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We studied the dynamics of large networks of spiking neurons with
conductance-based (nonlinear) synapses and compared them to net-
works with current-based (linear) synapses. For systems with sparse and
inhibition-dominated recurrent connectivity, weak external inputs in-
duced asynchronous irregular firing at low rates. Membrane potentials
fluctuated a few millivolts below threshold, and membrane conductances
were increased by a factor 2 to 5 with respect to the resting state. This
combination of parameters characterizes the ongoing spiking activity typ-
ically recorded in the cortex in vivo. Many aspects of the asynchronous
irregular state in conductance-based networks could be sufficiently well
characterized with a simple numerical mean field approach. In particular,
it correctly predicted an intriguing property of conductance-based net-
works that does not appear to be shared by current-based models: they
exhibit states of low-rate asynchronous irregular activity that persist for
some period of time even in the absence of external inputs and with-
out cortical pacemakers. Simulations of larger networks (up to 350,000
neurons) demonstrated that the survival time of self-sustained activity
increases exponentially with network size.
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1 Introduction

In view of experimental constraints in assessing the activity dynamics of
cortical networks in vivo directly, computational models have gained in-
creasing importance in recent years (Vogels, Rajan, & Abbott, 2005). In fact,
random recurrent networks of spiking neurons have emerged as a standard
theoretical model, subject to both approximate analytical treatment (Amit
& Brunel, 1997; Brunel, 2000, 2003) and numerical simulations (Golomb
& Hansel, 2000; Mehring, Hehl, Kubo, Diesmann, & Aertsen, 2003). Typ-
ically, a recurrent network model of the neocortex comprises two pop-
ulations of neurons, excitatory and inhibitory ones, equipped with both
intra- and inter-population synaptic connections. The dynamics of such
networks with current-based (linear) synapses has been investigated in
great detail. In the current-based model, postsynaptic potentials arise from
stereotyped current transients. Inputs are not affected by the state of the
postsynaptic neuron and, in turn, do not change its integrative properties.
A more realistic (nonlinear) model of the synapse assumes a stereotyped
conductance transient in the postsynaptic membrane instead. Recent exper-
imental (Chance, Abbott, & Reyes, 2002; Destexhe, Rudolph, & Paré, 2003;
Shu, Hasenstaub, & McCormick, 2003) and theoretical (Meffin, Burkitt, &
Grayden, 2004; Kuhn, Aertsen, & Rotter, 2004) studies of input integra-
tion in cortical neurons revealed that synaptic activity can indeed strongly
modulate the properties of input integration and, therefore, of neuronal dy-
namics (Shelley, McLaughlin, Shapley, & Wielaard, 2002; Vogels & Abbott,
2005). First, active synapses on the dendrite decrease the input resistance
of the membrane, resulting in a reduced effective membrane time con-
stant. This leads to shorter and attenuated postsynaptic potentials (PSPs).
Second, a shift in the mean membrane potential leads to a change of the
driving force, which determines the amplitude of postsynaptic potentials.
In combination, this yields a nonmonotonic rate transfer function of neu-
rons with conductance-based synapses, in contrast to the monotonic input-
output characteristic for neurons with current-based synapses (Kuhn et al.,
2004).

While it was clear for a long time that synaptic conductances can in-
fluence the integrative properties of single neurons (Bernander, Douglas,
Martin, & Koch, 1991; Rapp, Yarom, & Segev, 1992), little is known about
their effect on the dynamics of networks. In a recent study, Meffin et al.
(2004) showed with analytical methods that a network with conductance-
based synapses would indeed reflect important features of single-neuron
behavior reported from in vivo intracellular recordings: the membrane time
constant is reduced, the mean membrane potential is just below thresh-
old, and small fluctuations induce a low firing rate and irregular firing
patterns. The effects of conductance-based synapses on dynamic popu-
lation activity, however, were not discussed. To address this issue, we
systematically studied the dynamics of large, sparse random networks of
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integrate-and-fire neurons connected with conductance-based synapses. In
particular, following the work of Brunel (2000), we investigated how the
activity states of the network depend on the relative strength of inhibition
and the intensity of external inputs and what the impact is of synaptic time
constants.

A simple mean field model for conductance-based networks suggested
the possibility of stable self-sustained activity at low firing rates, even in
the absence of external inputs. In large-scale simulations, networks with
conductance-based synapses were indeed found to sustain low-rate asyn-
chronous irregular activity, which closely resembles cortical spiking activity
in awake, behaving animals. Here we show that by modeling synapses in
the network as conductances, a sufficiently large network, once activated to
be in a sufficiently stationary state, exhibits self-sustained activity without
any internal pacemakers and even after all inputs have been removed. The
biological meaning of such self-sustained activity is an open issue, as the
intact brain under normal circumstances is constantly receiving input from
various sensory and nonsensory channels. However, isolated brain tissue,
such as cortical cultures (Plenz & Aertsen, 1996) and deafferented corti-
cal slabs (Burns & Webb, 1979; Timofeev, Grenier, Bazhenov, Sejnowski, &
Steriade, 2000), is known to exhibit self-sustained activity in the absence of
external input. Such experimental observations could so far be explained
only by the action of hypothetical endogenously active neurons (Latham,
Richmond, Nelson, & Nirenberg, 2000; Latham, Richmond, Nirenberg, &
Nelson, 2000).

Preliminary results of this study have been presented previously in ab-
stract form (Schrader, Kumar, Rotter, & Aertsen, 2005; Kumar, Schrader,
Rotter, & Aertsen, 2005).

2 Materials and Methods

2.1 Recurrent Random Networks. We analyzed the dynamics of recur-
rent random networks of integrate-and-fire neurons. We fixed the size of the
networks at N = 50,000 for most simulations, but networks of up to 350,000
neurons were also considered in this study. We assumed that the larger frac-
tion of all neurons (Nexc = 0.8 N) was excitatory and the rest (Ninh = 0.2 N)
inhibitory. Each neuron received input from K neurons from within the
network, of which Kexc = 0.8 K were randomly chosen from the excitatory
pool and Kinh = 0.2 K from the inhibitory pool. Multiple synapses between
the same pair of neurons were allowed. The resulting networks were of rel-
atively sparse connectivity, such that K/N was 0.1 or lower. In addition to
the recurrent connections, each neuron received Kext external Poisson-type
inputs, all excitatory, with a rate νext for each afferent. Apart from the type of
synapses assigned to them, excitatory and inhibitory neurons were treated
identically (see Figure 1). Specific numbers for all simulations shown are
collected in Table 1.
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Figure 1: Network architecture. Two populations of Nexc excitatory and Ninh

inhibitory neurons were sparsely connected in a recurrent fashion. Each neuron
received input from Kexc excitatory and Kinh inhibitory neurons within the
network. In addition, all neurons had Kext excitatory connections representing
nonlocal inputs to the network. The relative strength of inhibitory synapses g
and the intensity of external inputs νext were the control variables in numerical
simulations of network dynamics.

2.2 Integrate-and-Fire Neuron Model. We studied networks of point
neurons of the integrate-and-fire (I&F) type. The I&F neuron model is com-
putationally simple (Tuckwell, 1988a; Gerstner & Kistler, 2002) yet captures
essential features of input integration and spiking dynamics in real neurons
(Rauch, La Camera, Lüscher, Senn, & Fusi, 2003). For this neuron model,
the subthreshold dynamics of the membrane potential Vi (t) in neuron i is
described by the leaky-integrator equation,

C
d
dt

Vi (t) + Grest
[
Vi (t) − Vrest

] = I i
syn (2.1)

where I i
syn is the total synaptic input current into neuron i . The rest-

ing potential was set to Vrest = −70 mV. The parameters C = 250 pF and
Grest = 16.7 nS lead to a membrane time constant of τrest = C/Grest = 15 ms,
reflecting the electrical properties of the neuronal membrane in the absence
of any synaptic input. We implemented a deterministic threshold-reset
mechanism for spike generation (Tuckwell, 1988a, 1988b), assuming a fixed
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spike threshold of 20 mV above rest (Vθ = −50 mV). After the membrane
potential reached threshold, a spike was emitted, the membrane potential
was reset to its resting value, and synaptic integration was halted for 2 ms,
mimicking the refractory period in real neurons. To be able to record the
“free” membrane potential (Kuhn et al., 2004) in selected neurons of the
network, we “cloned” them (letting them receive the same input as their
respective twins) and switched off spiking in the clone. Apart from this de-
viation for technical reasons, all model neurons had identical parameters.

2.3 Conductance-Based Synapses. In this study, synaptic input was
modeled by transient conductance changes, using alpha functions (Jack,
Noble, & Tsien, 1975; Rotter & Diesmann, 1999):

G(t) =
{

J t
τ

e1− t
τ for t ≥ 0

0 for t < 0.
(2.2)

We refer to the peak amplitude J of the conductance transient, which is
assumed at t = τ after onset, as the “strength” of the synapse. Generally,
excitatory and inhibitory synapses had different strengths Jexc and J inh as-
signed. Both excitatory and inhibitory synapses, however, had in general
identical time constants of τexc = τinh = 0.326 ms. This value was obtained
by fitting excitatory postsynaptic potentials (EPSPs) with alpha-shaped ex-
citatory postsynaptic currents (EPSCs) to the parameters of empirical EPSPs,
assuming a membrane time constant of 10 ms. This yielded rise times (time
to peak) of about 1.7 ms and a half-width at half-height of about 8.5 ms for
EPSPs at rest. These values were close to what was reported from acute
slices of cat visual cortex (Fetz, Toyama, & Smith, 1991). To explore the
impact of this parameter for network dynamics, most simulations were re-
peated for τexc = τinh = 0.978 ms (three-fold slower) and 1.63 ms (five-fold
slower). For certain questions, we also employed combinations of different
time constants for excitation and inhibition in our simulations.

