular processes (α > 1) reach the asymptotic level faster,
hile the more irregular processes (α < 1) approach it more

lowly.
For experimental spike trains recorded under stationary input

onditions (see Section 2) we observed the same general bias
ith respect to the length of the observation interval. Fig. 4, right
anels, shows the data from five neurons. All neurons exhibited
piking which was more regular than Poisson, comparable to a
amma process of order 2–4.

Estimates of spike train irregularity from finite length experi-
ental observations (squared coefficient of variation of the ISIs)

uffer from a general tendency to under-estimate its value. One
hould use ‘long enough’ observation windows T 	 μ to avoid
considerable bias. Our results suggest to use windows that
omprise at least 5–10 spikes. For any specific set of experi-
ental data, information can be gained from calibration curves

s shown in Fig. 4, which depict the dependence of the bias on
bservation time.

L

N

= 10. For stationary input the cortical neurons in vitro typically exhibited a
ore regular spiking than a Poisson process. The curves saturate for about 5–7

nits of operational time.

.1.2. Spike count variability
Count variance and the Fano factor are also subject to an

stimation bias which depends on the length T of the observation
nterval. We give here an analytic expression for this dependency.
et

(t) =
∑

i

δ(t − ti)

enote a (random) spike train with spikes at times ti. We assume
hat the generating process is stationary and has a finite rate

[x(t)] = λ = 1

μ
< ∞.
et

T =
∫ T

0
x(t) dt
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enote the number of events in (0, T ]. We then have, by linearity
f the expectation:

[NT ] =
∫ T

0
E[x(t)] dt = λ T. (8)

Similarly, writing x̃(t) = x(t) − λ, we obtain

ar[NT ] = E[(NT − λ T )2]

= E

[(∫ T

0
x̃(t) dt

)2
]

= E

[(∫ T

0
x̃(t) dt

) (∫ T

0
x̃(u) du

)]

= E

[(∫ T

0

∫ T

0
x̃(t) x̃(u) dt du

)]

=
∫ T

0

∫ T

0
E[x̃(t) x̃(u)] dt, du

=
∫ T

0

∫ T

0
Cov[x(t), x(u)] dt du.

Since the process is stationary, its auto-covariance will
epend only on the time lag, and not on the time of its evaluation:

ov[x(t + Δ), x(t)] = γxx(Δ).

The above double integral can be simplified by the substitu-
ion Δ = t − u and s = (t + u)/2, yielding

ar[NT ] =
∫ T

−T

∫ T−|Δ/2|

|Δ/2|
γxx(Δ) ds dΔ

=
∫ T

−T

[T − |Δ|] γxx(Δ) dΔ. (9)

Let f (t) be the p.d.f. of the ISIs, which in the case of a renewal
rocess are independent and identically distributed. Let μ and
2 denote their mean and variance, respectively. Let further fr(t)
enote the p.d.f. of an r-fold sum of independent intervals, given
y the convolution:

r(t) = (f ∗ · · · ∗f )︸ ︷︷ ︸
r-times

(t).

We define f0(t) = δ(t). The auto-covariance of the process is
hen given by

(Δ) ≡ Cov[x(t + Δ), x(t)] = 1

μ

∞∑
r=0

fr(|Δ|) − 1

μ2 .

Thus, for any given renewal process specified by its ISI dis-
ribution, we are now in the position to (numerically) compute
he explicit dependence of the count variance and, therefore, of

he Fano factor on the observation length T.

In the special case of a Poisson process, the counts are Poisson
istributed for all values of T. The count variance is then equal
o the mean count, and thus the Poisson process has Fano factor

c
i

v

Right) Calibration for the same five recordings as presented in Fig. 4. The count
ariance of the neuronal process exhibits a behavior that is very similar to the
ore regular point processes with gamma orders α ≥ 2.

F = 1, independently of the observation length. For general
enewal processes, the situation is different. Only in the limit of
ong observations, one has (Cox, 1962)

ar[NT ]∼ σ2

μ3 T, (10)

hich, together with Eq. (8), leads to the equality in Eq. (5).
In Fig. 5, left panels, we show the estimation bias for the

ount variance and the Fano factor for gamma processes of vari-
us orders α, as a function of observation length T ′ in operational
ime. In addition to the analytically obtained curves (gray lines;
ased on Eq. (9)) we performed numerical simulations (thin
lack lines), calculating the mean of 104 independent obser-
ations. For increasing window size T ′, the function of count
ariance quickly approached the linear relation given by Eq.
10), resulting in straight lines with slope 1 on the double-
ogarithmic scale for both the analytical solution and numerical
imulations. The Fano factor saturated at the asymptotic level
f 1/α at T ′ ≈ 10, independently of the gamma order. Note that
or shorter intervals the Fano factor tends to unity, irrespective
f the gamma order (Ratnam and Nelson, 2000). Thus, for pro-
esses more regular than the Poisson process (α > 1) there is
tendency to over-estimate the count variability, for processes

ess regular than the Poisson process (α < 1) the opposite is the

ase. By contrast, the bias in estimating the interval irregularity
s always negative (Fig. 4).

