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The function of cortical networks depends on the collective interplay
between neurons and neuronal populations, which is reflected in the cor-
relation of signals that can be recorded at different levels. To correctly
interpret these observations it is important to understand the origin of
neuronal correlations. Here we study how cells in large recurrent net-
works of excitatory and inhibitory neurons interact and how the asso-
ciated correlations affect stationary states of idle network activity. We
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demonstrate that the structure of the connectivity matrix of such net-
works induces considerable correlations between synaptic currents as
well as between subthreshold membrane potentials, provided Dale’s
principle is respected. If, in contrast, synaptic weights are randomly
distributed, input correlations can vanish, even for densely connected
networks. Although correlations are strongly attenuated when proceed-
ing from membrane potentials to action potentials (spikes), the resulting
weak correlations in the spike output can cause substantial fluctuations
in the population activity, even in highly diluted networks. We show that
simple mean-field models that take the structure of the coupling matrix
into account can adequately describe the power spectra of the population
activity. The consequences of Dale’s principle on correlations and rate
fluctuations are discussed in the light of recent experimental findings.

1 Introduction

The collective dynamics of balanced random networks was extensively
studied in the past decade assuming different neuron models as constitut-
ing dynamical units (van Vreeswijk & Sompolinsky, 1996, 1998; Brunel &
Hakim, 1999; Brunel, 2000; Mattia & Del Guidice, 2004). These models have
in common that they all assume random network topologies with sparse
connectivity for local, but large, neuronal networks that are embedded into
an unspecific external population, supplying excitatory drive to the local
network. These networks are basic models for cortical networks of about
1 mm3 volume and display activity states as observed in vivo. In these
models, it is commonly assumed that all synapses of inhibitory neurons
cause hyperpolarization, while excitatory synapses have a depolarizing ef-
fect on their postsynaptic targets. This constraint is an interpretation of
Dale’s principle (Li & Dayan, 1999; Hoppensteadt & Izhikevich, 1997), and
we will refer to it that way throughout this article. Recent experimental
evidence (Ren, Yoshimura, Takada, Horibe, & Komatsu, 2007), however,
hints at the existence of an inhibitory neocortical pathway that involves
interpyramidal inhibitory postsynaptic currents (IPSCs). Ren et al. (2007)
observed that in about 28% of tested cell pairs, action potentials generated
in a single layer II/III pyramidal neuron (mouse visual cortex) are sufficient
to reliably evoke large, constant-latency IPSCs in the other pyramidal cell.
Though the exact nature of this pathway is still under debate (Connors &
Cruikshank, 2007), Ren et al. hypothesize axo-axonic glutamate receptor–
mediated excitation of the nerve endings of inhibitory interneurons, thus
bypassing dendrites, soma, and axonal trunk of the involved interneuron.
Effectively, this yields an inhibitory projection between two excitatory cells
and, hence, a violation of Dale’s principle. In this article, we systematically
study the effects of a general regard or neglect of Dale’s principle on the dy-
namics and most of all pairwise correlations in balanced random networks.
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The perhaps most realistic while still analytically tractable model of bal-
anced random networks was presented by Brunel (2000), describing the
dynamical behavior of local networks consisting of leaky integrate-and-fire
neurons with current-based synapses, of which 80% are excitatory cells and
the residual fraction is inhibitory. Each neuron is supposed to receive a large
number of weak synaptic inputs; hence, the input current can be decom-
posed into a mean and a fluctuating part. The activity dynamics of the net-
work can then be described by a Fokker-Planck equation for the probability
distribution P(V, t) of the membrane depolarization V(t), and the stationary
rate is derived self-consistently. Further stability analysis of the stationary
states revealed four qualitative states the network can assume, depend-
ing on the relative strength g of inhibition over excitation and the relative
external input rate νext. In particular, a state of asynchronous population
activity combined with irregular individual neuron spiking (AI state) was
described for net recurrent inhibition and sufficiently strong external drive.
Numerical simulations of that state, however, displayed residual globally
synchronous activity that arises due to the finite size of the network, as was
demonstrated in Brunel (2000) and Mattia and Del Guidice (2004). Even
for highly diluted networks of size 5 × 105 neurons with synapse numbers
of about 103 to 104 (i.e., connectivities as low as ε = 0.002–0.02), the pre-
dicted AI state is not asynchronous, as reflected in a high variance of the
population activity (Tetzlaff, Morrison, Timme, & Diesmann, 2005).

Hence, to obtain local cortical networks with asynchronous-irregular ac-
tivity, dilution of the connection density beyond biologically plausible val-
ues is required. One way to reduce fluctuations of the AI state is to introduce
heterogeneities, for example, a distribution of transmission delays or a dis-
tribution of the number of incoming synapses per neuron (cf. Brunel, 2000;
Mattia & Del Guidice, 2004; Tetzlaff et al., 2005). As we demonstrate in this
article, such modifications have an impact on only limited frequency bands
and do not attenuate fluctuations completely. Residual fluctuations are dra-
matically attenuated, however, if we admit that Dale’s principle is violated
and allow neurons to form both excitatory and inhibitory synapses on their
axons. This hybrid wiring scheme is sketched in Figure 1B, while a coupling
matrix respecting Dale’s principle is shown in Figure 1A. As demonstrated
by numerical simulation (see Figures 1C and 1D) of otherwise identical
systems, this connectivity randomization procedure leads to strongly at-
tenuated global fluctuations. The distribution of population spike counts is
broad and highly skewed in networks respecting Dale’s principle, whereas
it is comparably narrow and symmetric for the randomized (hybrid) sce-
nario (see Figure 2C). The variance of the population activity is one order
of magnitude larger in the Dale case (see Figure 2B), while the mean firing
rate is the same (see Figure 2A). The power spectra of the population activ-
ity show that especially the frequency band up to 1 kHz is modulated by
this Dale effect (see Figure 2D). Further deviations from the analytical pre-
dictions in Brunel (2000) concerning the fast synchronous irregular mode
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Figure 1: Population spiking activity in Dale-conform (left column) and random
(hybrid; right column) networks. (A, B) Connectivity matrix (sketch) in the Dale
(A) and hybrid (B) case (N = 20 neurons, connection probability ε = 0.4, 80%
excitatory, 20% inhibitory synapses). Black squares depict positive, gray squares
negative, and white squares zero synaptic weights. Each column represents the
output (axon) of a particular (presynaptic) neuron. In A, a neuron either excites
all its postsynaptic targets or inhibits them. The hybrid architecture shown in B,
allows both types of output synapses for each neuron. The topology and mean
input (sum over all entries in a row) are the same in both cases. (C, D) Spiking
activity (dot displays) for 2000 randomly selected neurons (1000 inhibitory and
1000 excitatory neurons in C) and population histograms (bottom panels; bin
size 0.1 ms) in Dale (C) and hybrid (D) networks of size N = 12,500 (simulation
results; see section 2 for network and simulation parameters).

(SIfast state) are also much weaker if we apply the hybrid coupling scheme
(not shown here). Our findings indicate that the functional segregation of
excitation and inhibition has a very strong impact on network dynamics.
Moreover, the violation of Dale’s principle by mechanisms as suggested by
Ren et al. (2007) can be a means to stabilize both the asynchronous-irregular
and the fast synchronous-irregular states of balanced random networks.
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Figure 2: Spike count statistics (bin size 0.1 ms) for a network respecting Dale’s
principle (black curves and bars) and for a network ignoring it (gray curves and
bars). Time- and population-averaged population rates (A) and population rate
variances (B), spike count distributions (C), and power spectra of population
rates (D, smoothed by a boxcar of width 10 Hz). Graphs show simulation results
for networks composed of N = 12,500 integrate-and-fire neurons (NE = 10,000
excitatory, NI = 2500 inhibitory neurons, simulation time 10 s, temporal resolu-
tion 0.1 ms).

The article is structured as follows. In section 2, we specify the neuron
and network model. In section 3, we show that the fluctuations in the global
spiking activity can be understood from an analysis of the joint input statis-
tics of pairs of neurons. The input currents to neurons in Dale-type networks
are considerably correlated. These correlations are partially transmitted to
the spike outputs. These spike correlations induced by common input cause
the strong fluctuations of the population signals seen in the simulations. We
point out that this effect has to be taken seriously unless networks are di-
luted beyond the biological limit. In section 4 we demonstrate that the
second-order statistics of the population activity can be described in terms
of mean-field models if the coupling strengths are replaced by ensemble
expectations such that input correlations are preserved. A simple linear
Wilson-Cowan-type rate model (Wilson & Cowan, 1972; Dayan & Abbott,
2001) turns out to be sufficient to capture the most important qualitative
features of the population rate power spectra and reproduce the observed
amplification of fluctuations by Dale’s principle. In section 5, we show that
the strong fluctuations in the global activity caused by Dale’s principle are
also present in heterogeneous networks with distributed neuron and con-
nectivity parameters. Heterogeneities can suppress input correlations only
in limited frequency bands. By contrast, the correlations induced by Dale’s
principle are not restricted to a particular timescale.
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2 Model

Throughout the article, we assume the model and parameters as introduced
in Brunel (2000), if not stated otherwise. Here, we briefly recapitulate the
key features of this model. All notations are summarized in appendix D.