The total excitatory conductance Gi
exc(t) in neuron i was given by

Gi
exc(t) =

Kexc+Kext∑
j=1

∑
k

Gexc
(
t − t j

k − D
)
. (2.3)

The outer sum runs over all excitatory synapses onto this particular neuron,
and the inner sum runs over the sequence of spikes arriving at a particular
synapse. Similarly, the total inhibitory conductance Gi

inh(t) in neuron i was
given by

Gi
inh(t) =

Kinh∑
j=1

∑
k

G inh
(
t − t j

k − D
)
. (2.4)
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A uniform transmission delay of D = 1.5 ms was imposed for all synapses
and in all simulations. The total synaptic current into neuron i was

I i
syn(t) = −Gi

exc(t)
[
Vi (t) − Vexc

] − Gi
inh(t)

[
Vi (t) − Vinh

]
, (2.5)

where Vexc = 0 mV and Vinh = −80 mV are the reversal potentials of the
excitatory and the inhibitory synaptic currents, respectively. The ratio

g = J inhτinh|Vrest − Vinh|
Jexcτexc|Vrest − Vexc| (2.6)

was used to parameterize the relative strength of effective inhibition.
For fast conductance transients and small amplitudes, it corresponds ap-
proximately to the ratio of inhibitory postsynaptic potential (IPSP) and
EPSP peak amplitudes at rest. It is important to point out, however,
that the inhibition-excitation ratio g (originally introduced for current-
based models) has a slightly different meaning for the conductance-based
synapse model. Being a quotient of peak potentials in previous work
(Brunel, 2000), here g is approximately the ratio of total charges induced at
rest.

It should also be noted that in the case of conductance-based synapses,
the effective time constant of the neuron depends on the input and can
strongly deviate from the membrane time constant τ0 = C/Grest without
input (Kuhn et al., 2004). Active synapses contribute to the total membrane
conductance, thereby also changing the membrane time constant. In this
way, the integrative properties of the neuron depend on its input, and
the model becomes nonlinear. This effect is not present in models where
synapses are modeled as current sources.

2.4 Parameters Used in Network Simulations. Here we give a list of
the various parameter sets used in different simulation series. See section 3
for more detailed explanations.

Table 1: Parameters Used in the Network Simulations.

Used for Figures

Parameter Unit 2–7, 9 10–12 13

N 1 50,000 10,000–200,000 70,000–350,000
K 1 5000 2000 2000
Kext 1 4000 0 0
Jexc nS 0.68 6 2–10
J inh nS 4.8–48 95 20–200
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2.5 Numerical Simulations. In previous work on current-based net-
works, two parameters were found to critically influence the dynamic state
of the network: the intensity of external inputs νext and the relative strength
of recurrent inhibition g (Brunel, 2000). We performed numerical simula-
tions of conductance-based networks for different values for νext and g and
characterized the resulting network dynamics. We also examined the influ-
ence of the network size N on various parameters describing its activity.

The computational demands for numerical simulation of large recurrent
networks (beyond 10,000 neurons, say) are exceedingly high with respect
to both computing power and memory, and it may be impossible to con-
clude the simulations in reasonable time on a single-processor machine. We
performed the simulations on parallel computers (IBM Regatta SMP and
AMD Opteron cluster) using a parallelized kernel of NEST (Diesmann &
Gewaltig, 2002; Morrison, Mehring, Geisel, Aertsen, & Diesmann, 2005).
The simulation technology used in our study allowed us to simulate net-
works of up to 350,000 neurons with 700 million synapses, which is about
the size of a cortical “column”.

The dynamic equations were integrated using the GSL implementation
of the adaptive fourth-order Runge-Kutta method (Abramowitz & Stegun,
1964; Press, Teukolsky, Vetterling, & Flannery, 1992; Galassi et al., 2001). The
temporal resolution of integration was 0.1 ms with an imposed precision
of 0.001 mV. All networks were simulated for at least 2 s, but if firing rates
fell below 10 spikes per second, we extended our simulations to up to 20 s
to collect enough spikes for statistical analysis. In all simulations, an initial
period of 300 ms was discarded to avoid possible onset transients of the
network activity.

External inputs were generally implemented as independent Poisson
processes; each neuron received input from a private source, and all sources
were assumed to be independent. Technically, in parallel simulations, it was
important to employ appropriate algorithms to obtain long, uncorrelated
sequences of pseudo-random numbers for different seeds (Knuth, 1997;
Morrison, Mehring, et al., 2005).

2.6 Characterizing Network Dynamics. To characterize the dynamical
states of simulated network activity at the level of both single neurons and
populations, we employed the following descriptors.

Irregularity of individual spike trains was measured by the squared coeffi-
cient of variation of the corresponding interspike interval (ISI) distribution:

CV2
ISI = Var[ISI]/E[ISI]2. (2.7)

Low values reflect more regular spiking; a clocklike pattern yields CV2
ISI = 0.

CV2
ISI = 1 indicates Poisson-type behavior. As a measure for irregularity in

the network, we used the average irregularity across all neurons.
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Synchrony for a pair of neurons is typically measured by the correlation
coefficient of the joint spike counts Ci and C j :

Corr[Ci , C j ] = Cov[Ci , C j ]/
√

Var[Ci ]Var[C j ]. (2.8)

Here, time bins of width 2 ms were used. Note that correlation coefficients
may strongly depend on the bin size chosen for analysis (Tetzlaff et al., 2007).
Absolute values of correlation must therefore be carefully interpreted with
this caveat in mind. A systematic variation of bin size for various network
states showed that for certain network states, there is a plateau that guar-
antees some degree of robustness of the measured values. Also, bins in
the range 1 to 5 ms are commonly used in the experimental literature. As
a measure for synchrony of population activity in the network, we em-
ployed the average correlation coefficient for 250 disjoint pairs of neurons
(CCS).

3 Results

Neuronal spike trains in the neocortex of awake, behaving animals are
generally characterized by a high degree of irregularity in their ISIs and
a large variability of spike counts (Softky & Koch, 1993; Nawrot, Riehle,
Aertsen, & Rotter, 2000). The firing rates of single neurons are generally low
(Abeles, Vaadia, & Bergman, 1990; Brecht & Sakmann, 2002), and the corre-
lations in the spiking of pairs of neurons are small (Abeles, 1991; Vaadia &
Aertsen, 1992), rendering the ongoing (spontaneous) activity asynchronous.
Embedded in an active network of this type, cortical neurons are contin-
uously exposed to recurrent synaptic input. The joint action of excitatory
and inhibitory inputs keeps the membrane potential mostly below thresh-
old, and small fluctuations cause the neuron to spike irregularly (Gerstein &
Mandelbrot, 1964; Shadlen & Newsome, 1998). A self-consistent description
of this scenario for recurrent networks has been subject of several modeling
studies (van Vreeswijk & Sompolinsky, 1998; Brunel, 2000). It was found that
random recurrent networks of I&F neurons exhibit distinct activity states,
depending on the intensity of external excitatory inputs and the relative
strength of recurrent inhibition. The firing pattern of individual neurons
can be either regular (R) or irregular (I), population activity is either syn-
chronous (S) or asynchronous (A), and the network assumes one of four
possible characteristic states (AI, SI, AR, or SR; Brunel, 2000). Of these, it is
the AI regime where network activity is considered to most closely resemble
cortical spiking activity in vivo (Softky & Koch, 1993). Both experimental
evidence (Destexhe et al., 2003; Leger, Stern, Aertsen, & Heck, 2005) and
theoretical arguments (Bernander et al., 1991; Rapp et al., 1992; Kuhn et al.,
2004) indicate that massive synaptic bombardment strongly alters the inte-
grative properties of individual neurons in a particular way, mainly caused
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by a reduction of the membrane resistance associated with synaptic activity
(“high conductance state”; Destexhe et al., 2003). Currently, however, there
is only partial understanding of how the phenomena on the level of neurons
and networks are linked to each other.

3.1 Dynamic States of Network Activity. Conductance-based net-
works, like current-based networks, show a variety of different behaviors
as a function of the control parameters νext and g, ranging from highly
synchronized firing of the entire neural population to nearly asynchronous
population activity, with single neurons firing at either high or low rates,
producing either regular or irregular firing patterns. Figure 2 depicts four
characteristic examples, covering all possible combinations of properties
except the AR state, which was never encountered.

3.1.1 Irregularity and Synchrony of Network Activity. We used “irregu-
larity” to characterize single-neuron spike trains and “synchrony” to cap-
ture correlations within the population. Figure 3 depicts cross-covariances
and interval densities for the same network states as shown in Figure 2.
The squared coefficient of variation (CV2

ISI) is a straightforward way to
measure the width of the interval density in a way that corrects for the
firing rates. We used the average squared coefficient of variation as a mea-
sure for irregularity in the network. The shape of the oscillatory cross-
covariance functions motivated our choice of 2 ms for the width of the
bins, from which we computed the count correlation coefficient for indi-
vidual pairs of neurons. The average count correlation coefficient over a
sample of 250 pairs (CCS) was used as a measure for synchrony in the
network.