In the right panels of Fig. 5 we investigated how the count
ariance and the Fano factor depend on observation time
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oth estimators. The estimation error is generally smaller for the CV2 (top) than
or the FF (bottom). In the left panels we used a fixed N = 100, in the right
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n cortical pyramidal neurons. As for the CV2, all neurons
ehaved similar to a gamma process of order 2–4 and we may
gain obtain a reasonable good estimate for observation inter-
als that show an average spike count on the order of 5–10
pikes.

For all stochastic point processes – except for the homoge-
ous Poisson process, but including the Poisson processes with
dead-time – the Fano factor exhibits a significant bias for

hort observations. Under mild regularity assumptions, a value
f FF = 1 is approached for T ′ → 0.

Note, that the dependence of FF on the observation length
s not necessarily monotonic (e.g. for gamma processes of high
rder, data not shown). Several properties of mathematical or
perationally defined point processes, including biophysically
nspired neuron models, have a bearing on this dependence,
or example the feature of an absolute refractory period (see
ection 4).

.1.3. Variance of the estimator
So far we calibrated the estimators for CV2 and FF only with

espect to their expectation value. We now focus on the variance
f the estimator itself. In practical terms this is of interest because
e want to have some idea about how reliable our estimates of

nterval or count variability can be. For this we repeatedly sim-
lated spike train ensembles of a gamma process and estimated

2
F and CV . In Fig. 6, the standard deviation of the estimates
ultiplied with the gamma order α is plotted against the window
idth T ′ in operational time (left) and number of trials N (right).
s a first result, it turned out that the error in estimating both
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ariables, CV2 as well as FF, scales approximately linearly with
he inverse gamma order 1α. Thus, processes that are inherently

ore variable due to their stochastic nature imply a larger vari-
nce in estimating that variability. A second result evident from
ig. 6 is the generally lower error associated with the estimation
f CV2 as compared to the FF. This is easily explained by the
act that we pool ISIs from all trials, which results in samples
hat are much larger than that of N spike counts measured from

repeated trials (see also Section 4).
When increasing the length T ′ of the observation window,

he total number of intervals in all trials increases. This larger
ample size resulted in a reduced uncertainty in estimating CV2.
he error in FF, however, turned out to be independent of T ′

within the range tested) as the number of counting samples N did
ot increase with observation time. As expected, an increasing
umber of trials equally reduced the estimation error of both FF
nd CV2.

.2. Measuring irregularity in presence of rate modulation

In practice, a clean measurement of spike train irregularity
sing the squared coefficient of variation CV2 is often impaired
y dynamic changes of the neuron’s firing rate influencing the
ength of individual inter-spike intervals. This typically results in
ome extra dispersion of the ISI distribution and, consequently,
n an over-estimation of the CV2. By contrast, the distribution of
pike counts (and, hence, the Fano factor FF) remains unaffected
y rate modulations that repeat identically in each single trial.
he obvious reason is that only the number, but not the individual

imings of spikes enter the spike count statistics.
To quantify irregularity despite a temporal modulation of the

euron’s firing rate we measured the CV2 in operational time.
oing so requires two additional steps of analysis. First, we
ust obtain an empirical estimate λ̂(t) of the underlying firing

ate profile. Second, we need to transform time t �→ t′ accord-
ng to the empirical rate function as sketched in Fig. 1. Only
hen can we measure the variability of the intervals in oper-
tional time. The reliable estimation of the deterministic rate
unction is critical. After superimposing all spike trains of a
articular trial ensemble, we used the method of kernel con-
olution (Nawrot et al., 1999; Parzen, 1962) with a symmetric
ernel of triangular shape. The most important parameter of this
ethod is the width of the kernel, which defines the temporal

esolution of the estimate. To determine the optimal kernel width
e used the iterative method described in Nawrot et al. (1999),

n alternative method was suggested by Paulin and Hoffman
2001).

We tested the proposed procedure and assessed the quality
f the resulting estimate of CV2 using numerical simulations
f rate modulated gamma processes. As intensity function λ(t)
e chose a Gaussian response profile, superimposed on a sta-

ionary background, as depicted by the gray curve in Fig. 7b.
echnically, we first simulated a gamma process of order α = 4
n operational time, i.e. with constant unit rate under equilibrium
onditions. Fig. 7a shows an ensemble of 20 repeated realiza-
ions in operational time and the respective empirical interval
istribution with CV2 = 0.21. We then transformed the spike
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Fig. 8. De-modulation of spike trains. (a) Action potentials of one pyramidal
neuron measured during 20 experimental control trials (stationary input condi-
tion) displayed in operational time. (b) The estimated rate function λ̂(t) (black
curve) from 20 spike trains recorded during test trials reflect the modulation of
excitatory shotnoise input according to a Gaussian profile with 200 ms standard
width. (c) Same spike train ensemble as in (b) after de-modulation of time using
the transformation t �→ t′ (Eq. (2), Fig. 1). (d) Estimated cumulative distribu-
tion functions (cdf) of ISIs relative to the mean interval μ for control (blue), test
(black) and de-modulated (red). (e) Q-Q plots of cumulative ISI distributions
for test vs. control (black) and de-modulated vs. control (red). Colored values
represent the 5%–95% inter-quantile range, gray values are outside this range.
Repetition of the same experiment for 10 additional neurons for a modulation
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onsiderable over-estimation. This result is independent of the number of trials
middle panel). The positive estimation bias introduced by rate modulation is
tronger for more regular processes (right).

rains to real time according to the intensity function λ(t), as
escribed by Eq. (4) and shown in Fig. 1.