2.1 Neuronal Dynamics and Synaptic Input. The neurons in the net-
work of size N are modeled as leaky integrate-and-fire point neurons
with current-based synapses. Their membrane potential dynamics Vi (t),
i ∈ {1, . . . , N}, are governed by

τmV̇i (t) = −Vi (t) + RIi (t), (2.1)

with membrane resistance R and membrane time constant τm. Whenever
Vi (t) reaches the threshold θ , a spike is emitted, Vi (t) is reset to Vres, and the
neuron stays refractory for a period τref. Synaptic inputs

RIloc,i = τm

N∑
j=1

J i j

∑
k

δ(t − tjk − d) (2.2)

from the local network are modeled as delta currents. Whenever a presynap-
tic neuron j fires an action potential at time tjk , it will evoke an exponential
postsynaptic potential (PSP) of amplitude

J i j =




J if the synapse j → i is excitatory,

−g J if the synapse j → i is inhibitory,

0 if the synapse j → i does not exist

(2.3)

after a fixed transmission delay d . Note that multiple connections between
two neurons and self-connections are excluded in this framework. In addi-
tion to the local input, each neuron receives a constant external current Iext

mimicking inputs from other cortical areas or subcortical regions. The total
input is thus given by

Ii (t) = Iloc,i (t) + Iext. (2.4)

2.2 Network Structure. The network consists of N neurons, of which
NE = βN are excitatory and NI = (1 − β)N (β ∈ [0, 1]) inhibitory. The net-
work topology is random; all neurons are connected with equal probability
ε ∈ [0, 1], regardless of their identity. The only constraint is that all neurons
receive the same number of excitatory and inhibitory synapses: KE = εNE

and KI = εNI, respectively.
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Networks composed of neurons that exclusively hyperpolarize (in-
hibitory neurons) or exclusively depolarize (excitatory neurons) all their
postsynaptic targets will be called Dale networks. Whenever this constraint
is violated (i.e., any neuron has both hyperpolarizing and depolarizing
synaptic projections), the network is no longer regarded as Dale-conform.
Specifically, a network where the weights J and −g J are randomly dis-
tributed will be referred to as a hybrid network. A sketch of the respective
coupling matrices is given in Figures 1A and 1B.

2.3 Parameters. The neuron parameters are set to τm = 20 ms, R = 80
M�, J = 0.1 mV, and d = 2 ms. The firing threshold θ is 20 mV and the
reset potential Vres = 0 mV. After a spike event, the neurons are refractory
for τref = 2 ms. If not stated otherwise, all simulations were performed for
networks of size N = 12,500, with β = 0.8: NE = 10,000 and NI = 2,500.
The connection probability is set to ε = 0.1, such that each neuron receives
exactly KE = 1000 excitatory and KI = 250 inhibitory inputs. For g = 4,
inhibition hence balances excitation in the local network, while for g > 4,
the local network is net inhibition dominated. Here, we chose g = 6.

In Brunel (2000), external inputs were modeled as Kext independent Pois-
sonian sources with frequency νext measured in units of νthr = θ/(J Kextτm),
that is, the input rate a neuron needs to reach the threshold in the absence
of recurrent feedback. It has been shown (van Vreeswijk & Sompolinsky,
1996) that the randomness of external inputs is not a crucial premise for
the asynchronous irregular dynamics we are primarily interested in. For
our simulations, we therefore used an external direct current input with the
amplitude J Kextνextτm/R (the DC amplitude was set to 375 pA, if not stated
elsewise).

All network simulations were performed using the NEST simulation
tool (see NEST Initiative, 2006) with a temporal resolution of 0.1 ms. For
details of the simulation technique see Morrison, Mehring, Geisel, Aertsen,
and Diesmann, 2005.

3 Correlations in Dale and Hybrid Networks

The aim of this section is to explain how the structure of the network
determines the spike correlations in the network and, hence, the variance
of the population signal. We will quantify the spiking activity of neuron
k in terms of a count variable zk(t; h) representing the number of emitted
spikes in the time interval [t, t + h). For convenience, the parameter h will
be omitted: zk(t) = zk(t; h). The statistics of the compound signal

Z(t) =
M∑

k=1

zk(t) (3.1)
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of a population of size M will be described in terms of temporal averages:

Et [·] := lim
T→∞

1
T

∫ T

0
dt . . . . (3.2)

If all involved processes are stationary in time, this average can be replaced
by an ensemble expectation (average over trials with different initial con-
ditions) without changing the results of this section.

The variance of the population signal Z(t) is determined by the variances
and covariances of the individual spike counts:

Var[Z(t)] =
∑

k

Var[zk(t)] +
∑

k

∑
l �=k

Cov[zk(t), zl (t)]. (3.3)

In terms of population-averaged measures, equation 3.3 reads

Var[Z] = Mλ(1 + cs[M − 1]), (3.4)

with

λ := 1
M

M∑
k

Var[zk] (3.5)

being the population-averaged variance and

cs := 1
λ

1
M(M − 1)

M∑
k

M∑
l �=k

Cov[zk, zl ] (3.6)

the population-averaged spike train correlation coefficient.
Generally activity in Dale and hybrid networks can differ in both λ and c.

In the following, we will treat individual spike trains as Poisson processes.
In this case, λ = νh is related to the average network firing rate ν via the
spike count window h. As we will discuss in section 3.1.1, the average
firing rates are approximately identical in Dale and hybrid networks (see
Figure 2A). Thus, under the Poisson assumption, only the spike train cor-
relation cs can be responsible for the observed difference in the variance
of the population signal in the two network types. It remains to be clari-
fied why spike correlations in networks respecting Dale’s principle should
differ from those in hybrid networks. For this purpose, we need to take a
closer look at the input statistics of two neurons k and l.

3.1 Input Statistics. In the following, we describe the total input Ik(t) of
neuron k as a shot-noise process, that is, a superposition of linearly filtered
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presynaptic spike trains Si (t) (see appendix A):

Ik(t) = Iext +
N∑

i=1

(Si ∗ fki )(t). (3.7)

For our purpose, the choice of the filter kernel fki (t) is not relevant since
we assume that individual spike trains can be modeled as stationary Pois-
son processes with delta-shaped auto- and cross-correlation functions (see
appendix A). In the context of our model, Ik(t) can represent, for exam-
ple, the weighted input spike count, the synaptic input current ( fik(t) =
unit postsynaptic current, PSC), or the subthreshold membrane potential
( fik(t) = unit postsynaptic potential, PSP). As we assume that excitatory
and inhibitory synapses differ only in strength J i j but not in their kinetics,
individual synapses are fully described by

fki (t) = Aki f (t), (3.8)

with Aki := Jki/J ∈ {1,−g, 0} (cf. equation 2.3) and a fixed linear kernel f (t).
By defining the filtered activity of neuron i as

si (t) := (Si ∗ f )(t), (3.9)

we may rewrite equation 3.7 as

Ik(t) = Iext +
N∑

i=1

Aki si (t). (3.10)

As the model networks are homogeneous (identical neurons with fixed
number of input synapses KE and KI and delays d), we will assume that
the time-averaged mean values and auto- and cross-covariance functions
of the filtered spike signals are constant:

Et [si (t)] = α1ν (∀i ∈ [1, N]),

Cov[si (t)s j (t + τ )] = Et
[
si (t)s j (t + τ )

] − Et [si (t)] E
[
s j (t + τ )

]
=:

{
as(τ ) ∀i = j

cs(τ ) ∀i �= j.

(3.11)

Assuming that all spike trains can be treated as Poisson processes with delta-
shaped correlation functions, the variance and covariance of the filtered
processes become

as(0) = α2ν and cs(0) = csα2ν. (3.12)
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Figure 3: Time- and population-averaged synaptic input currents (A) and free
membrane potentials (B, membrane potentials without spiking dynamics) for
Dale (black bars) and hybrid networks (gray bars). Graphs show simulation
results for networks composed of N = 12,500 I&F neurons (ε = 0.1, β = 0.8,
g = 6, simulation time 10 s, temporal resolution 0.1 ms). Synaptic currents were
recorded from 2000 randomly selected neurons. Free membrane potentials were
obtained by low-pass filtering (membrane time constant τm = 20 ms) of synaptic
currents.

Here, ν denotes the population-averaged firing rate and cs the spike cor-
relation coefficient defined in equation 3.6. The constants α1 =∫

dt f (t)
and α2 = ∫

dt f (t)2 follow from shot-noise theory (see appendix A). As
demonstrated in the following discussion, the homogeneity assumption,
equation 3.11, enables us to separate the statistics of the spike trains from
those of the network structure.