When these two measures are used, network activity can be essentially
classified into four different states, as done for current-based networks
(Brunel, 2000). Based on our numerical simulations, we systematically eval-
uated these statistical descriptors, in addition to firing rate and membrane
potential statistics, as a function of the control parameters g and νext. The
results are shown in Figure 4. Note that in our parameter scans, differ-
ent values of g were realized by fixing some value for Jexc and varying
J inh accordingly (see Table 1). This is not meant to imply that the behavior
of the network did not depend on the specific choice of Jexc or τexc, and
an independent variation of the strength of excitation and inhibition was
performed later (see Figure 13).

For low values of inhibition (g < 1.5), neurons spiked at high rates
and exhibited synchronous activity. Both the firing rate and synchrony
increased as the external input was increased (see Figures 4a and 4c). A
single frequency dominated the population signal even for asynchronous
activity. For large parts of the parameter space, the dominant frequency
was between 100 Hz and 200 Hz (data not shown), enclosing the frequency

1
4D = 167 Hz that is generally expected for a system with a uniform intrinsic
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Figure 2: Different types of cortical network activity. Shown are samples of
(a) synchronous irregular (SI), (b) asynchronous irregular (AI), (c) synchronous
regular fast (SRF), and (d) slow (SRS) activity. In each subplot, the upper panel
shows the spike trains of 500 excitatory neurons recorded from a network of N
= 50,000 neurons (see Table 1 and Figure 4 for parameters). The middle panel
depicts the peristimulus time histogram (PSTH) of the population, normalized
for the number of neurons and the histogram bin with (1 ms), yielding the aver-
age single-neuron firing rate. Note the very different rates in the four different
states. The lower panel displays the free membrane potential of a randomly
selected single neuron.



High-Conductance State of Cortical Networks 11

Figure 3: Irregularity and synchrony. These two descriptors of network activ-
ity are related to the interspike interval densities (left) and the spike count
cross-covariances (right), respectively. Shown are samples of (a, e) synchronous
irregular (SI), (b, f) asynchronous irregular (AI), (c, g) synchronous regular slow
(SRS), and (d, h) synchronous regular fast (SRF). Samples, as in Figure 2. To de-
scribe the dynamic state of the network, irregularity was defined as the squared
coefficient of variation (CV2

ISI) of the interspike intervals, averaged over all neu-
rons in the network. Synchrony was defined as the count correlation coefficient
for counting windows of width 2 ms, averaged over a random sample of 250
neuron pairs (CCS). For details, see section 2.
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delay D = 1.5 ms (Murray, 2002; Brunel, 2000; Brunel & Wang, 2003; Maex
& De Schutter, 2003; Roxin, Brunel, & Hansel, 2005). Single-neuron fir-
ing patterns were regular (see Figure 4d). The mean free membrane po-
tential was closely below threshold, which was 20 mV above rest (see
Figure 4e).

As the relative strength of inhibition was increased (g > 1.5), the mean
membrane potential always remained subthreshold, and firing was driven
by fluctuations in the membrane potential. This resulted in quite irregular
firing at low rates (less than 10 spikes/s). For not too high values of νext, the
network generally exhibited asynchronous population activity. In contrast,
high synchrony at higher firing rates (more than 50 spikes/s) was observed
for all values of g in the explored range if the external input νext exceeded
5 spikes per second.

The neurons in all network states observed in our simulations had
strongly increased membrane conductances due to massive synaptic

Figure 4: Characteristics of network activity. The dynamical states of a large
recurrent network (here, N = 50,000) can be classified by jointly considering
several observables, as shown here for different configurations defined by the
control parameters g and νext. The labels SI, AI, SRF, and SRS indicate the com-
binations of parameters underlying the samples shown in Figure 2 (see Table 1
for parameters). (a) All of the neurons in the network fire essentially at the
same rate. Shown is the mean across a population of 500 randomly selected
neurons. The contour lines correspond to a mean rate of 5 and 60 spikes per
second, respectively. (b) The total conductance of the neuronal membrane is
strongly increased relative to the leak conductance (Grest = 16.7 nS) for all net-
work states examined here. For AI states, conductances are increased by a factor
2 to 5, leading to a corresponding reduction of the membrane time constant from
τrest = 15 ms to a value of 3 to 8 ms, in accordance with physiological findings.
Shown are mean values for a sample of three neurons recorded during a net-
work simulation of 1.7 seconds duration. The white contour circumscribes the
asynchronous regime (see c), the black contour the irregular regime (see d).
(c) The level of synchrony in the network (measured by the mean pairwise
correlation; see section 2) was strongly dependent on νext, and to some degree
also on g. The black contour indicates a value of 0.01 and the white contour a
value of 0.1 for the synchrony. (d) The irregularity of the spike trains (measured
by the mean normalized variance of the interspike intervals; see section 2), by
contrast, was more or less uniform in the inhibition-dominated regime (g > 1.5).
In the excitation-dominated regime (g < 1.5), however, neurons produced quite
regular spike patterns. The contours indicate a value of 0.8 for the irregularity.
(e, f) The mean (above rest) and the standard deviation of the free membrane
potential, respectively, for a randomly chosen neuron. The contours in both
panels are the same, indicating a mean free membrane potential of 12 mV and
15 mV above rest, respectively. The spike threshold was at 20 mV above rest.



High-Conductance State of Cortical Networks 13

bombardment (see Figure 4b). For states that exhibit high network syn-
chrony, the observed values were higher than what is normally found in
healthy cortical neurons. AI-type states, in contrast, were accompanied by
an increase of the total membrane conductance by a factor of 2 to 5 and a
corresponding reduction of the membrane time constant from τrest = 15 ms
to a value of 3 to 8 ms. These results are in very good agreement with
physiological observations in vivo (Destexhe et al., 2003; Leger et al., 2005).
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Our results on single-neuron spiking and population activity in net-
works with conductance-based synapses are roughly in line with previous
observations in current-based networks (Amit & Brunel, 1997; Brunel, 2000;
Mehring et al., 2003).

However, we found important differences in the membrane potential
statistics of individual neurons during the AI state of the network. In the
current-based model, the mean membrane potential is often close to the
resting potential, while spikes are induced by quite large fluctuations in the
membrane potential due to recurrent input. By contrast, in our simulations
of networks with conductance-based synapses, we found that in the AI
state, the mean membrane potential of neurons is only about 5 mV below
spike threshold, and the firing is driven by relatively small fluctuations (see
Figures 4e and 4f). In fact, the membrane potential of neurons recorded
intracellularly in vivo is also close to threshold, and spiking is induced by
small fluctuations (Destexhe et al., 2003; Leger et al., 2005). This indicates
that the membrane potential dynamics in the current-based network model
tends to reflect a nonphysiological state of the individual model neurons.
By contrast, for the conductance-based model, both the network dynamics
and the membrane potential dynamics are in very good accordance with
extracellular and intracellular measurements in vivo.

In networks with current-based synapses, the transition from high-
activity states to low-activity states occurs for a fixed amount of recurrent
inhibition at gcrit = Kexc/Kinh, independent of external input and network
activity. For conductance-based networks, by contrast, the transition hap-
pens for relatively low values of g, provided the inputs are weak (see
Figure 4a). For higher values of νext, high firing rates (100 spikes/s or more)
occur in conjuction with high synchrony in the network, and this combina-
tion is barely affected by the strength of recurrent inhibition (see Figures 4a
and 4c).

3.1.2 Postsynaptic Potentials in Active Networks. One of the prominent
effects of modeling synapses as conductance transients is the significant
reduction of membrane impedance and effective membrane time constant
for strong inputs, which attenuates and shortens the postsynaptic poten-
tials (Kuhn et al., 2004). To further characterize synaptic integration, it is
interesting to account for effective PSP amplitudes in an active network.
Experimentalists typically use spike-triggered averaging (STA) to estimate
the effective size and shape of PSPs (Fetz et al., 1991; Matsumura, Chen,
Sawaguchi, Kubota, & Fetz, 1996; Dayan & Abbott, 2001). We also per-
formed such STA in our simulations; the results are shown in Figures 5a
and 5b. The drawback of this method is that if inputs are correlated, the
trigger spike may systematically co-occur with spikes from other neurons
also impinging on the target neuron. This may result in a strong bias for the
PSP estimate, skewing the PSP amplitude distribution toward larger val-
ues and leading to complex, often multimodal waveforms. In addition, the
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STA method requires a large number of trigger spikes to obtain a reliable
estimate.

In our simulations, we modified the STA protocol to circumvent these
problems. Two almost identical simulations of the network were performed.
The second run was different from the first one only insofar as the cloned,
nonspiking neurons (see section 2) received some extra excitatory and in-
hibitory inputs, each firing at an arbitrarily chosen frequency of 2 spikes per
second and uncorrelated with both the external and the recurrent inputs
to this neuron. Obviously these extra inputs had no effect on the network
dynamics, since these neurons contributed no spikes to the network. By
subtracting the membrane potential trace recorded in the first simulation
from the trace recorded in the second simulation, we could cleanly isolate
150 EPSPs and 150 IPSPs that arose during network activity. The PSPs ob-
tained in this way did reflect input-dependent membrane impedance and
depolarization-dependent driving force, without being contaminated by
input correlations (see Figures 5c and 5d for some samples). For obvious
reasons, this method of estimating PSP amplitudes unfortunately cannot be
employed in physiological experiments.