The resulting set of 20 realizations is shown in the lower panel
f Fig. 7b. Due to the temporal modulation of the firing rate we
btained an increased estimate of the irregularity CV2 = 0.54
n real time, which no longer reflected the imposed value of
he underlying point process. To correct for this problem, we
rst estimated the rate function λ̂(t) by averaging over trials as
escribed above. Subsequent transformation from real time to
stimated operational time resulted in the spike train ensem-

2
le shown in Fig. 7c. The measured value of CV = 0.21 was
lose to the correct value of the underlying stationary gamma
rocess displayed in Fig. 7a. The number of trials entering the
ate profile estimate did not significantly affect the outcome

i
r
t
a

f standard width (f) 200 ms, and (g) 300 ms confirmed the good agreement
f estimated CV2 in the control (open circles) and de-modulated test condition
filled circles). Open squares represent the rate modulated test condition.

f this procedure, as shown in the middle panel of Fig. 7d.
e also verified the excellent performance of this procedure

or processes of different gamma orders α ranging from 0.5 to
, as depicted in the right panel of Fig. 7d. We further tested
he suggested procedure of measuring CV2 in rate modulated
pike trains recorded from cortical pyramidal cells in vitro.
s control condition we chose stationary shotnoise currents as

nput. The output rate of the neuron was constant, as shown
n Fig. 8a. The operational time axis was scaled to unit rate,
sing the number of spikes during the observation interval (4 s)
veraged across all trials. The resulting ISI distribution yielded
V2 = 0.12. In the test condition, the neurons were stimulated
ith non-stationary shotnoise, where the excitatory component
as enhanced by an extra Gaussian profile while the inhibitory

nput was unchanged with respect to the control condition (see
ection 2). The spike trains extracted from 20 repeated measure-
ents in one cell are shown in Fig. 8b. The ISI distribution of

he non-stationary spike trains yielded CV2 = 0.31, represent-

ng an increase of the irregularity by a factor close to 3 with
espect to the control condition. De-modulation of the spike
rains based on an estimate of the rate function λ̂(t) resulted in
spike train ensemble of constant rate (Fig. 8c) and an ISI dis-
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ribution with CV2 = 0.11, in good agreement with the control
ondition.

In Fig. 8d we show the cumulative ISI distribution of the
est (black), the control (blue), and the de-modulated (red) con-
ition in operational time. The latter two match closely. In the
uantile–quantile (Q-Q) plot (Barbieri et al., 2001; Brown et al.,
001) in Fig. 8e we scattered the cumulative ISI distributions of
he test condition against the control condition (red curve). The
esulting curve coincides well with the diagonal, indicating very
ood agreement between the reconstructed and the true ISI dis-
ribution. Repetition of this experiment in 10 different neurons
ith either a Gaussian input profile of standard width 200 ms

N = 5, Fig. 8f) or 300 ms (N = 5, Fig. 8g) yielded equally
ood results.

A certain minimum number of independent trials is required
o obtain a reliable estimate of the unconditional rate function.
n addition, the process under observation must be in equilib-
ium, a requirement met in our simulations as well as in our
n vitro experiments (see Section 4). In practice, due to time
imitations in the experiments, the number of trials is typi-
ally of the order of only a few trials up to several hundreds,
epending on the experiment design. In Fig. 7d we demon-
trated that, for the tested gamma process and for the spike
ates imposed, the value of CV2 can be safely estimated from
minimum of 10 trials. Generally, however, a low number of

rials will yield a low total number of spikes. This has the same
ffect as low firing rates: The temporal resolution of the rate
stimate is limited, and fast rate dynamics cannot be captured
dequately (Nawrot et al., 1999). As a consequence, the de-
odulation to operational time will not completely compensate
odulations of the ISIs, and the irregularity of intervals is likely

o be over-estimated. By contrast, over-compensation of rate
uctuations may occur if the kernel used for rate estimation is
hosen too narrow, implying an inappropriately high temporal
esolution.

.3. Irregularity vs. count variability

Thus far we discussed the separate estimation of either irreg-
larity or count variability. According to point process theory,
owever, inter-spike interval irregularity (CV2) and spike count
ariability (FF) are closely related. This suggests the co-analysis
f both measures in neuronal spike data.

For stationary renewal processes, the prediction FF = CV2

olds for long observations, under only very mild assumptions
n the process. We tested this prediction in our recordings from
ayer 5 pyramidal neurons in vitro while injecting either purely
xcitatory or balanced excitatory/inhibitory shotnoise currents.
e therefore divided the total recorded spike train of several

undred seconds duration into trials of equal length. To avoid
significant estimation bias, we chose a fixed trial length of
′ = 10 in operational time, i.e. each trial comprised 10 spikes
n average. We then computed the Fano factor of the spike

ounts, and the squared coefficient of variation of the ISIs from
nsembles of N = 15 trials. This is a trial number that we can
ealistically also expect to obtain in the case of more complicated
xperiments in behaving animals.

g
r
v
n

verage values of FF (gray) and CV2 (white) for both input conditions. Symbols
ndicate averages for individual neurons.