3.1.1 Mean Input. According to equation 3.11, the average synaptic input
of a neuron k is given by

Et [Ik(t)] = Iext + α1ν

N∑
i=1

Aki . (3.13)

As we assumed that each postsynaptic neuron k receives the same numbers
KE = εβN, KI = ε(1 − β)N of excitatory and inhibitory inputs, we obtain

Et [Ik(t)] = Iext + α1νεN(β − g[1 − β]). (3.14)

Note that equation 3.14 holds for both Dale and hybrid networks.
Network simulations with integrate-and-fire neurons showed that the

average firing rates ν are identical in both types of networks (see Figure 2A).
For the mean input Et [Ik(t)], it is therefore irrelevant whether the network
is wired according to Dale’s principle. Indeed, recordings of synaptic input
currents and membrane potentials in network simulations revealed the
same mean values in both scenarios (see Figure 3).
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3.1.2 Input Correlations. Given the homogeneity assumption 3.11, the
input covariance function reads

Cov[Ik(t)Il (t + τ )] = as(τ )
N∑

i=1

Aki Ali + cs(τ )
N∑

i=1

N∑
j �=i

Aki Al j . (3.15)

With the input auto- and cross-covariance functions defined as

Cov[Ik(t)Il (t + τ )] =:

{
ain(τ ) ∀k = l

cin(τ ) ∀k �= l
(3.16)

and the constants

H :=
N∑

i=1

A2
ki , L :=

N∑
i=1

N∑
j �=i

Aki Al j and G :=
N∑

i=1

Aki Ali , (3.17)

we may rewrite equation 3.15 in matrix notation:

(
ain(τ )

cin(τ )

)
=

(
H L

G L

) (
as(τ )

cs(τ )

)
. (3.18)

For a given network realization, the coefficients in equation 3.17, and there-
fore also the input auto- and cross-covariances, may generally depend on
the postsynaptic neuron indices k and l. Since all neurons in the network
receive KE excitatory and KI inhibitory inputs, the coefficients H and L are,
however, independent of the target cells:

H = KE + g2 KI = K (β + g2[1 − β])

L = (KE − gKI)2 = K 2(β − g[1 − β])2.
(3.19)

Note that for equation 3.19, we assumed that KE � 1 and KI � 1. The third
coefficient G reflects the presynaptic overlap between the two postsynap-
tic neurons k and l. In networks respecting Dale’s principle, the common
sources are either excitatory or inhibitory for both neurons k and l (see
Figure 4A). In hybrid networks, however, their impact can be excitatory
for one and inhibitory for the other target (see Figure 4B). As shown in
appendix B, this leads to quite distinct results for the coefficient G in the
two scenarios:

GD = εK (β + g2[1 − β]) = εH (Dale), (3.20)

GH = εK (β − g[1 − β])2 = ε L/K (hybrid). (3.21)
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Figure 4: Input scenarios in Dale (A) and hybrid networks (B). Two neurons k
and l receive excitatory (solid lines) and inhibitory inputs (dashed lines) from
different types of presynaptic sources. While in the Dale scenario presynaptic
neurons are either excitatory (black circles) or inhibitory (white circles), this dis-
tinction cannot be made in the hybrid case (gray circles). (C) Input correlation
cin for uncorrelated spiking (cs = 0) as a function of the relative strength g of
inhibition in networks respecting Dale’s principle (black curves) and in hybrid
networks (gray curves). (D) Dependence of input correlations cin on spike train
correlations cs for fixed g = 6. (E) Self-consistent spike correlation c∗

s as a func-
tion of the relative strength g of inhibition. Lines show analytical and symbols
network simulation results (cf. Figure 7, ε = 0.1, β = 0.8, K = 1250).

For our standard parameters g = 6, β = 0.8 they differ by a factor of
GD/GH = K H/L = 50. Intuitively, the difference between the Dale and the
hybrid case can be understood as follows. In the Dale scenario, the con-
tributions to the input correlation due to shared presynaptic targets are
always positive. In the hybrid case, however, they are negative for those
common sources that excite one and inhibit the other target. The total input
correlation is therefore reduced.

If the covariance functions as(τ ) and cs(τ ) of the (filtered) spike trains
are known, those of the input currents can be easily computed with the
help of equation 3.18 for both Dale and hybrid networks. Note that by
Fourier-transforming equation 3.18, the input power and cross-spectra
âin(ω) and ĉin(ω) are fully determined too. Further, consider that the
prefactor L = K 2(β − g[1 − β])2, which scales the impact of the spike train
cross-covariance functions cs(τ ) (or cross-spectra), vanishes if the network
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is balanced, that is, if β = g(1 − β). Thus, in the balanced case, spike
correlations cs(τ ) do not contribute to the second-order input statistics in
either the Dale or hybrid scenario (cf. Salinas & Sejnowski, 2000).

According to equations 3.18 and 3.12, the variance of the input currents
reads

σ 2 := ain(0) = α2 ν K
(
β + g2[1 − β] + cs K [β − g(1 − β)]2). (3.22)

In Figure 5 the input variances σ 2 in the presence of spike correla-
tions cs are compared with those obtained for cs = 0, that is, with σ̃ 2 :=
α2νK (β + g2[1 − β]). The three curves show the ratio σ 2/σ̃ 2 as a function
of the relative strength g of inhibition for three different spike correlations:
cs = 10−1 (solid), 10−2 (dashed), and 10−3 (dotted). In the fully balanced
case, here for g = 4 (β = 0.8), the input variance is insensitive to correla-
tions in the presynaptic spike train ensemble: σ 2/σ̃ 2 = 1. For our reference
network with dominant inhibition, g = 6, the deviation of σ from σ̃ is neg-
ligible if the spike count correlations are small (cs < 10−3). As we will show
in section 3.2, spike count correlations are indeed tiny in both Dale and hy-
brid networks. We therefore conclude that the variance of the input signal
is not substantially affected by Dale’s principle. Indeed, in network simula-
tions, we find that the population-averaged variances of the synaptic input
current and the free membrane potential are only marginally smaller in the
hybrid case (12% for synaptic currents and 8% for membrane potentials; see
Figures 6A and 6B, respectively). Although significant, these differences are
small compared to the large difference (86%) observed for the population
spike count variances (see Figure 2B).

Figures 6C and 6D compare the distributions of synaptic currents and
membrane potentials in Dale-type (black) and hybrid (gray) networks. Both



2198 B. Kriener et al.

Figure 6: Second-order statistics of synaptic input currents (left column) and
free membrane potentials (right column) for Dale (black curves and bars)
and hybrid networks (gray curves and bars). (A, B) Time- and population-
averaged variances. (C, D) Distributions of synaptic currents and membrane
potentials. (E, F) Population-averaged power spectra (smoothed by moving av-
erage [frame size 1 Hz]). (G, H) Distributions of input correlation coefficients cin.
(I, J) Population-averaged coherences (smoothed by moving average [frame size
1 Hz]). Graphs show simulation results for networks composed of N = 12,500
I&F neurons (ε = 0.1, β = 0.8, g = 6, simulation time 10 s, temporal resolution
0.1 ms). Synaptic currents were recorded from 2000 randomly selected neurons.
Free membrane potentials were obtained by low-pass filtering (membrane time
constant τm = 20 ms) of synaptic currents.
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the current and the voltage distribution are slightly narrower in the hybrid
case.1 However, compared to the results obtained for the spike count signals
(see Figure 2C), these differences are subtle. Also the power spectra âin(ω)
(see Figures 6E and 6F) are similar in Dale and hybrid networks for frequen-
cies below 50 Hz. At about 100 Hz, a peak is observed in Dale networks that
is not visible in the hybrid case. Due to the low-pass filter characteristics of
the cell membrane, this peak is flattened and becomes less significant for
the membrane voltages (see Figure 6F).

Due to the differences in the coefficient G (see equations 3.20 and 3.21),
the input covariances

cin,D/H(0) = α2ν(GD/H + cs L) (3.23)

in Dale and hybrid networks differ considerably, even if the spike corre-
lations cs are neglected. With cs := cs(0)/as(0), the input correlation coeffi-
cients in general read

cin := cin(0)
ain(0)

= G + cs L
H + cs L

. (3.24)

With equation 3.20, we obtain,

cin,D = εH + cs L
H + cs L

(3.25)

for Dale and with equation 3.21,

cin,H = εL/K + cs L
H + cs L

(3.26)

for hybrid networks. If we assume that presynaptic neurons fire in an un-
correlated fashion, that is, cs = 0, equations 3.25 and 3.26 simplify to

cin,D = ε (3.27)

and

cin,H = ε
L

K H
= ε

(β − g[1 − β])2

β + g2[1 − β]
. (3.28)

1The discreteness of the current distributions (see Figure 6C) results from the delta-
type currents we used in the simulations.
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Thus, the correlation between the synaptic inputs in the Dale network is
basically determined by the network connectivity ε, and barely affected by
other parameters, if spike correlations are small (cs < 10−3). This is different
in hybrid networks; here, the input correlations vanish if the network
is balanced—i.e., β = g(1 − β). Figure 4C shows the dependence of cin,D

(black curve) and cin,H (gray curve) on the relative inhibition strength g for
cs = 0 (ε = 0.1, β = 0.8). Close to the balanced regime, input correlations in
Dale and hybrid networks differ by at least one order of magnitude. This
is confirmed by simulation results for our standard network with g = 6
(squares in Figure 4C). Figures 6G and 6H illustrate that this effect can
be observed at the level of both input currents and membrane potentials,
respectively.2 The measured coherences κin(ω) := |ĉin(ω)|/âin(ω) between
input currents (see Figure 6I) and membrane potentials (see Figure 6J)
show that Dale’s principle amplifies common input correlations on all
timescales (frequency bands).