In one particular scenario, the strength of synapses was chosen such that
the EPSP amplitude distribution in the active network roughly matched
the distribution reported from intracellular recordings in vivo (Matsumura
et al., 1996; Hasenstaub et al., 2005). This was achieved for EPSPs at
Jexc = 0.68 nS, which lead to an amplitude of 0.15 mV for the resulting
unitary EPSP at rest, when no other inputs were active. However, it yielded
heterogeneous but systematically lower amplitudes in active neurons due
to the shunting effect of many active synapses and a reversal potential for
excitation at 0 mV. The strength of inhibition was adjusted to bring the
network close to an AI state with firing rates around 7 spikes per second.
This was achieved for J inh = 12 nS, corresponding to g = 2.5. (For g = 1,
the amplitude of unitary IPSPs at rest, that is, in the absence of other inputs,
was equal to the amplitude of EPSPs.) Consequently, and also due to the
reversal potential for inhibition around rest, IPSPs attained much higher
amplitudes than EPSPs for depolarized membrane potentials. Figures 5e
and 5f show histograms of PSP amplitudes measured in one particular sim-
ulation. The median amplitude of unitary EPSPs recorded in the AI state
was 0.12 mV, close to the mean EPSP amplitude measured in awake, behav-
ing monkeys (Matsumura et al., 1996). The distribution of EPSP amplitudes
(see Figure 5e) that resulted from our simulations, however, did not exhibit
a long tail as seen in the in vivo experiments, possibly because the potential
effect of input correlations in the estimation procedure was excluded by
our protocol. Note that for relatively fast PSCs, the case considered here,
the PSP amplitude is only weakly affected in the high-conductance state.
Slower PSPs would experience a (much) stronger reduction in amplitude
(Kuhn et al., 2004). Estimated IPSP amplitudes were about five times larger
than those of the EPSPs. Also, the distribution of IPSP amplitudes (see
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Figure 5f) was much wider than that of the EPSPs. Note that in our simu-
lations of the AI state, IPSPs were generally much stronger than reported
in the experiments (Matsumura et al., 1996). Trading in the strength of the
inhibitory synapses for increased firing rates of inhibitory neurons, as sug-
gested by physiological studies (McCormick, Connors, Lighthall, & Prince,
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1985; Connors & Gutnick, 1990; Markram et al., 2004), could possibly bring
the model again in line with the in vivo data (see also section 4).

3.1.3 Stability of Network Dynamics. A stable system will produce
bounded output for bounded input (BIBO). In a series of numerical sim-
ulations, we probed the stability of various network states by applying
perturbations of the respective external input. We found that the network
generally responded quickly to a perturbation regardless of its strength, in
both the population activity and the firing of individual neurons. Although
strong perturbations could drive the system into synchronous states accom-
panied by network oscillations, the system always rapidly relaxed back to
its equilibrium as the perturbation was removed. Figure 6 shows raster plots
and population activity histograms for two representative simulations. In
both cases, the network was initially in the AI state, and its reaction to step-
like perturbations of different strengths (see Figure 6e) was explored. The
effect of a relatively weak perturbation (increasing the intensity of external
Poissonian inputs from 3.5 spikes/s to 4.5 spikes/s per neuron; Figures 6a
and 6b) was hardly visible in the population response, and the network
remained in the asynchronous irregular state with only slightly increased
firing rates. For a stronger perturbation (external input of 5.5 spikes/s per
neuron; Figures 6c and 6d), the network was driven into a synchronous
state with rather high firing rates. Nevertheless, after removing the extra
input, the network relaxed back to its original state in both cases, without
any indication of hysteresis or other memory effects. We conclude from
such experiments that the network is generally stable in the BIBO sense,
even for quite strong perturbations.

Figure 5: Effective EPSP and IPSP amplitudes in the AI state. Parameters were
extracted from a network simulation, where external inputs fired at 2 spikes per
second, the neurons in the network had a mean firing rate of about 7 spikes per
second, and the mean free membrane potential of neurons was approximately
5 mV below threshold (see Table 1 for parameters). (a, b) One hundred traces
of membrane potential cutouts (black) of one neuron in the network, triggered
by the spikes of other neurons that were randomly picked from the network.
Averages (gray) were based on on 1000 such trigger events. These standard
spike-triggered averages were strongly affected by correlated spiking in the
network, and even neuron pairs that were not synaptically coupled exhibited
nonzero averages. To circumvent this problem, a variant of the method was
employed here, yielding isolated PSPs (c, d; see text for details). Depicted are
again individual cutouts (black) and averages (gray) over 700 EPSPs and 400
IPSPs, respectively. Such modified spike-triggered averages were used to gen-
erate normalized histograms of effective EPSP and IPSP amplitudes. Bin width
was 8.3 µV and 40 µV, respectively.
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Figure 6: Stability of network states. To probe the stability of a network state
(g = 2.5, νext = 3.5), equilibrium activity was perturbed by some extra excitatory
input �νext, using the temporal protocol shown in e. Shown are typical responses
from a network (see Table 1 for parameters) on weak (black) and strong (gray)
perturbations, where the latter drove the network into synchronous states. De-
picted are raster displays of 500 excitatory neurons (a, c) and the corresponding
population PSTHs (b, d; bin width 1 ms) of the whole network. In both cases,
network activity rapidly increased as the extra input was switched on; as the
extra input was switched off, network activity rapidly returned to its original
level again. This behavior indicates BIBO stability (see text for more details).
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3.1.4 Effect of Synaptic Time Constants. Up to now, we have consid-
ered networks where excitatory and inhibitory synaptic conductances had
equally small time constants (τexc = τinh = 0.326 ms). This choice was in
approximate accordance with measurements in acute cortical slices (Fetz
et al., 1991). The only available in vivo study, however, reported PSP rise
times and PSP widths for both excitation and inhibition that were more
than three-fold larger than in vitro (Matsumura et al., 1996). Other in vitro
studies accounted for inhibitory synaptic time constants that were larger
than the excitatory ones (Tarczy-Hornoch, Martin, Jack, & Stratford, 1998;
Williams & Stuart, 2003). In this section we explore the effect of either larger
time constants for both EPSCs and IPSCs, and of unequal time constants for
EPSCs and IPSCs, on the activity states of the network. To study the effect
of an altered time constant in isolation, we compensated the increase in
τexc and/or τinh by a reduced amplitude of Gexc and/or G inh, respectively.
This kept the effective strength of the synapse (total area of the synaptic
conductance transient; see section 2.3) constant. Figure 7 shows the state
space of the network as a function of g and νext in analogy to Figure 4,
for several different scenarios involving equal time constants for excitation
and inhibition (see Figures 7b and 7c), and for inhibition that is slower than
excitation (see Figures 7d and 7e).

Generally the simultaneous increase of the time constants of both excita-
tion and inhibition by a factor 3 (see Figure 7b) or 5 (see Figure 7c) did not
induce great changes in the state space as far as it was scanned, except for
a slightly increased gain of the network for external inputs. By contrast, an
increase of the time constant of inhibition alone while keeping excitation
fast (see Figures 7d and 7e) resulted in an increase of the firing rates as com-
pared to the symmetric case (see Figures 7a to 7c). This indicates that by
increasing τinh, the impact of the inhibitory population within the recurrent
network is reduced. In fact, in earlier work, we could already show that in
general, slow PSPs are more strongly attenuated in the high-conductance
state than fast PSPs (Kuhn et al., 2004). Typically, for large, balanced random
networks, high firing rates are associated with both more regular interspike
intervals of single neurons and more synchronous population activity (see
Figure 4). The same was observed when inhibition was made slower: both
regularity and synchrony in the network increase with the increased firing
rates (see Figures 7d and 7e). When τinh was increased by a factor of 5 as
compared to τext (see Figure 7e), population activity was synchronized for
the whole range of g and νext studied here. This raises the question whether
low-synchrony states can be achieved in networks with slow inhibition pro-
vided the rates are low. We approached this question in a scenario where
low rates were achieved by increasing the relative amount of recurrent
inhibition, leaving the synaptic time constants untouched. For values of
g = 10, the IPSP amplitudes were approximately 1.5 mV at rest, which is
in the range of amplitudes typically observed in in vitro (Tarczy-Hornoch
et al., 1998; Williams & Stuart, 2003). However, as Figures 7d and 7e sug-
gest, the AI state of the network cannot be “restored” by a simple inhibitory



20 A. Kumar, S. Schrader, A. Aertsen, and S. Rotter

compensation. Within the range of parameters studied here numerically, we
found that the network does not support AI-type activity if inhibition is too
slow.

3.2 Mean Field Approach to Network Dynamics. Analytical solutions
for models of recurrent networks of spiking neurons are difficult to ob-
tain and involve several approximations (Brunel, 2000). Numerical simu-
lations of large networks, on the other hand, are both time and memory
consuming. For current-based networks, the global dynamics of random
networks could be successfully characterized in terms of single-neuron
dynamics using mean field theory (Amit & Brunel, 1997). Here we em-
ployed a similar approach for conductance-based networks and compare
the results to simulations of large networks. Studying networks by resort-
ing to a single-neuron approximation has several distinct advantages: It
avoids some of the approximations that have to be made for analytical
treatment, while at the same time significantly reducing the computational
load.