The results for five neurons recorded under the two aforemen-
ioned conditions are shown in Fig. 9, where FF was scattered
gainst CV2. Each data point represents one ensemble of trials,
pen symbols stand for pure excitation (n = 48), filled sym-
ols stand for balanced excitation/inhibition (n = 63). In the
ean across all samples both measures of FF and CV2 are

pproximately equal with 〈F̂F〉 = 0.29 (geometric mean 0.25)

nd 〈 ˆCV2〉 = 0.27 (geometric mean 0.24). For purely excitatory
nput the neuronal responses were more regular and exhibited
ess trial-by-trial variability of their spike counts than for bal-
nced input, as shown in the inset of Fig. 9. The individual
stimates scatter arround the identity line indicating FF = CV2.
his variability largely represents the uncertainty of the estima-

or due to a limited number of trials (cf. Fig. 6) and, as expected,
or individual neurons the variance of estimation is typically
arger for the FF. To verify this we again performed numeric sim-
lations of gamma processes. For each data point we estimated
he corresponding gamma order by α = 1/CV2 (see Section 2)
nd repeatedly simulated ensembles of 15 trials with an expected
ean count of 10 spikes. From the resulting simulations we con-

tructed the 95% and 99% confidence regions, indicated in Fig. 9
y dark gray and light gray shading, respectively.

Our results show that the responses of cortical neurons
ecorded under stationary input conditions in vitro are in very

ood agreement with the predictions from renewal theory, with
espect to second order interval and counting statistics. The
ariance in estimating FF and CV2 could be well predicted by
umeric simulations of gamma-type renewal processes.
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c) Spike output of a cortical neuron during 20 repeated trials of modulated inp
ine represents the empiric values as estimated during 20 control trials (see Sect

.4. Time resolved joint analysis of irregularity and count
ariability

To study dynamic changes of neuronal variability we mea-
ured the CV2 and the FF in a sliding window of length T.
he time resolved Fano factor has been employed in the anal-
sis of experimental data in several earlier studies (Kara et al.,
000; Nawrot et al., 2003a; Oram et al., 2001). In practice, it is
esirable to measure dynamic changes of variability with a time
esolution T that also captures the relevant rate dynamics. In case
f short analysis windows chosen for the sake of high temporal
esolution this might result in a considerable estimation bias for

oth CV2 and FF, as discussed before. In general, this bias will
hange in time since for a non-stationary rate λ(t) a fixed win-
ow width T in real time translates into a variable interval T ′ in
perational time. However, in operational time we can expect

r
a
o
l

solved measurement in operational time with a fixed window of length T = 4.
rrent and time resolved measurement of CV2 and FF (T = 661 ms). The gray
). (d) Demodulated spike trains as in b with T ′ = 5.

his bias to stay constant which enables a faithful assessment of
he temporal changes of spike train irregularity and spike count
ariability.

.4.1. Rate modulated gamma simulation
We first demonstrate the performance of this procedure in

umerical simulations. Each spike train depicted in Fig. 10a
resents one realization of a rate modulated gamma process with
he same intensity function as in Fig. 7b. The time resolved mea-
urement of CV2(t) in Fig. 10a is badly corrupted. We observe a
trong modulation, coinciding with the bell shaped rate response.
s expected, the absolute value is highest where the change in
ate dλ(t)/dt and, thus, the modulation of the ISIs is strongest. In
ddition, we observe a bias leading to a slight under-estimation
f the theoretical expectation value CV2∞ = 1/α = 0.5 (gray
ine) during the early and late phase of the trial. This effect is
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Fig. 11. Task-related changes of variability in monkey motor cortex. (a) Spiking
activity of a motor cortical neuron during repeated trials which were aligned to
the preparatory signal (PS) at time t = 0. Blue circles indicate the time of move-
ment onset. (b) Estimated firing rate shows clear task-related modulation with
a strong response shortly before movement onset. (c–f) Blue curves show vari-
ability measured in original time (window width T = 590 ms), red curves show
variability as measured in operational time (T ′ = 5) after back-transformation
to the experimental time axis. (c) The CV2 exhibits modulations in relation
to rate changes when measured on the original time axis (blue). These mod-
ulations are largely diminished when measured in operational time (red) with
mean CV2 = 0.69 smaller than unity. (d) Measuring the CV2 in each trial sep-
arately (see text) leads to a significantly reduced trial-averaged CV2

trial which
now appears to be almost constant throughout the task with an average of 0.50
in operational time (red). (e) Task-related Fano factor is highest at the beginning
of the task but strongly decreases during the period of movement preparation.
At the rate response peak shortly before onset of the center-out movement the
F
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xplained by the rather short analysis window of T = 385 ms,
quivalent to an average of T ′ = 4 in operational time. After
ransformation to operational time (Eq. (2)) on the basis of the
mpirical rate function λ̂(t) displayed in Fig. 10a, the resulting
unction CV2(t) as measured in a window of width T ′ = 4 is
at, as shown in Fig. 10b. Also, the bias is now reduced and
onstant throughout the trial.