The dependence of the input correlations cin on correlations cs between
spike trains is illustrated in Figure 4D for fixed g = 6. Spike correlations
cs measured in network simulations (square symbols) are of order 10−3 in
the Dale and 10−4 in the hybrid case. In this range, input correlations are
well approximated by assuming cs = 0. Only for large spike correlations
(cs > 10−2) do input correlations approach the limiting value 1.

According to equations 3.27 and 3.28, input correlations depend linearly
on the network connectivity ε = K/N. We tested this by simulating net-
works of different sizes N ∈ {10,000, . . . , 325,000} while keeping the num-
ber of synapses per neuron constant at K = 1,250 (β = 0.8, g = 6). Network
connectivities thus range between 0.004 and 0.125. Figure 7A compares the
analytical results for cs = 0 (dashed lines) with simulation results (squares)
for Dale (black) and hybrid networks (gray). Not only the 1/N scaling but
also the absolute values are correctly predicted over a wide range of net-
work sizes.

3.2 Output Correlations. In the previous section we showed that input
correlations cin induced by common input are much stronger in Dale than
in hybrid networks. It has been demonstrated in earlier studies (Shadlen &
Newsome, 1998; Stroeve & Gielen, 2001; Tetzlaff, Buschermöhle, Geisel, &
Diesmann, 2003; Moreno-Bote & Parga, 2006) that pairs of integrate-and-fire
neurons transmit common input correlations to some extent to their output
spike signals. Here, this result is confirmed and extended by comparing
correlations cin between input currents with spike count correlations cout

(bin size 0.1 ms) in Dale and hybrid networks for different network sizes
N (see Figures 7A and 7B, squares). Although much smaller, the measured
spike count correlations cout reflect similar features as the input correlations

2The width of the distributions of correlation coefficients shown in Figures 6G and 6H
is determined by the distributions of CE, CI, and CEI (see appendix B).
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Figure 7: Population-averaged correlation coefficients for synaptic input cur-
rents cin recorded from 20 neurons (A) and for spike trains cs recorded from
2000 neurons (B, bin size 0.1 ms) as functions of the network size N (number
of synapses is kept constant at KE = 1,000, KI = 250) for Dale-conform (black
lines and symbols) and random (hybrid) networks (gray lines and symbols,
β = 0.8, ε = 0.1, g = 6). (C) Correlation gain γc = cs/cin obtained from the ratios
of correlation coefficients shown in B and A. (D) Relative amplitude of the pop-
ulation rate fluctuations measured by the Fano factor F. Symbols in A–D show
simulation results (simulation time 10 s, temporal resolution 0.1 ms). Lines in
A, B, and D show theoretical results for cs = 0 (dashed) and for cs = c∗

s (dot-
ted). Correlation gains γc = 0.007 (Dale) and 0.018 (hybrid) were obtained from
simulation results (dashed lines in C).

cin do. Again, output correlations in Dale networks are considerably larger
than in hybrid networks. Moreover, we find the same 1/N scaling as we did
for input correlations.

In a previous study (Tetzlaff et al., 2003) we showed that small input
correlations are transmitted to the output in approximately linear fashion:
cout ≈ γccin. Furthermore, it is known that the correlation gain γc depends
on the marginal input statistics (Stroeve & Gielen, 2001; Tetzlaff et al., 2003;
Moreno-Bote & Parga, 2006). According to section 3.1, the mean and vari-
ance of the input do not depend on the network size as long as the number
of synapses KE/I is constant and the network is close to balance. Figure 7C
(squares) shows that the correlation gain γc = cout/cin is indeed indepen-
dent of the network size N (see Figure 7C, squares). Moreover, we pointed
out that (balanced) Dale and hybrid networks do not basically differ in
the marginal statistics of the input currents. This is also consistent with
Figure 7C: the correlation gains, while being different, are at least of the
same order of magnitude in both scenarios. We will use the mean values
(0.007 and 0.018 in the Dale and the hybrid case, respectively; dashed lines
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in Figure 7C) to predict output correlations cout from the theoretical results
for cin (dashed lines in Figure 7B).

Thus far, we have shown that input correlations cin depend on spike cor-
relations cs (see Figure 4D), and output spike correlations cout result from
input correlations cin. In a stationary situation, we must therefore expect
a self-consistent spike correlation cs = cout =: c∗

s . Using equations 3.25 and
3.26 and assuming a linear relationship cout = γccin between input and out-
put correlations, we obtain the self-consistent spike correlation c∗

s as the
(positive) solution(s) of

c∗
s = γc · c∗

in = γc · G + c∗
s L

H + c∗
s L

. (3.29)

Figure 4E shows the results for Dale (black curve) and hybrid (gray curve)
networks as a function of the relative strength g of inhibition with γc,D =
0.007 and γc,H = 0.018, respectively. The symbols at g = 6 represent spike
count correlations measured in simulations. The dotted lines in Figures 7A
and 7B show that incorporating the results for c∗

s,D/H in the calculation of
cin and cout has only a minor effect. Again, since spike correlations are
small and the considered networks are close to balance, the marginal and
joint input statistics are well described by assuming cs = 0. However, to
understand why Dale and hybrid networks differ that much in the statistics
of the population signal Z(t) (see Figure 2), the tiny spike correlations cs are
essential and cannot be neglected.

3.3 Network Fluctuations. At the beginning of section 3, we pointed out
that the variance of the compound spike count signal Z(t) of a population
of size M (M ≤ N) is given by

Var[Z(t)] = Mλ (1 + cs[M − 1]) (3.30)

with λ = hν. In section 3.2, we argued that the spike correlation cs = cout is
well approximated by the linear relationship cout = γccin. In section 3.1.2,
we showed that the input correlation cin in turn depends only weakly on the
spike correlation cs , provided the network is close to balance. Assuming cs =
0, it shows a linear dependence on the network connectivity ε = K/N—
cin = Qε. Dale and hybrid networks basically differ with respect to the
factor Q:

QH = (β − g[1 − β])2

β + g2(1 − β)
QD = 1.

(3.31)
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In summary, the spike correlation can be written as

cs = γc Qε. (3.32)

To measure the strength of fluctuations of the population spike count,
we consider the Fano factor:

F = Var[Z(t)]
E [Z(t)]

. (3.33)

With equations 3.30 and 3.32 and the mean E [Z(t)] = Mλ, we obtain

F = 1 + M − 1
N

γc QK . (3.34)

The dependence of F on the network size N (K and M fixed) is shown in
Figure 7D for both the Dale and the hybrid scenarios. Results of network
simulations (symbols) are in good agreement with the analytical predictions
(see equation 3.34, dashed lines). As before, the correction obtained by
taking the finite self-consistent spike correlation c∗

s (see equation 3.29) into
account is negligible (dotted lines). In Dale networks, the deviations of
F from the asynchronous Poissonian case F = 1 remain even for large
network sizes (i.e., unrealistically small connectivities). To achieve the same
Fano factor as that of a hybrid network of size N = 12,500 (ε = 0.1), a
network respecting Dale’s principle would have to be enlarged to N ≈
2 · 105, corresponding to a connectivity of less than 1%.

According to equation 3.34, the Fano factor F approaches 1 in the limit
N → ∞ if the number of observed neurons M and the number of synapses
K per neuron are fixed. Thus, the strong fluctuations in the population
signal (see Figure 1C) can be considered as a finite size effect (see, e.g.,
Brunel, 2000; Mattia & Del Guidice, 2004). They disappear in the above
limit. For a broad range of reasonable connection probabilities, however,
correlations caused by common input cannot be neglected.

Mass activity signals, such as the electro encephalogram (EEG), measure
the activity of very large neuron populations. In our description, this might
correspond to M ∼ N. According to equation 3.34, the limit N → ∞ in this
scenario leads to finite deviations from the Poisson case:

lim
N→∞

F = 1 + γc QK . (3.35)

For our standard parameters β = 0.8, g = 6, K = 1250 and the measured
correlation gains γc,D = 0.007 and γc,H = 0.018, the Fano factor of the whole
population at large network size becomes FD = 9.75 in Dale and FH = 1.45
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in hybrid networks. Thus, in the case M ∼ N, the enlarged network fluctu-
ations cannot be attributed to a finite size effect.

4 Population Dynamics

4.1 Ensemble Averages. In the previous section, we showed that a cor-
rect description of the second-order statistics of the population activity
needs to consider correlations between input currents. The classical mean-
field approach takes only the mean synaptic input into account. Thus, it can-
not predict the amplitude of the population rate fluctuations for networks
with significant input correlations. In this section, we derive an extended
mean-field description for random networks respecting Dale’s principle.
For this purpose, we consider the input covariance 3.15 for the case cs = 0
in an ensemble average (averaged across network realizations):

E [Cov[Ik(t), Il (t)]] = α2ν

N∑
i=1

E [Aki Ali ] . (4.1)

In a purely random (i.e., hybrid) network, the elements of the coupling
matrix are independent for k �= l; the ensemble average factorizes, that is,
E [Aki Ali ] = E [Aki ] E [Ali ]. Since the average coupling strength E [Aki ] =
ε(β − g[1 − β]) is independent of the pre- and postsynaptic neuron identi-
ties i and k, the average input covariance reads

E [Cov[Ik(t), Il (t)]] = α2νεK (β − g[1 − β])2, (4.2)

which is identical to the result we obtained for cs = 0 in the previous sec-
tion. In the classical mean-field description, the weights Aki in the input
current 3.10 are replaced by the ensemble average E [Aki ]. The resulting
input covariance is identical to equation 4.2. Thus, in an ensemble average,
the mean-field approach correctly predicts the input statistics in random
networks, regardless of the network size N.