For the scenario studied here, individual neurons operate in the
fluctuation-driven regime, that is, the mean membrane potential remains
subthreshold, and spikes are mostly elicited by transients of the membrane

Figure 7: Effect of slower synaptic time constants on network behavior. The
same type of network was studied here as shown in Figure 4, except for in-
creased, but still equal, time constants of excitatory and inhibitory synapses
(b, three-fold; c, five-fold) or, alternatively, for increased time constants of in-
hibitory synapses alone (d, three-fold; e, five-fold). In all cases the effective
strength of individual synapses (total induced charge) was unchanged. Three
characteristic parameters of network activity were studied: mean firing rate
(left), synchrony of the network (middle), and irregularity of single-neuron fir-
ing (right) as a function of g and νext. Note the greatly extended range for the
parameter g in all panels, as compared to Figure 4. Generally the simultaneous
increase of the time constants for both excitation and inhibition by a factor of
up to 5 did not induce great qualitative changes in the network behavior as
far as the parameter space was scanned, except for a slightly increased gain of
the network for external inputs (b, c). In contrast, slowing inhibition selectively
generally increases the firing rates in the network (d, e, left). The two contour
lines in the left panels correspond to firing rates of 60 spikes per second (white)
and 5 spikes per second (black), respectively. In parallel to the increase in rate,
the degree of synchrony in the network is also increased (middle). The contour
line represents an average pairwise correlation coefficient of 0.01. For very slow
inhibition, however, such low values of synchrony are practically absent in the
parameter space considered here. Similarly, slower inhibition induces more reg-
ular single-neuron spike trains (right). The white contour line indicates a value
of 0.7 for the squared coefficient of variation.
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potential toward threshold. The amplitude of these transients (i.e., the stan-
dard deviation of the membrane potential distribution) increases with the
rate of inputs, and it depends on both the amplitude and the width of
individual postsynaptic potentials. In fact, both amplitude and width of
the PSPs are reduced for smaller input impedances and shorter effective
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membrane time constants. It is well within the physiological range of
input rates that the reduction of the output rate due to synaptic shunt-
ing wins over its increase by increasing input rates. As a result, neurons
with conductance-based synapses may exhibit nonmonotonic input-output
curves (Kuhn et al., 2004). This feature has interesting consequences for the
behavior of recurrent networks.

3.2.1 Self-Consistent Firing Rates. A neuron being part of a network re-
ceives three types of inputs: Kext connections from nonlocal excitatory neu-
rons, each spiking at rate νext; Kexc connections from local excitatory neu-
rons, each spiking at rate νexc; and Kinh connections from local inhibitory
neurons, each spiking at rate νinh (see Figure 8a).

There are two dynamical variables in this model, νexc and νinh, whereas
νext and g play the role of control parameters. In a homogeneous network,
however, all neurons receive approximately the same input and, as a con-
sequence, produce output spikes at about the same rate. It is therefore
reasonable to assume that local excitatory and inhibitory neurons are spik-
ing at the same rate νexc = νinh = νnet. In the mean field scenario, all inputs
to a neuron are modeled as independent Poisson-type spike trains (respect-
ing synaptic multiplicities), which is adequate for networks in the AI state.
The output of the neuron has rate νout. For each pair of values for νext and
g, the input-output rate transfer function f describing νout as a function of
νnet characterizes the response properties of the neuron.

Assuming self-consistency in the corresponding recurrent network, νout

should in fact be equal to νnet for any given pair of values for νext and
g. We estimated both the rate transfer function and the rate fixed point
based on numerical simulations (see Figure 8b). Note that some constella-
tions of parameters may yield not only two fixed points—one for nonzero

Figure 8: Mean field approach to network dynamics. (a) Single-neuron scenario
to study the behavior of a network where all neurons have the same connectivity
parameters. All neurons in the network receive Kexc local excitatory and Kinh

local inhibitory inputs, which are assumed to fire all at the same rate νnet.
The relative strength of inhibitory couplings is given by the parameter g. Each
neuron receives in addition Kext external excitatory inputs, each spiking at rate
νext. (b) Single-neuron transfer functions, determined by numerical simulations.
Shown is the firing rate of a neuron (black curves) that received input from Kexc

= 1,600 excitatory and Kinh = 400 inhibitory Poisson neurons firing each at rate
νnet; external inputs were silent (see text). Depicted are the transfer functions
for two different scenarios. Assuming stationarity, self-consistent activity in a
recurrent network implies that input rates and output rates are equal (dashed
diagonal). The corresponding fixed points of the transfer function (here at about
15.4 spikes/s and 34.5 spikes/s, respectively) could be determined with high
precision from numerical simulations.
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firing rates and the “trivial” one for zero rate (gray curve)—but a third
one for some in-between rate (black curve). The two fixed points common
to most input-output curves are typically attracting, whereas the potential
third fixed point is normally repelling. It indicates a threshold for recurrent
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activity below which the network quickly falls into silence. Simulations also
yielded good estimates for the irregularity of spiking and for the mean and
the standard deviation of the free membrane potential (not shown).

3.2.2 Comparison with Recurrent Network Dynamics. Figure 9 shows that
the mean field model provided an excellent approximation of the AI-type
activity with respect to neuronal firing rates for large parts of the (g, νext)
parameter regime studied here. Deviations (see Figure 9c) arose due to
several effects, the two most important of which are discussed below (see
also Brunel, 2000).

Shared connectivity in the network may lead to correlations in the recur-
rent input (Kuhn, Aertsen, & Rotter, 2003), which were not captured by the
independent Poisson inputs assumed in the mean field model. In a sense,
the mean field model assumes a network of infinite size, where shared
connectivity and, hence, input correlations are not present. Likewise, in-
puts with a regularity that deviates from that of a Poisson process may
also affect the output. Thus, our numerical mean field approach could be
improved by accounting for the effect of non-Poissonian irregularity or of
input correlations in the network activity underlying the neuronal transfer
functions.

3.3 Self-Sustained Activity in Recurrent Networks. From anatomical
studies, it is known that the number of sensory input fibers is very small
compared to the number of neurons in the cortex, not to speak of the number
of cortico-cortical connections (Braitenberg & Schüz, 1998). In fact, real-time
optical imaging and single-unit recordings in the cat visual cortex in vivo
showed considerable, spatially organized activity even in the absence of a
visual stimulus (Arieli, Sterkin, Grinvald, & Aertsen, 1996). The neurons in-
volved in such ongoing activity fire action potentials at relatively low rates
(below 5 spikes/s) (Abeles, 1991; Latham et al., 2000; Chiu & Weliky, 2001).
This activity component has been termed “ongoing” activity, expressing
that it presumably reflects dynamic brain processes beyond the direct effect
of a sensory stimulus. Also, isolated brain tissue, such as cortical cultures
(Plenz & Aertsen, 1996) or deafferented cortical slabs (Burns & Webb, 1979;
Timofeev et al., 2000), were found to be able to retain some spiking activity.
Although it is well possible that spontaneously active neurons (e.g., pace-
maker cells in the thalamus) initiate activity in the otherwise silent cortex
(Latham et al., 2000), it is nevertheless an interesting question whether cor-
tical networks can also maintain stable spiking at low rates by means of
their massive recurrent connections (Amit & Brunel, 1997; Salinas, 2003;
Shu et al., 2003). For theoretical reasons, derived from the analysis of sim-
ple firing rate models, it has been claimed that stable self-sustained activity
within the AI regime is impossible (Latham et al., 2000). Recently, however,
the question was raised whether conductance based networks can behave
differently (Kuhn et al., 2004; Schrader et al., 2005; Kumar et al., 2005; Vogels
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Figure 9: Mean field theory versus network simulations. (a) Average firing rates
estimated from network simulations for different combinations of external in-
put νext and relative strength of inhibition g. (b) Firing rates at the fixed point
in single-neuron simulations, where network inputs were replaced by indepen-
dent Poisson inputs (mean field). (c) Absolute difference between the average
firing rate measured in network simulations (a) and the firing rate obtained
from mean field theory (b). As long as the network is in the asynchronous irreg-
ular regime (see Figure 4), the single-neuron approximation predicts the firing
rates in the network very well. However, networks in the excitation-dominated
regime (g < 1.5) or networks with strong external inputs (νext > 4.5) exhibit
synchronous activity, and the mean field prediction fails to match the network
simulations.
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& Abbott, 2005). In particular, Kuhn et al. (2004) observed that neurons with
synaptic conductances exhibited a nonmonotonic response characteristic
when driven by balanced input. They speculated that for suitable network
architectures, this nonmonotonic dependence would predict the existence
of stable self-sustained network activity in the absence of external inputs.
Here we show that by modeling synapses in the network as conductances,
a sufficiently large network, once activated to be in a sufficiently stationary
state, shows self-sustained activity without any internal pacemakers, even
after all inputs have been removed.

3.3.1 Establishing Self-Sustained Activity. The particular form of the input-
output characteristic of conductance-based neurons leads to the prediction
of stable self-sustained network activity. The gray curve in Figure 8b de-
picts the transfer function of such a neuron, illustrating the existence of
a nontrivial fixed point. Next to a fixed point at zero rate (assuming zero
input or pacemaker neurons), a second point exists where input and output
rates are consistent, at relatively low rates. While some fixed points are
unstable since small perturbations drive the activity away from it, others
are attractive, and after small perturbations, the activity relaxes back to its
equilibrium (see Figure 6). Thus, as long as the mean field scenario provides
a meaningful approximation to the recurrent network dynamics, we would
indeed expect self-sustained spiking at low rates, even without pacemaker
neurons, and in the absence of any external drive.