The influence of rate modulation on the time resolved mea-
urement of FF(t) in real time is explained by the estimation
ias according to the calibration curve depicted in Fig. 5. Dur-
ng a phase of low rate the bias was relatively high, for high rate
he bias was reduced. This bias-induced modulation is barely
isible in the bottom curve of Fig. 10a as the analysis window
as of sufficient length to avoid a significant bias. In operational

ime, the bias again remained constant over time by construction
Fig. 10b).

.4.2. Modulated synaptic input currents in vitro
We repeated the time resolved measurement for a sample

f our in vitro data, where the excitatory shotnoise input was
odulated following a bell shaped profile (see Section 2). This

esulted in a similar bell shaped modulation of the neuronal firing
ate, as depicted in Fig. 10c. As for the model simulations, the
ynamic changes of the CV2 suggest a strong modulation and an
verall increase of spiking irregularity. However, in operational
ime, this effect is annihilated (Fig. 10d). Rather, the neuron now
xhibited a slight reduction of CV2. This shows that the irregu-
arity is actually slightly reduced during the period of increased
xcitatory drive. This result is consistent with the observation
hat unbalancing of excitation and inhibition towards more exci-
ation results in a more regular spike output of cortical layer 5
yramidal neurons (cf. Fig. 9; Stevens and Zador, 1998).

.4.3. Single unit recording in monkey motor cortex
Finally, we analyzed the task-related modulation of CV2 and

F in an example of an in vivo single neuron recording from
he primary motor cortex of a monkey performing a center-out
eaching task (see Section 2). In each experimental trial, the
onkey was presented with a preparatory signal (PS) at time
= 0 which indicated the required movement direction, which
as chosen randomly as 1 out of 6 possible direction targets.
he monkey was not allowed to move his hand from the central

esting point, however, before the reaction signal (RS) appeared
fter a variable preparatory period of either 600 ms or 1200 ms
hich was chosen at random. The spike raster in Fig. 11a shows

he recorded spike activity during 19 trials of one specific move-
ent direction and for the short preparatory period of 600 ms.
rials were aligned to PS. Movement onset (MO) is indicated

n each trial by a blue circle. Short before MO the neuron’s
ring rate shows a movement-related peak which is direction
ependent (not shown).

The time-resolved measurements of FF and CV2 reveal task-
elated modulations of variability in Fig. 11c–f. The blue curves

how the estimate on the original time axis of the experiment,
he red curves show the estimate in operational time after back-
ransformation to the experimental time axis according to Eq.
4).

l
C

p

ano factor reaches a minimum at FF ≈ 0.5–0.6. (f) The ratio of CV2
trial and FF,

oth measured in operational time, is close to unity during the task-related rate
esponse.

Spike train irregularity in Fig. 11c measured in experimen-
al time exhibits strong rate-related modulations, as expected.

easurement in operational time (red curve) yields a CV2 that
s smaller than unity throughout the trial. In Fig. 11d we used

different estimator for the irregularity. Rather than pooling
ntervals from all trials, we now measured the CV2

i in each trial
separately and then computed the trial-averaged CVtrial. This
ead to further reduction to an almost constant value (average
Vtrial = 0.50).

Trial-by-trial count variability in Fig. 11e is large in the initial
hase of the experiment with FF > 3 but decreases throughout
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he period of movement preparation. During the movement-
elated activity the Fano factor reaches a minimum at FF ≈
.5–0.6. This result is consistent with previous findings of task-
odulated trial-by-trial variability in motor cortical neurons

Churchland et al., 2006; Nawrot et al., 2001, 2003a).
Thus, during the actual task-relevant and directionally tuned

esponse both measures of trial-by-trial count variability and
pike train irregularity are smaller than unity and become
pproximately equal with values arround FF ≈ CV2 ≈ 0.5 (cf.
ig. 11f). The constant low value of CV2

trial ≈ 0.4–0.6 indicates
hat the nature of this neuron is less variable than a Poisson
rocess.

. Discussion

.1. Operational time vs. real time

Observing a point process in finite windows may be asso-
iated with a considerable bias in the estimation of spike train
rregularity, CV2, and spike count variability, FF, with respect to
he theoretical value assumed in the limit of infinite observation
ength. Our results from the analytical treatment of renewal pro-
esses were confirmed in numeric simulations of gamma-type
enewal processes. The observed bias was found to depend on the
ength of the observation in operational time, i.e. on the expected
pike count within that interval. From a theoretical point of view
t is, thus, of advantage to estimate CV2 and FF in operational
ime rather than in real time.