This is different in networks respecting Dale’s principle. Here, the cou-
pling strengths Aki and Ali are independent only inside the excitatory or
inhibitory subpopulations, that is, for i ∈ E or i ∈ I. By splitting the sum in
equation 4.1, we may therefore write

E [Cov[Ik(t), Il (t)]] = α2ν


∑

i∈E
E [Aki ] E [Ali ] +

∑
j∈I

E
[
Ak j

]
E

[
Al j

] .

(4.3)
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With

E [Aki ] =
{

ε if i ∈ E

−gε if i ∈ I
, (4.4)

NE = |E | = βN and NI = |I| = (1 − β)N, we regain the result of sec-
tion 3.1.2,

E [Cov[Ik(t), Il (t)]] = α2νεK
(
β + g2[1 − β]

)
, (4.5)

for cs = 0. The same input covariance is obtained if the coupling strengths
in the input current, equation 3.10, are replaced by their expectations inside
each subpopulation:

Ik(t) = Iext + ε
∑
i∈E

si (t) − gε
∑
j∈I

s j (t). (4.6)

In such an extended mean-field description, the ensemble averaged in-
put correlations are preserved. In the remainder of this section, we study
mean-field population models for Dale and hybrid networks and show that
the resulting power spectra of the population rates indeed resemble those
obtained by network simulations (see Figure 2D).

4.2 From Single Neuron Dynamics to Population Rates. In the follow-
ing, we derive equations describing the dynamics of the population activity
from the integrate-and-fire dynamics (see section 2) of individual neurons.
The subthreshold membrane potential dynamics of neuron i is fully de-
termined by equations 2.1, 2.2, and 2.4. As defined in section 2, spikes are
elicited whenever the membrane potential Vi (t) crosses a threshold θ . Imme-
diately after spike emission, the membrane potential is reset to the resting
potential Vres = 0. The reset after each spike of neuron i can be treated as
a pulse-like negative current, which triggers a depolarizing membrane po-
tential jump of amplitude θ . The 2N variables {Vi (t), Si (t) | i ∈ {1, . . . , N}}
in the network are then coupled by the N equations

V̇i (t) + 1
τm

Vi (t) =−θ Si (t) +
N∑

j=1

J i j Sj (t − d) + C−1 Iext

(i ∈ {1, . . . , N}). (4.7)

Here,

Si (t) =
∑

k

δ(t − tik) (4.8)
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denotes the spike train generated by neuron i with spikes at times tik and
C the membrane capacitance. Macroscopic mean-field models of the pop-
ulation dynamics can be derived by summating the single neuron signals
given by equation 4.7.

In the hybrid scenario, all neurons are statistically equal (cf. Figure 4B).
All entries Ai j of the coupling matrix are independent and identically dis-
tributed according to a common distribution with mean µ = J ε(β − g[1 −
β]). In the line of reasoning of section 4.1, we sum equation 4.7 over all
neurons i ∈ {1, . . . , N} and obtain a one-dimensional equation,

V̇ + 1
τm

V(t) = −θ S(t) + W′ S(t − d) + X′, (4.9)

describing the interplay between the population membrane potential,

V(t) :=
N∑

i=1

Vi (t), (4.10)

and the compound population spike train,

S(t) :=
N∑

i=1

Si (t), (4.11)

with a coupling coefficient W′ = Nµ and a constant external input X′ =
NC−1 Iext.

In the Dale scenario, by contrast, all synapses on the axon of one partic-
ular neuron have the same sign: nodes are either excitatory or inhibitory.
To properly take care of the structural correlations in the mean-field reduc-
tion, we sum over the individual subpopulations separately and explicitly
account for the four possible interactions among different subpopulations.
Let E collect the indices of all NE excitatory neurons and I those of the NI

inhibitory neurons. Further, let

E
[
J i j

] =




µEE := ε J i ∈ E , j ∈ E
µEI := −gε J i ∈ E , j ∈ I
µIE := ε J i ∈ I , j ∈ E
µII := −gε J i ∈ I , j ∈ I

(4.12)
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denote the ensemble averages of the entries J i j of the coupling matrix. With

VE(t) :=
∑
i∈E

Vi (t), VI(t) :=
∑
i∈I

Vi (t),

SE(t) :=
∑
i∈E

Si (t), SI(t) :=
∑
i∈I

Si (t),
(4.13)

and X′
E := NEC−1 Iext and X′

I := NIC−1 Iext, we obtain

V̇E(t) + 1
τm

VE(t) =

= −θ SE(t) +
∑
i∈E

∑
j∈E

J i j Sj (t − d) +
∑
i∈E

∑
j∈I

J i j Sj (t − d) + X′
E

= −θ SE(t) + NE µEE SE(t − d) + NE µEI SI(t − d) + X′
E (4.14)

for the excitatory and

V̇I(t) + 1
τm

VI(t) = −θ SI(t) + NI µIE SE(t − d) + NI µII SI(t − d) + X′
I

(4.15)

for the inhibitory subpopulation. With

V(t) =
[

VE(t)

VI(t)

]
, S(t) =

[
SE(t)

SI(t)

]
, X′(t) =

[
X′

E

X′
I

]
, (4.16)

and

W′ =
[

NE µEE NE µEI

NI µIE NI µII

]
, (4.17)

equations 4.14 and 4.15 read in matrix notation

V̇(t) + 1
τm

V(t) = −θ S(t) + W′ S(t − d) + X′. (4.18)

Note that these equations are generally not symmetric with respect to E
and I. Although we use the same notation in equations 4.18 and 4.9, we refer
to a one-dimensional system in the hybrid case and a two-dimensional one
in the Dale scenario.

Clearly, equations 4.9 and 4.18 cannot be solved for both the pop-
ulation membrane potential V(t) and the population spike train S(t)
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Figure 8: Scatter plots (A, B) and cross-correlation coefficient (C, D) of the
population-averaged spike count S(t)/N per time bin h = 0.1 ms and the
population-averaged membrane potential (including resets) V(t)/N for the Dale
and the hybrid scenarios taken from a network simulation of 12,500 neurons.
The population size of observed neurons was M = 4000 in both cases, with all
other parameters as before. In A and B, the relative frequencies are shown in
linear (density plots) and logarithmic scaling (contour lines). The black dashed
lines represent a linear approximation of the underlying rate intensity function
Y(t)/N.

simultaneously. By reducing the system to a one- or two-dimensional sys-
tem, we lose the explicit knowledge about the microstates of the observables
V(t) and S(t) during the summation process. Even if we knew the input
variable S(t) at all times t, we do not know exactly how it is distributed
across neurons, because the detailed connectivity has been averaged out.
At the same time, different combinations of membrane potentials Vi (t) in
the summation may result in the same sum V(t), while containing Vi (t) = θ

for a number of neurons in one case, or Vi (t) < θ for all neurons in an-
other case. This will eventually result in different possible values V(t) for
the same S(t) (and vice versa). Hence, strictly speaking, we have to deal
with the dynamics of probability densities for both V(t) and S(t). This is
reflected in the extension of the scatter cloud of S(t) versus V(t) derived
from network simulations in Figures 8A and 8B. We observe, however, that
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V(t) and S(t) exhibit a close instantaneous relationship in both the Dale and
the hybrid case (see Figure 8). We find significant correlation coefficients
between V(t) and S(t) of 0.51 in the Dale and 0.13 in the hybrid case (cross-
correlation peaks in Figures 8C and 8D, respectively). Moreover, the peaks
of the respective cross-correlation functions,

R(τ ) = E[S(t)V(t + τ )], (4.19)

are centered at time lag zero, indicating an instantaneous relationship (see
Figures 8C and 8D). Note that correlations between spike responses and
population membrane potentials have also been reported experimentally
(e.g., Arieli, Shoham, Hildesheim, & Grinvald, 1995). In the following, we
replace the population spike train S(t) by a deterministic signal Y(t)—the
population firing rate. For simplicity, we model the relation between Y(t)
and V(t) (see Figure 8) as

Y(t) = 1
b

[V(t) − a ]. (4.20)

The parameters a = 11.8 mV · N and b = 18.2 mVms are roughly estimated
from network simulations (see the dashed lines in Figures 8A and 8B). In the
Dale case, we find similar estimates for both the excitatory and the inhibitory
subpopulation (data not shown). Although a and b slightly differ in the Dale
and hybrid scenarios, we use identical values here (the qualitative results of
our analysis do not critically depend on the exact choice of these numbers).
With equation 4.20 and the abbreviations

τr = b

θ + bτ−1
m

, W = W′

θ + bτ−1
m

, and X = X′ − aτ−1
m

θ + bτ−1
m

, (4.21)

equations 4.9 and 4.18 simplify to

τrẎ = −Y(t) + WY(t − d) + X. (4.22)

Note that the variable Y(t) and the parameters a and X are two-dimensional
vectors in the Dale scenario. The relaxation time constant τr ≈ 0.87 ms is
fully determined by the neuron parameters τm = 20 ms and θ = 20 mV and
the slope b = 18.2 mVms of the linear relation, equation 4.20.