Network simulations largely confirmed this prediction from mean field
theory. The obvious approach to reach this activity state in a network sim-
ulation would be to provide external input until all neurons are firing at
a rate close to the desired self-consistent rate. The intrinsic stability of this
state would then let the network settle at its fixed point, even after switch-
ing off the external inputs. Note that the mean firing rate in the network
does not decrease, since the reduction in synaptic bombardment received
by each individual neuron is fully compensated by an increase in the am-
plitude of membrane potential fluctuations due to an increased impedance.
It turned out, however, that an abrupt change of the input conditions leads
to strong transients in the network activity, compromising its stability. To
avoid this effect, we used slowly decaying inputs after having reached
stationary firing at the fixed-point rate (see Figure 10c). Under these cir-
cumstances, the network remained active for some period of time, even
after the external input was completely removed (see Figures 10a and 10b).
The population mean of self-sustained activity in the example shown was
13.9 spikes per second, which was slightly below the fixed-point at 15.4
spikes per second derived from mean field theory. Possible reasons for
this deviation are discussed below. In principle, self-sustained activity can
also be established at higher firing rates. For the analysis presented here,
however, we concentrated on networks that exhibit AI-type activity at low
rates.
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Figure 10: Self-sustained activity in conductance-based networks. Inducing
self-sustained activity in a network comprising N = 30,000 neurons (see Table 1
for parameters). External input was necessary only to ignite network activity;
here we used external inputs firing at a rate of 1 spike per second per neu-
ron. When stationary firing had established itself (here after 100 ms), external
input was gradually decreased (exponential decay, time constant 50 ms). In-
terestingly, the network remained active. In the example shown, self-sustained
activity ceased spontaneously after about a second. The small spontaneous
“population burst” that terminated self-sustained activity presumably induced
too much inhibition for the network to remain active. (a) Spiking activity of 100
(black ticks) and 1000 (gray dots) excitatory neurons randomly selected from
the network. (b) Peristimulus time histogram depicting the firing rate (spikes/s)
averaged over all neurons in the network (bin size 1 ms). (c) Temporal protocol
for the firing rates (in spikes/s) of the external inputs.

3.3.2 Survival of Self-Sustained Activity. In simulations we observed that
the networks could sustain their active state for a certain period of time.
Typically this self-sustained activity ended by a “spontaneous” transition
to the zero-rate state (see Figure 10). What determines the survival time of
(nonzero) persistent network activity?

The main assumption underlying the mean field approach taken here is
the independence of input channels for each neuron. In a recurrent network,
however, the finite size of the system and the unavoidable overlap of input
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populations for different neurons introduce correlations of network activ-
ity. It is known that such correlations may affect the individual neurons’
firing rates (Kuhn et al., 2003). Independent of this single-neuron effect,
the fluctuations of population activity in the network may also be strongly
increased due to pairwise or higher-order correlations. For example, the
vertical “stripes” in the raster display of Figure 10a, which indicate near-
synchronous firing of many neurons, are the result of complex recurrent
interactions among the 30,000 neurons constituting this particular network.
If (transient) synchronization indeed caused the spontaneous death of our
networks, larger networks should then be less vulnerable, since correlations
due to overlapping inputs are bound to be weaker.

We investigated this issue in more detail by performing a series of sim-
ulations in which we systematically varied the network size. Since it is
the number of inputs to each neuron that determines its firing rate under
self-consistent conditions, this parameter was held constant while increas-
ing the number of neurons in the network. Under these constraints, large
networks necessarily have a sparser connectivity than small networks. A
statistical assessment of the influence of network size on the survival of
self-sustained activity is shown in Figure 11.

The mean firing rate of individual neurons did not change with network
size (see below), in all cases falling slightly short of the value predicted
by mean field theory. This invariance was consistent with the fact that the
size of the network is irrelevant for the mean field prediction. As expected,
however, larger networks indeed exhibited a smaller degree of global syn-
chronization (data not shown). Accordingly, the estimated survival proba-
bility clearly increased with network size (see Figure 11a), as expressed by
a marked increase of the mean survival time (see Figure 11b). As is typical
for rare events, the statistics roughly followed that of a Poisson process,
implying exponential lifetime distributions.

The gain of stability for networks with reduced correlation suggested that
spontaneous synchronized events may eventually kick the network into a
state outside the basin of attraction of the fixed point. More specifically, we
hypothesized that moments of excessive synchrony may be followed by a
supercritical period of global silence from which the network might not be
able to recover. This hypothesis was indeed supported by our simulations
(see Figure 10b), where self-sustained activity was found to typically end
after a particularly strong, transient population event. In turn, most syn-
chronous events beyond a certain amplitude (peaks in Figure 10b) were fol-
lowed by a short period of complete silence. This was presumably due to the
combined effect of hyperpolarized membrane potentials in many neurons
after a spike of their own, followed by a large number of inhibitory events
coactivated with the population burst. Our observations were once more
emphasized by a comparison of 90 cases of “spontaneous death” with the
same number of transient epochs of very low activity (“near-death”: fewer
than 0.05 spikes per second for 1 ms). The event-triggered time histograms
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Figure 11: Survival probability of persistent activity increases for larger
networks. (a) Survival probability estimated from multiple simulations
of large conductance-based networks. For each network size (N =
20,000/30,000/40,000/50,000 neurons) numerical simulations (black symbols)
were performed, all based on the same connectivity parameters (see text and
Table 1). Resorting to the mean survival time τsurvival from 90 simulations for each
network size, the data fit an exponential distribution P(τ > t) = exp(−t/τsurvival)
very well (gray line). (b) Mean survival time τsurvival for different network sizes.
The exponential increase in survival probability for larger networks suggests a
stabilizing influence of large populations with less shared input. Extrapolation
predicts a lifetime on the order of 1 hour for networks as large as a single cortical
column. Population PSTHs (bin size 1 ms) were generated from 90 simulations
of a network with N = 30,000 neurons, triggered either (c) on its spontaneous
death or (d) on subcritical short periods of relative silence (“near death” with
mean rate < 0.05 spikes/s for at least 1 ms). The much higher peak(s) in c sup-
ports an explanation of spontaneous death in terms of “lethal synchrony” (see
text for more details).
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(see Figures 11c and 11d) revealed that on average, spontaneous death was
preceded by a much stronger transient of population activity than an epoch
of near-death from which the network could still recover. We conclude that
self-sustained activity in networks with high connectivity is less stable than
in sparse networks due to the relative abundance of synchronous popula-
tion events.

Another parameter affecting the stability of self-sustained AI-type activ-
ity is the firing rate assumed at the fixed point. We found that networks op-
erating at higher persistent rates are less susceptible to spontaneous death,
presumably because input fluctuations tend to average out and thus are
less likely to drive the network out of the stable regime. Similarly, stability
at low rates could be achieved only in large networks with many inputs
to each neuron. We also found that self-sustained activity at a given rate
is less stable for stronger synapses. In this case, the detrimental effects of
spontaneous synchronizations were stronger and therefore more often had
the power to silence the entire network.

The following simple consideration explains both the increased stability
at higher firing rates and the (roughly) exponential growth of survival times
with network size. For asynchronous states, all neurons fire independently
at rate ν. The probability p for each neuron to fire within a critical window
of size Tcrit is then approximately given by p = ν Tcrit. The number of neu-
rons k firing within Tcrit has a binomial distribution B(p, N, k) with mean
Np and variance Np(1 − p). Assume that the network enters a lethal zone if
the active population is increased by a critical factor αcrit > 1 with respect to
its mean size. The probability that at least Ncrit = αcrit Np neurons in the net-
work fire a spike within the critical window is pdeath = ∑N

k=Ncrit
B(p, N, k).

This probability decreases with increasing rates ν, and it decreases (almost)
exponentially for increasing network size N. (This can be easily seen if
the binomial distribution is approximated by a normal distribution with
the same mean and variance.) Therefore, the corresponding survival times
Tcrit/pdeath increase accordingly. A least-squares fit of the measured mean
survival times yielded p ≈ 0.0217, αcrit ≈ 1.097, and Tcrit = p/ν ≈ 1 ms.

3.3.3 Residual Synchrony in the AI State? The role played by residual syn-
chrony during AI-type self-sustained activity in recurrent networks was
found to deserve special attention. Two different aspects were considered
here. The first concerned the possible influence of synchronization induced
by common input. The second examined the possibility of artificial syn-
chronization due to the finite temporal resolution of our simulations.

Networks of N = 50,000 neurons can be considered large in the sense
that they do not change their behavior qualitatively when further increased
while leaving the absolute numbers of inputs constant. Smaller networks
(N ≤ 30,000) exhibit slightly lower rates, presumably due to the effect of
residual synchrony (see above). Very small networks (N ≤ 10,000) with
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Figure 12: Testing the role of synchrony in AI-type self-sustained activity. In
all simulations (black dots) we considered networks with the same number of
recurrent inputs per neuron (Kexc = 1, 600, Kinh = 400) and with synapses of the
same strength (Jexc = 6 nS, J inh = 95 nS). The mean firing rate was found to be
independent of (a) the network size N and connectivity K/N (fixed simulation
step size 0.1 ms) and of (b) the time step used in the simulations (fixed network
size N = 100,000). In both cases, the mean firing rate was, however, system-
atically falling slightly short of the firing rate predicted by the fixed point of
the mean field approach (dashed line). This is probably caused by synchrony
induced by the global oscillations due to transmission delays rather than by
direct synaptic coupling or common input (see text).

physiologically plausible synaptic strengths typically are not able to self-
sustain activity at all. In networks with more than N = 50,000 neurons,
however, the AI state of recurrent dynamics is largely compatible with
the assumption of independently firing neurons. This can be concluded,
among other things, from the agreement of our network simulations with
the predictions from mean field theory.