Analysis of spike trains recorded from cortical pyramidal
eurons under stationary input conditions in vitro confirmed the
ame bias dependencies of CV2 and FF on the mean spike count
cf. Figs. 4 and 5). In the case of non-constant firing rate profiles
e suggested to de-modulate the spike trains by using a non-

inear transformation of real time to operational time (Eq. (2)).
his enables the time resolved analysis of spike train irregular-

ty and trial-by-trial count variability. Back-transformation from
perational to real time (Eq. (4), Fig. 11) allows for a compari-
on of the time resolved variability to other observables in real
ime.

The estimation bias of measuring variability in experimental
pike trains has practical consequences. First of all, it is desirable
o avoid a significant bias by choosing sufficiently long obser-
ation intervals. Our calibrations of the gamma-type renewal
rocess and of experimental spike trains in vitro suggest to use
indows that comprise not less than 5–10 spikes on average.
number of previous experimental as well as model stud-

es have analyzed interval or count variability in considerably
horter windows (e.g. Amarasingham et al., 2006; Britten et al.,
993; Churchland et al., 2006; Dean, 1981; Geisler and Albrecht,
997; Kara et al., 2000; Kargo and Nitz, 2004; Lee et al., 1998;
azurek and Shadlen, 2002; Murthy and Fetz, 1996; Snowden

t al., 1992; Vogels and Orban, 1991; Vogels et al., 1989). In
few examples the mean count was as small as T ′ ≈ 0.1–0.5
nd thus parts of the results are likely to be affected by a strong
stimation bias.

Under certain circumstances we cannot avoid short observa-
ions, in particular for the time resolved analysis of variability

1

s
t
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ynamics. We may then use the calibration curves (cf.
igs. 4 and 5) to obtain an estimate of and possibly correct for

he introduced error. The more practical decision is to accept a
ertain bias which, for a fixed observation length in operational
ime, can be assumed to be constant and allow for a fair com-
arison of second order count and interval statistics across time
nd among different data samples (cf. Figs. 10 and 11). How-
ver, this condition often was not considered in earlier studies
see also discussion in Wiener, 2003 and Chelvanayagam and
idyasagar, 2006). In several examples spike count variabil-

ty in a single neuron was compared for different experimental
onditions, implying that different firing rates and/or different
bservation windows were used (e.g. Kara et al., 2000; Kargo
nd Nitz, 2004; Mazurek and Shadlen, 2002; Murthy and Fetz,
996). The same criticism applies to studies that compared vari-
bility of different neurons that exhibited different firing rates
n a fixed time window (e.g. Kara et al., 2000; Lee et al., 1998;
ram et al., 2001). A series of studies that investigated corti-

al trial-by-trial variability first normalized the spike count to
btain an estimate of the spike rate, and only then computed the
rial-by-trial standard deviation and the coefficient of variation
f the rate variable (e.g. Lee et al., 1998; Maynard et al., 1999;
ram et al., 2001) or the trial-by-trial rate variance normalized
y the mean rate (Churchland et al., 2006). When normalizing
o rate, however, the information about spike count and inter-
al duration is lost, and bias effects due to low spike counts are
oncealed. This marks the advantage of count-based statistics
ver rate-based statistics. Several studies investigated Fano fac-
or vs. time curves FF(T ) to characterize the spiking of cortical
eurons (Baddeley et al., 1997; Buracas et al., 1998; Kara et
l., 2000; Oram et al., 2001; Ratnam and Nelson, 2000; Teich
t al., 1996). In all cases, however, this was studied in depen-
ence on the width of the analysis window in real time rather
han in operational time, which complicates the interpretation
articularly for small values of T.

.2. Renewal assumption

In this work, the analytic treatment and all numerical simula-
ions were based on the model of a renewal process. A process
hich has dependent ISIs, however, violates this assumption and
enerally also exhibits a different behavior in its second order
ount and interval statistics. In particular, the equality FF = CV2

iscussed in Eq. (5) holds only for independent intervals. A pro-
ess with correlated ISIs (but which is still stationary and in
quilibrium) satisfies the slightly more general equality

lim→∞FF = CV2
th

[
1 + 2

∞∑
i=1

ξi

]
, (11)

here ξi denotes the ith order serial correlation coefficient, and
V2

th is computed from the ‘theoretical’ ISI variance if all inter-
als were independent (Chacron et al., 2001; Cox and Lewis,

966; Ratnam and Nelson, 2000).

We showed elsewhere (Nawrot et al., 2007) that the
pontaneous activity of neocortical neurons recorded in the anes-
hetized rat typically exhibited a moderate negative correlation
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oefficient for consecutive intervals (ξ1 < 0), but no significant
orrelation for higher-order pairs (ξi ≈ 0 for i ≥ 2). This result
ould be well explained by the same cellular mechanisms that are
lso responsible for spike frequency adaptation. The observed
egative ISI correlation lead to an empirical FF that was reduced
n comparison to a renewal control of randomly shuffled ISIs,
nd also smaller than the empirical CV2, in accordance with Eq.
11). Layer 5 pyramidal neurons in vitro stimulated by noise cur-
ent injection showed only a relatively weak negative first order
erial correlation (Nawrot et al., 2007). Such ‘small deviations’
rom the renewal model did not significantly affect the equal-
ty FF = CV2, which still agreed well with the prediction from
amma renewal processes (cf. Fig. 9).