The time-averaged compound firing rates Ȳ ≡ νN (hybrid) and Ȳ ≡
ν(NE, NI)T (Dale) are hence determined by

Ȳ = (I − W)−1 X. (4.23)



2210 B. Kriener et al.

For our standard parameter setting and the estimated coefficients a and b,
the average single neuron firing rate becomes ν ≈ 12.83 Hz in both the Dale
and the hybrid scenario, which is in very good agreement with the average
firing rates observed in the simulations (cf. Figure 2A, νD = 12.89 Hz, νH =
12.83 Hz).

4.3 Power Spectra of the Population Responses. Equation 4.22 de-
scribes a deterministic system driven by a constant input X. The recurrent
input to the network, however, is mediated by spike trains. Therefore, the
system excites itself in all frequency bands. We take this into account by
adding a white noise component R(t) with

E [R(t)] = 0 and

E [R(t)R(t′)] = �δ(t − t′),
(4.24)

and obtain a stochastic differential equation (Langevin equation) for the
population rate Y(t):

τrẎ = −Y(t) + WY(t − d) + X + R(t). (4.25)

In the Fourier domain, equation 4.25 reads

−ıωτrŶ(ω) = −Ŷ(ω) + eıωd WŶ(ω) + X̂(ω) + R̂(ω). (4.26)

If we set P = [(1 − ıωτr)I − eıωd W]−1, we obtain the Fourier-transformed
population rates:

Ŷ(ω) = P
[
X̂(ω) + R̂(ω)

]
. (4.27)

For the calculation of the power spectra E[Ŷ(ω)Ŷ∗(ω)], we ignore the con-
stant external drive X as it contributes only to the zero-frequency compo-
nent (X̂(ω) ∼ δ(ω)). From equation 4.24, it follows that E[R̂(ω)R̂∗(ω)] = �.
Thus, we obtain

E[ŶŶ∗] = E[(P R̂ )(P R̂ )∗] = PE[R̂ R̂∗]P∗ = P�P∗. (4.28)

To specify the spectral matrix � of the noise component R(t), we assume
that the compound spiking activity results from the superposition of N
uncorrelated Poisson processes with time-averaged firing rates ν. Thus, the
noise (co)variances become

� = Nν (4.29)
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in the hybrid and

� =
(

NEν 0

0 NIν

)
(4.30)

in the Dale scenario. In the hybrid case, the power spectrum 4.28 of the
population rate is therefore given by

P(ω) := E
[
Ŷ(ω)Ŷ∗(ω)

] = Nν

|(1 − ıωτr) − eıωd W|2 , (4.31)

whereas we obtain in the Dale scenario

P(ω) =
(
PEE(ω) PEI(ω)

PIE(ω) PII(ω)

)
, (4.32)

with the explicit expressions given in appendix C. Finally, to obtain the full
spike train spectra, a constant offset � = E[R̂ (ω)R̂

∗
(ω)] has to be added.

Figures 9A and 9B show the power spectra obtained by numerical simu-
lations of the full system in comparison to the corresponding power spectra
obtained from the reduced linear rate model, Figures 9C and 9D, for the
same parameters as before. Although we chose identical parameters in the
Dale and the hybrid scenario, the power of the population signal Y(t) in
the Dale case exceeds that in the hybrid scenario by up to two orders of
magnitude at almost all frequencies (see Figure 9C). This is in good agree-
ment with our results obtained from network simulations (see Figure 9A).
Figure 9E demonstrates that the overall increase in power in the Dale case
does not result from the asymmetry induced by the different sizes of the
excitatory and inhibitory neuron population (β = 0.8) and the dominance
of inhibition (g = 6). Even for a system with equally sized populations
(β = 0.5), the same absolute strength of inhibition and excitation (g = 1),
and zero delay d = 0, the linear model predicts a massive difference in total
power between the Dale (see Figure 9F, gray line) and the hybrid case (black
line).

In the Dale case, the total power of the excitatory subpopulation clearly
exceeds the power of the inhibitory subpopulation (see Figures 9B and 9D).
Even for the case β = 0.5, g = 1, d = 0 (see Figure 9F), there is a remain-
ing difference between excitatory and inhibitory subpopulation that is due
solely to the asymmetry in the signs of inhibition and excitation.

In addition to the overall differences in power, the presented mean-field
models can also qualitatively reproduce the delay resonance peaks observed
in the simulations.
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Figure 9: Population size normalized power spectra obtained by simulation of
the full nonlinear system (A, B; smoothed by moving average [frame size 1 Hz])
in comparison with the according analytical results for the reduced linear model
(C, D: standard parameters; E, F: d = 0, g = 1, β = 0.5). The left column (A, C,
E) compares the total spectra in Dale (black curves) and hybrid (gray) networks.
The right column (B, D, F) shows the power spectra of the excitatory (black) and
inhibitory (gray) subpopulations in the Dale scenario.

5 Heterogeneous Networks

It has been shown in previous studies (e.g., Brunel, 2000; Denker, Timme,
Diesmann, Wolf, & Geisel, 2004; Tetzlaff et al., 2005) that global network
fluctuations are diminished by introducing a reasonable degree of hetero-
geneity in different parameters, such as spike transmission delay, synaptic
strength, and in-degree. One may therefore argue that in realistic heteroge-
neous networks, the effects of Dale’s principle on input correlations and the
fluctuations of the population activity play only a minor role and hence can
be neglected. In this section, we point out, however, that heterogeneities
typically affect correlations only in restricted frequency bands. Dale’s prin-
ciple, in contrast, amplifies correlations on all timescales and in all frequency
bands.
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Figure 10: Spike count statistics (bin size 0.1 ms) in Dale (black) and hy-
brid networks (gray) with homogeneous (solid bars, thick lines) and dis-
tributed synaptic delays and in-degrees (open bars, thin lines). (A) Time- and
population-averaged (n = 12,500) population rate. (B) Variance of population
rate. (C) Spike count distributions. (D) Power spectra of population activity
(smoothed by moving average [frame size 10 Hz]). Graphs show simulation
results for networks composed of N = 12, 500 I&F neurons (NE = 10,000 exci-
tatory, NI = 2500 inhibitory neurons, simulation time 10 s, temporal resolution
0.1 ms). In heterogeneous networks, synaptic delays d and in-degrees KE, KI

are uniformly distributed with d ∈ {0.1, . . . , 3.9} ms, KE ∈ {800, . . . , 1200}, and
KI ∈ {200, . . . , 300}.

To illustrate this, we performed network simulations in which
synaptic transmission delays d ∈ {0.1, . . . , 3.9} ms and in-degrees KE ∈
{800, . . . , 1200} and KI ∈ {200, . . . , 300} were drawn from uniform distri-
butions. According to Figures 10B and 10C, the global network fluctuations
are indeed reduced in heterogeneous networks—at least on a submillisec-
ond timescale. The power spectra in Figure 10D reveal that the reduction
in the population rate variance (see Figure 10B) is mainly due to a suppres-
sion of power at high frequencies (>100 Hz). At lower frequencies, however,
networks respecting Dale’s principle still exhibit large population activity
fluctuations, even if synaptic delays and in-degrees KE and KI are randomly
distributed. This finding is confirmed by a visual inspection of the spiking
activity in Figure 11.

The correlation coefficients between input currents in heterogeneous
networks are centered around zero in both the hybrid and the Dale sce-
nario (see Figure 12B). It is not surprising that on short timescales (re-
call that we used delta-type synaptic currents), correlations induced by
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Figure 11: Spiking activity in Dale (top row) and hybrid (bottom row) networks
with homogeneous (left column) and heterogeneous synaptic delays and in-
degrees (right column; see Figure 10). Dot displays show the activity of 5000
randomly selected neurons.

common input are destroyed if the synaptic transmission delays are dis-
tributed. On larger timescales, however, common input correlations re-
main. In our example simulations, this becomes visible at the level of the
membrane potentials (see Figure 12D). Here, the time constants of the
cell membranes (τm = 20 ms) determine the timescale at which correla-
tions are measured. Although the distribution of correlation coefficients
in the heterogeneous Dale network is shifted toward smaller values, its
mean value is still clearly larger than zero (see Figure 12D). Figures 12E
and 12F show the coherences between input currents in the four dif-
ferent networks. In the homogeneous case, correlations are enhanced by
Dale’s principle in all frequency bands. The heterogeneities in in-degrees
and synaptic delays weaken these correlations mostly at high frequencies
(above 200 Hz) and also at low frequencies (below 30 Hz). In the intermedi-
ate range (around 100 Hz), input correlations are basically unaffected. The
attenuation of input correlations at low and high frequencies is reflected
in the power spectra of the population activity (see Figure 10D, thin black
curve).