A small residual discrepancy between the two, however, was observed
in all our simulations of self-sustained activity in the AI state. The most
important reasons for this have been discussed above. For large networks,
however, we were able to rule out that the deviation was due to correlations
induced by common input, not accounted for by mean field theory. To this
end, we simulated networks of increasing size N, leaving the total number
of recurrent inputs (see Table 1) to each neuron untouched. This resulted
in a series of networks of decreasing connectivity K/N and decreasing
correlations among neurons due to overlapping input populations. For each
of these networks, however, the same mean field model applied. Figure 12a
depicts the clear result of this numerical experiment: Network size and
connectivity did not affect the measured self-sustained rate, for networks
larger than about N = 50,000 neurons.
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All network simulations have to be performed in discrete time steps, the
size of which has to be adapted to the time constants of the system under
consideration. This is an important step to guarantee simulation results
with controlled precision (Rotter & Diesmann, 1999). Temporal resolution,
however, is associated with yet another problem in network simulations.
Due to the fact that spikes are “forced” to the time grid used for simulation,
a certain degree of artificial synchronization is introduced to the system
(Hansel, Mato, Meunier, & Neltner, 1998; Morrison, Hake, Straube, Plesser,
& Diesmann, 2005). Since even weak synchrony can exert strong effects
on the network dynamics, it is important to make sure that the integra-
tion step size was chosen small enough to avoid such artefact. Figure 12b
demonstrates that for the networks considered here, integration time steps
of 0.1 ms were indeed adequate.

3.3.3 Independent Variation of Excitation and Inhibition. Instead of fixing
the strength of excitatory synapses Jexc and varying the relative strength of
inhibition g as was done before, we also considered different combinations
of Jexc and J inh giving rise to the same value of the inhibition-excitation ratio
g. This was done in particular to find out which aspects of self-sustained
network activity depend on only the quotient of the synaptic amplitudes,
and to which degree the parameter g is ‘generic’ for conductance-based
networks. Figure 13 illustrates various aspects of spiking in a random re-
current network without external inputs, for a wide range of combina-
tions of Jexc and J inh, but imposing the same time constants for excitatory
and inhibitory synapses (τexc = τinh = 0.326 ms). As expected, the average
rate during self-sustained firing (see Figure 13a) generally increased with
increasing excitation and decreased with increasing inhibition. Contours of
constant firing rate were, to some approximation, straight lines through the
origin, confirming that the mean rate in the network essentially depends
on the ratio g, not on the absolute values of the synaptic strengths.

The discrepancy between self-sustained network rates and the rates pre-
dicted by the mean field model is shown in Figure 13b. Generally the rate
deviations were fairly small for the range of synaptic strengths considered
here. In the more synchronous regime (see Figure 13d), the network fired
quite fast; in fact, it fired up to 6 spikes per second faster than predicted.
In principle, such accordance between fast and synchronous firing is in
agreement with single-neuron studies (Kuhn et al., 2003; Bohte, Spekreijse,
& Roelfsema, 2000; Stroeve & Gielen, 2001). However, as implied by Fig-
ure 12a, the synchrony is induced by the global oscillations due to common
input and transmission delays rather than by direct synaptic coupling. The
irregularity of single-neuron firing (see Figure 13c) was found to systemat-
ically decrease with increasing firing rates. In turn, low firing rates lead to
highly irregular (Poisson-like) spike trains, as observed in other network
models of spiking neurons during slow, asynchronous activity (Brunel,
2000; Mehring et al., 2003).
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Figure 13: Independent variation of synaptic excitation and inhibition. The
analysis was based on 1 s periods of self-sustained activity in large networks
with N = 70,000 neurons. For very strong synapses, however, sufficient stability
was achieved only for larger networks with up to N = 350,000. (a) Average
firing rate of neurons during self-sustained network activity. Only networks
with firing rates in the range 3.9 to 180 spikes per second were considered. The
contours separate the synchronous from the asynchronous (black contour) and
the regular from the irregular (white contour) regime; see below. (b) Discrepancy
of firing rates in the network with respect to the predictions by mean field theory.
Dark areas indicate faster and bright areas slower firing than predicted (white
contour, +1 spikes/s; black contour, −1 spikes/s). (c) Irregularity of spike trains
(CV2

ISI) averaged across 1000 neurons. The black contour indicates a value of
0.8 for irregularity, as in Figure 4. In regions of very low rates (e.g., for strong
synapses), this parameter could not be reliably determined. (d) Mean pairwise
correlation (CCS) for 10,000 randomly selected pairs of neurons recorded during
self-sustained activity. The black contour indicates a value of 0.02 for synchrony,
as in Figure 4. Note that the region of relatively high synchrony (white contour
at 0.095) coincides with the region where the firing rates deviated most from
the mean field model assuming independent Poisson inputs.
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In this study, only fixed-point rates below 180 spikes per second were
considered, avoiding the regime of regular activity. We generally found
that self-sustained activity was more difficult to establish if synapses were
stronger (see above). This explains the missing data points in the corre-
sponding regions of Figure 13. Stable network rates as low as 3.9 spikes
per second, however, could be established for very large networks (350,000
neurons), bringing them close to the range of in vivo ongoing activity. It
must be mentioned, however, that in this parameter regime, the increase in
membrane conductance with respect to the resting state was considerably
higher than found in vivo. Finally, note that all essential features of single-
neuron and network behavior were retained in simulations of networks
with three-fold and five-fold slower synapses.

4 Discussion

Networks with conductance-based synapses exhibit dynamic states sim-
ilar to those demonstrated previously for networks with current-based
synapses (Brunel, 2000; Mehring et al., 2003). However, there are also in-
teresting and important differences. Most notably, the AI state with low
firing rates reported by Brunel (2000) for current-based networks is often
characterized by neuronal membrane potentials that are close to rest but
tends to perform large and physiologically unrealistic excursions. By con-
trast, for networks with conductance-based synapses, the mean membrane
potential remains only a few millivolts below threshold, and the size of the
fluctuations is much smaller, consistent with in vivo intracellular recordings
(Destexhe et al., 2003; Leger et al., 2005). We conclude that network models
with conductance-based synapses provide a more realistic description of
in vivo cortical activity at the level of membrane potentials.

It might appear as a straightforward corollary of our earlier results on
single neurons with conductance-based synapses (Kuhn et al., 2004) that
the mean membrane potential in network AI states should be close to the
spike threshold. Spikes are induced by membrane potential fluctuations
rather than by a drift of its mean, but the amplitude of these fluctuations
is strongly attenuated due to the membrane impedance breakdown under
massive synaptic bombardment. Therefore, if neurons in such networks
produce spikes at all, it seems inevitable that the mean membrane po-
tential should be close to the spike threshold. But why is it close to its
resting value in current-based networks? The spectral properties of mem-
brane potentials in the current-based model are characterized by a rela-
tively large (fixed) membrane time constant, and irregular spiking can be
obtained only with the help of a highly variable membrane potential. But
to keep the firing rates low, the mean membrane potential must settle far
away from threshold. However, matters are complicated by the fact that
the mean membrane potential is a combined result of network dynamics
and synaptic integration at the single-neuron level. For example, even small
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correlations in the presynaptic population are known to dramatically alter
the response properties of a neuron (Kuhn et al., 2003). We could show,
however, that for low-rate AI states, input correlations and deviations from
Poisson-like irregularity have only weak effects on individual membrane
potentials, although some small but systematic shortcomings of the mean
field predictions might find their explanation there. As a consequence, the
simple self-consistency condition for firing rates employed by mean field
theory suffices to correctly predict the mean firing rates and, consequently,
the mean membrane potential of single neurons in recurrent networks.

Despite the large similarity of the respective state spaces for current-
based and conductance-based networks, the precise combination of pa-
rameters that induce any particular dynamic state (external input νext, and
recurrent inhibition g) generally deviates between the current-based and
the conductance-based model. One possible explanation for the observed
distortions of the resulting parameter space lies in the slightly different
definition of the parameter g for both models. For conductance-based net-
works, the effective PSP strength depends on both the level of membrane
depolarization and, more importantly, the total intensity of the background
activity (Kuhn et al., 2004). The static parameter g, in contrast, is defined
as the relative amplitude of IPSPs with respect to EPSPs measured at rest.
Therefore, the numerical values of g have a slightly different meaning in
both models and cannot be directly compared. In principle, it would be
possible to remap the parameter space defined by νext and g such that the
actual PSP strengths are taken into consideration. The obvious disadvan-
tage of such a procedure is that the actual value of the alternative parameter,
which would replace the control parameter g, can be determined only af-
ter the simulation because it depends, among other things, on the mean
membrane potential.

In both current-based and conductance-based recurrent networks, inhi-
bition plays a central role in shaping the dynamic state of the system. In both
models, AI-type activity, which matches ongoing (spontaneous) activity in
awake, behaving animals best (Softky & Koch, 1993; Abeles et al., 1990), is
achieved only for relatively strong recurrent inhibition. Strong inhibition
can be established by increasing the strength J inh of inhibitory synapses
(as we did) or, alternatively, increasing the excitability of inhibitory neu-
rons (McCormick et al., 1985; Connors & Gutnick, 1990). The neurons in
networks with weak inhibition fire at very high rates and produce very
regular spike trains, and the network has a strong tendency to synchronize
across the whole population. For approximate balance between recurrent
excitation and inhibition, firing rates are low, the spike trains are quite ir-
regular, and synchrony is broken. Only for very strong inhibition does the
whole population tend to oscillate at low rates.