.3. Equilibrium condition

In this work, we treated renewal processes in equilibrium.
his means that our observation started at a ‘random point’ with

espect to the realization of the process, as if the process had been
unning for a long time already. In an ‘ordinary’ renewal process,
y contrast, each observation (‘trial’) begins with a spike. In this
ase (and generally for processes that are not in equilibrium),
he bias of FF and CV2 for short windows is altered due to
rtificial onset synchronization. Somewhat larger observation
ntervals are then required for a reliable empirical estimate (data
ot shown).

It depends on the experimental protocol whether the equilib-
ium or the ordinary renewal model more adequately describes
he observed neuronal responses. The former might apply to
xperimental settings with a certain level of spontaneous spiking
nd smooth changes of activity associated with sensory input or
otor output. However, in the case of low spontaneous activity

nd a sharp response onset that is tightly locked to the stimulus
r behavioral event, the latter might be a more adequate descrip-
or. Similarly, the intracellular injection of a current step can
ead to a sharp onset-locking of the leading spike which closely
esembles an ordinary process.

In our in vitro experiments it was important to allow the
ecorded neuron to settle in a state of equilibrium after having
tarted the somatic current injection. The onset of the shotnoise
urrent, in fact, had severe effects on the neuron’s internal state.
t induced a transition from rest to an active state. At rest the
euron received only negligible synaptic input due to sparse
pontaneous activity typical for acute neocortical slices. The
ctive state, by contrast, was associated with a net depolariza-
ion and strong fluctuations of the membrane potential, and with
he generation of action potentials at a moderate rate. To exclude
ny transient or adaptation phenomena, our experimental pro-
ocol allowed for a long (> 50 s) initial period of continuous
njection of the synthetic fluctuating current before we started to
nalyze the data, and the stimulation was never halted through-
ut the experiment. This procedure is distinct from protocols
hat had been used in several previous in vitro studies of interval

nd count variability in cortical neurons (Harsch and Robinson,
000; Nowak et al., 1997; Stevens and Zador, 1998). In these
tudies, current injection went through cycles of stimulation
lternating with pauses of no stimulation, leading to fast input

1
2
b
p

nce Methods  169 (2008) 374–390 387

ransients at the beginning of each trial and a typical trial duration
f only a few seconds.

.4. Refractory period

Our analytical results for non-stationary renewal processes
ere based on the assumption that the process dynamics is con-

istent with the notion of ‘operational time’, as expressed by
q. (2). In real neurons, however, some aspects of the dynam-

cs may be incompatible with the associated transformation. One
andidate for this kind of problem is the absolute refractory time
f neurons, which is fixed in real time since it is the result of
odium channel inactivation. The associated ‘dead time’ follow-
ng each spike of the neuron does not scale with the firing rate,
nd hence it does not transform well to operational time (Berry
nd Meister, 1998; Kara et al., 2000; Reich et al., 1998; Teich
t al., 1997). If we ignore this problem, we obviously violate
he constraint of a fixed dead time and, consequently, introduce
(small) error in our estimate of the CV2 in operational time.
his error will, however, increase with increasing rate. This was

ecently demonstrated for a related measure of interval vari-
bility by Chelvanayagam and Vidyasagar (2006). In cortical
eurons where the dead time is small (a few milliseconds) this
ffect may be neglected as long as the ISIs are long (tens or
undreds of milliseconds).

.5. Non-stationarity across trials

An empirical estimate of the temporal firing rate profile is
ommonly obtained from experimental data by means of a trial
veraging procedure, e.g. the PSTH. Doing so makes the implicit
ssumption that the rate function is the same in all trials, because
nly then the trial averaged estimate faithfully reflects the rate
rofile which underlies the generation of action potentials in
ndividual trials (Aertsen et al., 1989; Knoblauch and Palm,
005; Masuda and Aihara, 2003; Ventura et al., 2005). This cri-
erion was clearly met in all our simulations where we imposed
he same intensity function in all trials. Thus, the statistical vari-
tions in spike count and in ISI length were only due to the
tochastic nature of the point process.

In our in vitro experiments the statistical fluctuations in the
pike responses were due to a combination of stochastic exter-
al inputs and noise intrinsic to the neuron. The fluctuations
f the input current were matched to mimic the activity of a
arge presynaptic population following some predefined rate
rofile, which was strictly the same in all trials. In the liv-
ng brain, however, the level of input that a neuron receives

ay vary from trial to trial even if experimental conditions are
nchanged. In the context of point process models, this can
e interpreted as a trial-to-trial change of the underlying fir-
ng rate, either due to variations of the stimulus-related input or
o changes of ongoing activity that are not locked to the time
rame of the experiment (Arieli et al., 1996; Azouz and Gray,

999; Kisley and Gerstein, 1999; Nawrot, 2003; Nawrot et al.,
001). This obfuscates a faithful estimation of the rate function
y any procedure that relies on trial averaging. One obvious
roblematic consequence of this is an imperfect de-modulation
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f the single-trial spike trains (Eq. (4)) and an over-dispersed ISI
istribution.