We demonstrated that even in heterogeneous networks, the global activ-
ity does not exhibit the level of stationarity (i.e., small fluctuations), which
is achieved in networks violating Dale’s principle. The heterogeneities we
studied here (delay and number of inputs per neuron) are effective only in
specific frequency bands. By contrast, common input correlations are not
restricted to particular timescales or frequency bands. We conclude that
the correlations induced by Dale’s principle have to be taken seriously and
cannot be overcome in a trivial way.
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Figure 12: Input correlations at the level of synaptic currents and membrane
potentials in Dale (black) and hybrid networks (gray) with homogeneous (left
column) and heterogeneous synaptic delays and in-degrees (right column). (A,
B) Distributions of correlation coefficients cin between input currents. (C, D)
Distributions of correlation coefficients cin between free membrane potentials.
(E, F) Coherences between synaptic input currents (smoothed by moving av-
erage [frame size 1 Hz]; identical results for membrane potentials). Graphs
show simulation results for networks composed of N = 12,500 I&F neurons
(ε = 0.1, β = 0.8, g = 6, simulation time 10 s, temporal resolution 0.1 ms). In
heterogeneous networks, synaptic delays d and in-degrees KE, KI are uniformly
distributed with d ∈ {0.1, . . . , 3.9} ms, KE ∈ {800, . . . , 1200}, KI ∈ {200, . . . , 300}.
Synaptic currents and free membrane potentials were recorded from 100 neu-
rons for the measurement of correlation coefficients and from 2000 neurons for
the estimation of coherences.

6 Discussion

We showed that the segregation of excitation and inhibition strongly in-
creases the amplitude of fluctuations in the population activity in random
recurrent networks of leaky integrate-and-fire neurons. We analyzed the
marginal and joint statistics of input currents and found that spike train
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correlations in balanced networks are negligible for the marginal and joint
input statistics but crucial for the statistics of the population activity. Each
pair of neurons in a random network of N neurons with connectivity ε

shares on average a pool of Nε2 presynaptic neurons. In the Dale case, the
resulting common input induces strong correlations, since each spike in one
particular neuron simultaneously either hyperpolarizes or depolarizes all
postsynaptic partners. In the hybrid case, in contrast, these common inputs
partially cancel out because a significant fraction of the shared presynaptic
neurons hyperpolarizes one target and at the same time depolarizes an-
other one. Hence, Dale’s principle amplifies common input correlations. In
consequence, correlations between input currents exceed those in purely
random networks (hybrid scenario) by more than one order of magnitude,
regardless of the network connectivity ε.

We were able to predict output correlations from input correlations in a
self-consistent way by assuming a simple linear correlation transmission.
The fixed linear gain was measured from simulated data and turned out
to be very small (∼10−2). Still, the small pairwise spike train correlations
fully explain the observed strong network fluctuations in our simulations.
Both input and output correlations scale linearly with the network connec-
tivity ε = K/N. In the biologically relevant parameter range, however, they
cannot be ignored for the dynamics of the population activity. Recently,
in a study of retinal ganglion cell networks (Schneidman, Berry, Segev, &
Bialek, 2006), it was also reported that weak pairwise correlations may lead
to strong fluctuations of network activity. We conclude that fluctuations in
the population rate cannot be reduced to the Poissonian case even if the
network is constantly driven by stationary inputs.

As the classical mean-field approach neglects input correlations, it can-
not correctly describe the fluctuations of the population rate. We derived
an extended mean-field model from the integrate-and-fire dynamics, which
preserves the input correlations caused by Dale’s principle. By appropriate
summation of the single neuron responses, we obtained simple linear delay-
differential equations describing the population rates for both the Dale and
the hybrid cases. Solving these equations in the frequency domain leads
to power spectra that reproduce the overall features of those of the full
spiking dynamics. The simple model is able to account for the observed
higher overall power in the Dale case as compared to the hybrid case, as
well as for the differences between the inhibitory and excitatory population
in the Dale case. Even for equally sized subpopulations, zero delay, and
the same absolute strength of inhibitory and excitatory synapses, the seg-
regation of inhibition and excitation causes an increased overall power for
the Dale scenario. The difference between subpopulations in the Dale case
is primarily due to the asymmetry of the reduced two-dimensional model,
that is, the genuine asymmetry between excitatory and inhibitory synaptic
interactions (depolarizing versus hyperpolarizing), and is only secondarily
caused by the different sizes of the neuronal subpopulations.
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Finally, we checked the effect of heterogeneity on network fluctuations.
It has been argued (Brunel, 2000; Mattia & Del Guidice, 2004; Denker et al.,
2004; Tetzlaff et al., 2005) that introducing heterogeneity in the number of
synapses and a broader delay distribution stabilizes the asynchronous-
irregular state. Here, we point out that this type of desynchronization
occurs only in limited frequency bands. By contrast, the amplification of
correlations by Dale’s principle is not restricted to any specific timescale.
Therefore, the randomization of network and neuron parameters can only
partially compensate for the Dale effect. In simulations of spiking networks,
we found that distributions of in-degrees and synaptic delays suppress net-
work fluctuations mainly at high, and to some extent at low, frequencies.
Intermediate frequencies were unaffected.

A recent experimental study (Ren et al., 2007) demonstrated that cou-
plings between nearby pyramidal cells in the mouse visual cortex can be
inhibitory (see also Connors & Cruikshank, 2007). This observation can be
interpreted as a violation of Dale’s principle and may therefore lead to net-
work models that exhibit much weaker population activity fluctuations. As
pointed out in appendix B, common-input correlations depend smoothly on
the fraction of neurons or the fraction of synapses that obey Dale’s principle
(see equation B.5). Therefore, unless Dale’s principle turns out to be consid-
erably violated, its amplifying effect on correlated activity and population
rate fluctuations has to be taken seriously.

In summary, we conclude that segregated populations of excitatory and
inhibitory neurons cause network fluctuations, which were not fully ap-
preciated in previous models of cortical networks. Here, we presented a
rather simple shot-noise model and a linear rate model that capture most
of the observed effects without obscuring effects by complicated mathe-
matics, underlining the fundamental nature of the residual fluctuations in
the AI state. It was outlined before (Hoppensteadt & Izhikevich, 1997; Li &
Dayan, 1999) that asymmetric networks of excitatory and inhibitory neu-
rons have different synchronization and computational properties. But so
far however, nobody has emphasized or analyzed its most crucial effect on
balanced recurrent random networks.

We showed that input correlations in a random network (respecting
Dale’s principle) are essentially determined by the network connectivity
ε. According to anatomical data (Abeles, 1991; Braitenberg & Schüz, 1991;
Hellwig, 2000), we would therefore expect input correlations in the cortex
of about 0.1 (see Figures 6G and 6H, black curves). For the visual cortex
of anesthetized cats, Lampl, Reichova, and Ferster (1999) reported a broad
range of membrane potential correlations with a mean of about 0.4. Mem-
brane potential correlations of similar quality were reported during slow-
wave sleep (Volgushev, Chauvette, Mukovski, & Timofeev, 2006). There
are several possible reasons for this deviation from our model. First, there
is growing experimental evidence that the topology of local cortical net-
works differs from a random connectivity (e.g., Song, Per, Reigl, Nelson,
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& Chklovskii, 2005). The distributions of in-degrees (number of inputs per
neuron) are most likely broader than assumed in our study, and the prob-
ability of finding a common presynaptic neuron shared by two (observed)
target cells may significantly differ from chance level ε2 in certain neuronal
subpopulations (Yoshimura, Dantzker, & Callaway, 2005). Further, spatially
correlated or time-dependent external inputs from other cortical or subcor-
tical areas are neglected in our study. Finally, input correlation coefficients
are modulated by the filter properties of the synapses and the cell mem-
branes (time constants; see Tetzlaff et al., 2005, and the companion article
in this issue: Tetzlaff et al., “Dependence of Neuronal Correlations on Filter
Characteristics and Marginal Spike Train Statistics”). In consequence, the
distributions of input correlation coefficients can be expected to be broader
and shifted toward higher values, as compared to our results.

According to our simulation results, the transmission of input correla-
tions to output spike correlations is very weak, in agreement with several
other theoretical studies (Shadlen & Newsome, 1998; Stroeve & Gielen, 2001;
Tetzlaff et al., 2003; Moreno-Bote & Parga, 2006; Tetzlaff et al. in this issue).
In recurrent random networks with plausible connection probabilities we
found spike train correlation coefficients of the order of 10−3. This observa-
tion seems to contradict the results of many experimental studies reporting
stimulus-unspecific spike train correlation coefficients of 0.1 or higher
(e.g., Aertsen & Gerstein, 1985; Vaadia & Aertsen, 1992; Zohary, Shadlen, &
Newsome, 1994; Vaadia et al., 1995; Gawne & Richmond, 1993; Shadlen &
Newsome, 1998; Bair, Zohary, & Newsome, 2001). In these studies, however,
spikes from different neurons were recorded with a single electrode. The
reported correlations therefore refer to neurons within a radius of not more
than 50 µm (e.g., Henze et al., 2000; Sakurai & Takahashi, 2006). Measured
correlations between spike trains recorded on different electrodes are
typically weaker (e.g., Ts’o, Gilbert, & Wiesel, 1986; Gochin, Miller, Gross,
& Gerstein, 1991; Vaadia & Aertsen, 1992). One must therefore expect that
spike correlations averaged over a cortical volume that corresponds to the
spatial scale described by our model (≈ 1 mm3) are smaller than 0.1. But
apart from that, it is likely that the model simplifications mentioned above
(random network structure, uncorrelated stationary external inputs) lead
to an underestimation of correlations. So far, it is not clear whether the low
correlation transmission gain results from an oversimplification of the I&F
neuron model or is a realistic feature of cortical neurons. From our study
(and those mentioned above), we must conclude that the information about
the network structure contained in the correlation between intracellular
signals is significantly decreased by the nonlinear spike generation dynam-
ics. To explore the underlying network structure, the study of correlations
at the intracellular level (e.g., membrane potentials) appears much more
promising than at the level of spikes (see also Tetzlaff et al., this issue).