In our study, we mostly assumed identical synaptic time constants for
excitatory and inhibitory synapses, in accordance with electrophysiological
recordings in vitro (Fetz et al., 1991). Some researchers, however, report
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inhibitory synapses that are slower than excitatory ones (Tarczy-Hornoch
et al., 1998; Williams & Stuart, 2003). Interestingly, the only study address-
ing this issue in vivo failed to report any significant differences between
excitation and inhibition and, in addition, the PSPs revealed there by spike-
triggered averaging were generally much slower than in vitro (Matsumura
et al., 1996). We can think of two different lines of argument that explain
this apparent discrepancy. First, the unitary PSPs reported by Matsumura
et al. (1996) are actually not unitary; rather, they reflect synchronous poten-
tials induced by recurrent network dynamics. In this case they should not
be directly compared to unitary PSPs measured in quiet networks in vitro.
Second, there are no single synaptic couplings in the intact network in
vivo; rather, one should assume multiple couplings with nonuniform de-
lays. Such multiple synaptic couplings would effectively lead to compound
PSPs that are much broader than those found in the reduced networks of
cortical slices.

At present, the apparent inconsistencies between measurements in vivo
and in vitro cannot be resolved. Therefore, we explored the effect of larger or
asymmetric time constants on network dynamics by numerical simulation.
We found that slower synapses (up to five-fold) do not change network
dynamics in an essential way, provided excitatory and inhibitory synaptic
time constants are approximately the same. If this is the case, a large part of
the parameter space spanned by νext and g is indeed occupied by low-rate
AI states. By contrast, if inhibition is slower than excitation, firing rates are
generally increased, as well as the regularity and synchrony in the network,
even if the effective strength of all synapses at rest is unchanged. As a con-
sequence, in the case of asymmetric time constants, the AI regime occupies
a smaller fraction of the state space and eventually vanishes completely. It
is possible, though, that increasing the heterogeneity of various parame-
ters characterizing the network helps to partially restore AI-type activity in
networks with slow inhibition (Denker, Timme, Diesmann, Wolf, & Geisel,
2004; Tetzlaff, Morrison, Timme, & Diesmann, 2005).

All the states of networks with random topology studied here exhibit
some degree of synchrony. In extreme cases, synchronization appears in
conjunction with global network oscillations; in other cases, the activity
of individual neurons is irregular, and synchrony becomes visible only in
cross-correlations averaged over many pairs. While the physical mecha-
nism generating the correlations in each case is not clear in detail, several
(mutually related) contributing factors can be listed. (1) common input in-
duces correlations that may be quite strong. In fact, in a random network
of 50,000 neurons, where each neuron has 5000 synapses, the overlapping
population for any pair of neurons comprises 500 neurons on average, or
10% of each individual input population. (2) Uniform transmission delays
were assumed for all synapses in the network (D = 1.5 ms). Such a system
is bound to exhibit global oscillations of approximate period 4D (Murray,
2002; Brunel, 2000; Brunel & Wang, 2003; Maex & De Schutter, 2003; Roxin
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et al., 2005). (3) Phase locking and synchronization are common phenom-
ena in arrays of pulse coupled oscillators. Excitatory couplings induce a
phase advance that, under very general assumptions, may lead to complete
synchronization of all nodes in the system (Mirollo & Strogatz, 1990).

Many aspects of the collective states of a recurrent network with ran-
dom synaptic topology are well described by a mean field model, based
on averages across time and across the population of neurons. This has
been demonstrated for the current-based model (Amit & Brunel, 1997), but
as we showed here, it is also true for the conductance-based model. The
mean field approach, though, may fail to predict with high accuracy the
stationary firing rates in the network, depending on the degree of irregular-
ity and synchrony expressed by the neurons in the network. Generally for
AI network states, the mean field predictions were quite precise. However,
networks exhibiting too regular or too synchronous activity did not match
the predictions of the mean field model to the degree to which they deviated
from our assumption that all inputs are independent Poisson processes (see
Figures 4 and 9). Serious distortions of the rate transmission curves may be
induced by such violations, and the shift of the fixed point may be of ei-
ther sign, depending on the curvature of the transmission curve. Although
a complete theory for such effects is currently not available, our scaling
experiments for self-sustained activity (see Figure 12a) strongly indicate
that the effects responsible for the deviations between network simulations
and mean field theory do not depend on the size and architecture of the
network.

From the mean field model of conductance-based neurons, one predicts
a state of self-sustained asynchronous activity at low rates, even in the
complete absence of external inputs. This result is essentially due to a pecu-
liar property of single neurons with conductance-based synapses. The rate
transfer function in the high-conductance state becomes nonmonotonic due
to the shunting impedances of background activity (Kuhn et al., 2004). Nu-
merical simulations of large spiking networks confirmed this prediction (see
Figure 10), although the activity of smaller networks was found to be subject
to spontaneous extinction as a result of activity fluctuations. The survival
of the self-sustained state, however, improved with increasing network size
(see Figure 11). The existence of a low-rate self-sustained state in the ab-
sence of external input is a distinguished property of conductance-based
networks and is not shared by current-based networks. Likewise, in certain
firing rate models (Wilson & Cowan, 1973), robust sustained activity at low
rates is possible only if the network is either driven by external input or if it
contains a certain fraction of endogenously active cells (Latham, Richmond,
Nelson, et al., 2000; Latham, Richmond, Nirenberg, et al., 2000). Similar
conclusions were drawn based on another model, where transient external
stimuli induced a switching between two different network activity levels,
but an external drive was still required for the network to exhibit sustained
activity (Salinas, 2003). The firing rates attained during the self-sustained
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activity states we described were very close to the rates predicted by the
mean field model. Although independent of network size and simulation
time step, the deviations in firing rate were systematic. Lower sustained ac-
tivity of the recurrent network than predicted by the mean field theory was
observed in conjunction with both high firing rates and strongly regular
firing. Higher-than-predicted sustained activity, by contrast, was observed
jointly with an increased amount of correlation (Bohte et al., 2000; Kuhn
et al., 2003).

The lowest rate of self-sustained activity reached in this study was 3.9
spikes per second for a network of 350,000 neurons (see Figure 13a). To
stabilize such low firing rates, the strength of inhibitory synapses had to
be chosen exceedingly high (g ≈ 10), leading to a mean membrane poten-
tial close to rest, and large fluctuations. The choice of relative strength of
inhibitory synapses, though, seems justified in view of recent experimen-
tal studies (Williams & Stuart, 2002, 2003). Also, the effect of inhibition in
pyramidal neurons is stronger, as most of the inhibitory synapses are lo-
cated on the soma and the basal dendrites. In a point neuron model, this
can be taken into account only by increasing the amplitude of inhibitory
couplings. Moderate values for the synaptic amplitudes suffice if one ar-
ranges unequal time constants for excitatory and inhibitory conductances.
In our networks, larger time constants for inhibition as reported for neo-
cortical pyramidal neurons (Williams & Stuart, 2002, 2003) had a similar
effect as increased amplitudes. Higher firing rates for inhibitory neurons
(McCormick et al., 1985; Connors & Gutnick, 1990) would also lead to more
effective inhibition.

Under which conditions real cortical networks share the properties of
our model and whether the self-sustained network state is of biological rel-
evance are unresolved issues. Nevertheless, experimental evidence pointing
in this direction has been reported recently (Shu et al., 2003). A high level
of ongoing activity without any specific stimulus has also been reported,
for example, in the visual cortex (Arieli et al., 1996). Moreover, experiments
of undercutting cortical tissue to deprive it from input first lead to a silent
network, but activity could recur after a few days (Burns & Webb, 1979;
Timofeev et al., 2000). Likewise, organotypic cultures of cortical neurons
organize into an active network by developing strong enough recurrent
synapses (Plenz & Aertsen, 1996).

Having shown that networks of spiking neurons can exhibit self-
sustained activity at low firing rates in theory, the question arises which
role this particular network state could play for the function of the mam-
malian neocortex. One possible scenario is that the self-sustained AI states
provide the functional substrate into which other processes are embed-
ded that eventually subserve higher brain functions. Processes based on
spike synchronization (Abeles, 1991; Diesmann, Gewaltig, & Aertsen, 1999;
Kumar, Rotter, & Aertsen, 2006) could be particularly effective in this con-
text, since they have to merely “rearrange” the spikes generated by the
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stable source of ongoing spontaneous activity. This would, among other
things, shorten the response times and increase the sensitivity of the pro-
cessing of inputs. Self-sustained activity in several distinct subnetworks,
however, lends itself to the alternative interpretation of short-term mem-
ory, as proposed by Fuster (1973, 1988) Goldman-Rakic (1995), and others
(Compte, Brunel, Goldman-Rakic, & Wang, 2000; Koulakov, Raghavachari,
Kepecs, & Lisman, 2002; Brunel, 2003; McCormick et al., 2003). Also, the
possibility of switching between different levels of activity by a very simple
stimulus leads to the suggestion (Aertsen, Erb, & Palm, 1994; Salinas, 2003)
that different contexts of neural processing could be represented by one and
the same network in this way.
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