In cases where non-stationary firing rate profiles across trials
re suspected it may be useful to obtain an individual estimate of
he CV2 in each trial and only then average across trials, rather
han pooling the ISIs from all trials (cf. Fig. 11). This is equiv-
lent to normalizing by the total spike count on a trial-to-trial
asis. This procedure diminishes but cannot completely abol-
sh the effect of trial-by-trial changes of firing rate. A similar
trategy was recently followed by Davies et al. (2006). They
ntroduced a new local metric for measuring irregularity, which
as normalized separately in each trial. In a second step, aver-

ging in time and across trials was performed. Trial-to-trial
hanges in firing rate has an even stronger increasing effect
n the spike count variance, and thus on the Fano factor. For
he co-analysis of both types of variability we must therefore
xpect that FF > CV2. In fact, one can make use of this non-
dentity of FF and CV2 as a quantitative measure for across-trial
on-stationarities. In a next step one can develop a model of
uch non-stationarities, develop appropriate correction proce-
ures and use those to test the model (Nawrot, 2003; Nawrot
t al., 2001). The sample time-resolved variability analysis of
he single unit recording from the motor cortex of the behaving

onkey presented in Fig. 11 is suggestive of across-trial non-
tationarity in the early part of the trial. Further investigation
f the nature and possible mechanisms of this phenomenon is
urrently under way (Nawrot et al., in preparation).

A special case of across trial non-stationarity is caused by
he misalignment of individual trials. Repeated trials recorded
n one experiment need to be aligned in time with respect to a

eaningful reference, such as the occurrence of a stimulus or
behavioral event. Trials may be misaligned if the observed

rain processes result in a neuronal response of variable latency
ith respect to that particular trigger event (Baker and Gerstein,
001; Bollimunta et al., 2007; Brody, 1999; Nawrot et al., 2003a;
entura, 2004). In this case, the trial averaged rate estimate
ill be smeared out in time and, again, rate estimate and de-
odulation is imperfect. This leads to an over-dispersed ISI

istribution and, therefore, to an increased value of the empiri-
al CV2. The Fano factor will also be affected if the observation
nterval falls into a period of significant rate change, effectively
eading to a trial-by-trial non-stationarity of the rate and, conse-
uently, to an artificially increased spike count variance (Nawrot
t al., 2003a).

.6. Variability in cortical neurons

We showed that, in line with previous studies (Harsch and
obinson, 2000; Nawrot et al., 2003b; Stevens and Zador, 1998),

egular spiking cortical pyramidal neurons in vitro stimulated
ith stationary realistic fluctuating current input exhibited mod-

rate Fano factors in the range 0.2–0.5. These numbers are
ompatible with the spike train irregularity observed in simi-

ar recordings (Arsiero et al., 2007; Badoual et al., 2005; Harsch
nd Robinson, 2000; Holt et al., 1996; Nawrot et al., 2003b;
owak et al., 1997; Stevens and Zador, 1998). Balancing excita-

ory and inhibitory inputs increased both the spike count interval

B

science Methods 169 (2008) 374–390

ariability by approximately 30%, but did not disrupt the equal-
ty of the two parameters (cf. Fig. 9). Similarly, our in vivo
ecordings of stationary spontaneous activity of single cortical
eurons in the anesthetized rat had shown moderate count and
nterval variability in the very same range (Nawrot et al., 2007).

e conclude that, for stationary input conditions, cortical neu-
ons are clearly less variable than the Poisson process, and that
ingle-neuron spiking is better approximated by gamma renewal
rocesses with order parameters in the range of 2–5. This result
ontradicts the high trial-by-trial variability measured in awake
nimals where single neurons were found to be more variable
han the Poisson process (FF > 1) in the visual (for references
ee Shadlen and Newsome, 1998; Teich et al., 1996) and motor
reas (Lee et al., 1998; Maynard et al., 1999), with few excep-
ions (Amarasingham et al., 2006; Gur et al., 1997; Kara et al.,
000).

In this paper we outlined a strategy of data analysis that helps
o identify sources that contribute to the observed high trial-
y-trial variability of cortical single neuron output in vivo. It
nvolves (1) the joint analysis of spike train irregularity (CV2)
nd trial-by-trial count variability (FF) in operational time and
2) the investigation of the task-related dynamics of both aspects
n the same time scale.

cknowledgments

We thank Jan Benda, George Gerstein, Benjamin Staude
nd Mathias Bethge for valuable discussions. We gratefully
cknowledge financial support of this work by the German
ederal Ministry for Education and Research (BMBF, grant
1GQ0420 to the BCCN Freiburg). Additional funding was
eceived from the DAAD (VR) and the Heidelberg Academy
f Sciences and Humanities (MN).

eferences

ertsen AMHJ, Gerstein GL, Habib MK, Palm G. Dynamics of neuronal
firing correlation: modulation of effective connectivity. J Neurophysiol
1989;61:900–17.

marasingham A, Chen TL, Geman S, Harrison MT, Sheinberg DL. Spike count
reliability and the Poisson hypothesis. J Neurosci 2006;26:801–9.

rieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity:
explanation of the large variability in evoked cortical responses. Science
1996;273:1868–71.
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