Apart from the structure imposed by Dale’s principle, the networks stud-
ied here are purely random. We observed in simulations that depending
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on the topology (e.g., locally coupled random networks, small world net-
works), networks respecting Dale’s principle exhibit rich spatiotemporal
activity dynamics (e.g., pattern formation). If, however, Dale’s principle is
discarded, the population activity becomes nearly indistinguishable from
that observed in random networks (data not shown here). Thus, studies
focusing on the effect of the network topology on dynamics must account
for Dale’s principle.

Appendix A: Shot-Noise Correlations

Consider the spike train

Si (t) =
∑

k

δ(t − ti,k) (A.1)

of neuron i defined as a series of delta pulses at times ti,k . Throughout the
article, we model spike trains Si (t) as Poisson processes with average rates
νi = Et [Si (t)] and delta-shaped autocovariance functions:

ψi i (τ ) = Et [Si (t)Si (t + τ )] − Et [Si (t)]
2 = νiδ(τ ). (A.2)

Correlations between spike trains play a crucial role in this article. Here,
we restrict ourselves to the simple case of delta-shaped cross-covariance
functions:

ψi j (τ ) = Et
[
Si (t)Sj (t + τ )

] − Et [Si (t)] Et
[
Sj (t)

] = ci j
√

νiν jδ(τ ). (A.3)

A linearly filtered version

si (t) = (Si ∗ f )(t) (A.4)

of Si (t) with a filter kernel f (t) (and convolution operator ∗) is generally
called shot noise. Its mean and covariance function are given by (Papoulis &
Pillai, 2002)

Et [si (t)] = νi

∫ ∞

−∞
dt f (t) (A.5)

and

Cov[si (t), s j (t + τ )] = (ψi j ∗ φ)(τ ). (A.6)
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Here, φ(τ ) represents the autocorrelation of the filter kernel f (t):

φ(τ ) =
∫ ∞

−∞
dt f (t) f (t + τ ). (A.7)

Given the assumptions above we obtain for the variance and covariance of
the shot noise,

Var[si (t)] = νi

∫ ∞

−∞
dt f 2(t)

Cov[si (t), s j (t)] = ci j
√

νiν j

∫ ∞

−∞
dt f 2(t) (i �= j).

(A.8)

The correlation coefficient between two (linearly filtered) Poissonian spike
trains is therefore given by

Cov[si , s j ]√
Var[si ]Var[s j ]

= ci j . (A.9)

Note that it does not depend on the filter kernel f (t).

Appendix B: Common-Input Coefficients

The amplitude of the input covariance function cin(τ ) of two neurons
is determined in a major way by the number of shared presynaptic
cells and the potential synapse-pair configurations (see Figures 4A and
4B). In general, we have to distinguish among three different types of
common-input populations. Assume the number of purely excitatory
sources, that is, sources that are excitatory to both neurons k and l, to
be CE := |{i |Aki Ali = 1}| and that of purely inhibitory ones (sources inhibit-
ing both k and l) to be CI := |{i |Aki Ali = g2}|. The number of presynaptic
neurons that are excitatory to k and inhibitory to l (or vice versa) is denoted
by CEI := |{i |Aki Ali = −g}|. The sizes CE, CI, and CEI of the common input
pools actually depend on the postsynaptic targets k and l. In the following,
we will replace these numbers by their expectation values for an ensemble
of network realizations. With a fixed total amount of inputs K = εN, the
expected number of shared connections in a random network is given by
C = εK . In the Dale scenario, these common sources are either excitatory or
inhibitory for both targets. With β = KE/K being the fraction of excitatory
synapses, we thus have

CE = βC, CI = (1 − β)C, CEI = 0 (Dale). (B.1)
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In hybrid networks the common sources cannot be separated into excitatory
and inhibitory pools. A synapse drawn from the common pool of size C
becomes excitatory with probability β and inhibitory with probability 1 − β.
In the hybrid scenario, the expected numbers of purely excitatory, purely
inhibitory, and mixed common sources are therefore given by

CE = β2C, CI = (1 − β)2C, CEI = 2β(1 − β)C (Hybrid). (B.2)

The coefficient G = ∑N
i=1 Aki Ali = CE + g2CI − gCEI in equation 3.18 thus

becomes

GD = εH (B.3)

in the Dale case and

GH = ε L/K (B.4)

in the hybrid scenario.
One can interpolate between the two network types by introducing a

parameter pN representing the fraction of neurons in the network that
follow Dale’s principle. Alternatively, one could vary the fraction pS of
synapses per neuron that are consistent with Dale’s principle. In either case,
the Dale and the hybrid scenarios are retrieved for pN/S = 1 or pN/S = 0,
respectively. Depending on the interpolation scheme, the common-input
coefficient G (and therefore also the input correlation cin) grows either
linearly or quadratically with the interpolation parameter:

G(pN) = (GD − GH)pN + GH,

G(pS) = (GD − GH)p2
S + GH.

(B.5)

In any case, we observe that the transition from the Dale to the hybrid
scenario is gradual. Marginal deviations from Dale’s principle cause only a
small reduction of common-input correlations.

Appendix C: Power Spectra of the Two-Dimensional
Reduced Model

For the two-dimensional case and our special parameter selection µEE =
µIE = µE and µII = µEI = µI, the elements of the matrix P as given by
equation 4.28 read:

P11(ω) = N τr (1 − β) µI − be−ıωd (1 − ıωτr)
(1 − ıωτr) [Nτr

(
β µE + (1 − β)µI

) − be−ıωd (1 − ıωτr)]
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P12(ω) = −N τr β µI

(1 − ıωτr) [Nτr
(
β µE + (1 − β)µI

) − be−ıωd (1 − ıωτr)]

P21(ω) = −N τr (1 − β) µE

(1 − ıωτr) [Nτr
(
β µE + (1 − β)µI

) − be−ıωd (1 − ıωτr)]

P22(ω) = N τr β µE − be−ıωd (1 − ıωτr)
(1 − ıωτr) [Nτr

(
β µE + (1 − β)µI

) − be−ıωd (1 − ıωτr)]
.

This leads to the corresponding power spectra in the Dale case,

P(ω) = Ŷ(ω)Ŷ∗(ω) = P�P∗,

via simple matrix algebra (see equation 4.28).

Appendix D: Notation

Ai j relative strength of synapse j → i
ain(τ ) input autocovariance function
âin(ω) input power spectrum
as(τ ) spike train autocovariance function
âs(ω) spike train power spectrum
α1 area of filter kernel f (t)
α2 area of f 2(t)
β fraction of excitatory neurons/synapses (e.g., NE = βN)
C total number of common (shared) inputs of two neurons
CE, CI, CEI total number of common excitatory or inhibitory synapses

of two neurons
cin(τ ) input (current, voltage) covariance function
ĉin(ω) input cross-spectrum
cin input (current, voltage) correlation coefficient
c∗

in self-consistent input (current, voltage)correlation coefficient
cs(τ ) spike train covariance function
ĉs(ω) spike train cross-spectrum
cs spike train correlation coefficient
c∗

s self-consistent spike train correlation coefficient
cout output (spike) correlation
D label referring to “Dale” (e.g., cin,D)
d synaptic delay
E label referring to “excitatory” (e.g., NE)
E population of excitatory neurons
ε network connectivity
η = β/(1 − β), ratio between excitatory and inhibitory

neurons or synapses
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F Fano factor
f (t) filter kernel
G coefficient determining the coupling between

spike autocorrelation and input cross-correlation
g relative strength of inhibition
γc input-output correlation gain
H coefficient determining the coupling between

spike autocorrelation and input autocorrelation
H label referring to hybrid (e.g., cin,H)
Ik(t) input of neuron k
I label referring to inhibitory (e.g., NI)
I population of inhibitory neurons
J i j absolute strength of synapse j → i
K total number of synapses or neuron (in-degree)
KE, KI number of excitatory or inhibitory synapses per neuron

(in-degree)
L coefficient determining the coupling between spike

cross-correlation and input auto- and cross-correlation
M size of observed neuron population
µ ensemble averaged coupling strengths (weights)
N network size
NE, NI number of excitatory or inhibitory neurons
ν firing rate
ω angular frequency
pN fraction of neurons obeying Dale’s principle
pS fraction of synapses obeying Dale’s principle
P(ω) power spectra
Q ratio between input correlation cin and connectivity ε

R(t) white-noise input in mean-field model
Si (t) spiking activity of neuron i
si (t) filtered spiking activity of neuron i
σ 2 variance of currents or voltages
τm membrane time constants
τref absolute refractory period
τr time constant of the rate model
θ spike threshold
Var(x(t)) variance of x (time average)
Vi (t) membrane potential of neuron i
W coupling matrix in mean-field model
X constant input in mean-field model
Y(t) rates (output) in linear model
zi (t; h) count variable of spike train of neuron i (bin size h)
Z(t) population spike count
·̂ Fourier transforms
·∗ complex conjugates
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