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Abstract

Cerebellar Purkinje cells generate two distinct types of spikes, complex and simple spikes, both of which have conventionally been
considered to be highly irregular, suggestive of certain types of stochastic processes as underlying mechanisms. Interestingly,
however, the interspike interval structures of complex spikes have not been carefully studied so far. We showed in a previous study
that simple spike trains are actually composed of regular patterns and single interspike intervals, a mixture that could not be explained
by a simple rate-modulated Poisson process. In the present study, we systematically investigated the interspike interval structures of
separated complex and simple spike trains recorded in anaesthetized rats, and derived an appropriate stochastic model. We found
that: (i) complex spike trains do not exhibit any serial correlations, so they can effectively be generated by a renewal process, (ii) the
distribution of intervals between complex spikes exhibits two narrow bands, possibly caused by two oscillatory bands (0.5–1 and
4–8 Hz) in the input to Purkinje cells and (iii) the regularity of regular patterns and single interspike intervals in simple spike trains can
be represented by gamma processes of orders, which themselves are drawn from gamma distributions, suggesting that multiple
sources modulate the regularity of simple spike trains.

Introduction

Purkinje cells (PCs), the only output neurones of the cerebellar cortex,
generate two distinct types of spikes, complex spikes (CSs) and simple
spikes (SSs). In anaesthetized rats CSs occur at very low frequencies
(mean spontaneous firing rate, 1.3 Hz; range, 0.2–4.7 Hz), whereas
SSs discharge at high firing rates (mean spontaneous firing rate,
27.9 Hz; range, 4.0–81.4 Hz) (Bower & Woolston, 1983; Vos et al.,
1999; Brown & Bower, 2001). CSs are caused by activation of a
climbing fibre, whereas SSs are assumed to be disynaptically triggered
by mossy fibres via parallel fibres (PFs), which are the axons of
granule cells in the cerebellar cortex. It is likely that two anatomically
separate afferent systems will transfer information in parallel.
Although SS firing is known to be strongly influenced by CSs, which
usually cause a pause in SS firing (Ebner & Bloedel, 1981; Sato et al.,
1992), CSs are generally assumed to occur independently of SSs.

Both CS and SS trains have been described as highly irregular,
expressed by a high coefficient of variation (CV) (Vos et al., 1999;
Goossens et al., 2001), but the underlying structure of the irregular
spike trains is poorly understood. If consecutive interspike intervals
(ISIs) are independent of each other, the theory of renewal processes
can be used to investigate the underlying processes (Dayan & Abbott,
2001). Because of the independence of ISIs, spike trains generated by
a renewal process are statistically fully specified by their ISI
distribution function (Tuckwell, 1988). In other words, if spikes are
generated by a renewal process, the ISI distribution will give the

underlying process. For instance, if the ISI probability density function
can be fitted by an exponentially decaying function, the process would
be a Poisson process that is defined by a single parameter, the firing
rate. If, more generally, a gamma distribution provides the best fit, the
underlying process is called a gamma process, defined by two
parameters, the so-called order and mean firing rate.
In a previous study we showed that SSs recorded in anaesthetized and

awake rodents are not simple renewal processes, such as a Poisson
process, because of the unexpectedly frequent occurrence of highly
regular spike patterns (Shin et al., 2004; Shin & De Schutter, 2006).
This, however, does not exclude that SS trains are composed of amixture
of multiple different renewal processes. Likewise, it is not at all clear yet
whether CSs can be described by a renewal process. In the present study
we tried to fit spontaneous CS and SS activity recorded in anaesthetized
rats with mixtures of different renewal processes. Although many
renewal processes have been studied (Tuckwell, 1988), we restricted
ourselves here to one of the best-known types, the gamma processes.
Gamma processes are quite general, encompassing the Poisson process
as a special case (order 1), and are relatively simple to handle.Moreover,
the parameters of a gamma process can be easily linked to physiological
parameters, regularity (order) and mean firing rate.

Materials and methods

Recordings

Sprague-Dawley rats (n ¼ 23, 300–500 g, Iffa Credo, Brussels,
Belgium) were anaesthetized with a mixture of ketamine HCl
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(75 mg ⁄ kg; Ketalar, Parke-Davis, Warner Lambert Manufacturing,
Dublin, Ireland) and xylazine HCl (3.9 mg ⁄ kg; Rompun, Bayer,
Leverkusen, Germany) in normal saline (0.9% NaCl, Baxter, Lessine,
Belgium) by intraperitoneal injection. A craniotomy exposing crus
I and II of the left cerebellar hemisphere was performed (Vos et al.,
1999). Supplemental doses of the anaesthetic (one-third of the initial
dose) were given intramuscularly to maintain deep anaesthesia as
demonstrated by the lack of a pinch withdrawal reflex and ⁄ or lack of
whisking. Forty single-unit recordings of spontaneous activity were
made in the cerebellar cortex with tungsten microelectrodes (imped-
ance �10 MW, FHC, Bowdoinham, ME, USA). Signals were filtered
and amplified (bandpass, 0.5–9 kHz; gain, 5000–10 000) using a
multichannel neuronal acquisition processor (Plexon Inc., Austin, TX,
USA). All experimental methods were approved by the ethical
commission of the University of Antwerp and conformed to European
Union guidelines.

Data analysis

The CSs and SSs were further sorted using an off-line sorter (Plexon
Inc.). The mean firing rates of CS and SS were 0.74 ± 0.05 and
40.7 ± 3.6 Hz, respectively. All analyses and simulations were
performed off-line using matlab (MathWorks, Natick, MA, USA)
and excel (Microsoft, Redmond, WA, USA). Joint interval histo-
grams of CSs (presented in Fig. 2) were made with variable bin sizes
(number of bins ¼ 5 or 6), ensuring that each bin contained at least
10 intervals and not more than one-quarter of all intervals.
Specifically, the upper bound of the first bin was adjusted between
150 and 400 ms, and those of the second, third and fourth bins were
chosen between 600 and 1000 ms, 1500 or 2000 ms, and between
2500 and 3500 ms, respectively. The fifth bin was the last bin
containing the maximum ISI if the number of intervals was not over
one-quarter of all intervals, otherwise there was one more bin up to
5000 ms.
The averaged irregularity of spike trains was measured by the CV

(SD of ISIs ⁄ mean of ISIs) and the short range irregularity was
measured by CV2 ¼ 2|ISIi ) ISIi+1| ⁄ (ISIi + ISIi+1) (Holt et al., 1996).
Throughout this study, the mean of the CV2 values (mCV2), computed
over the complete spike train, was used to represent the averaged short
range variability. We used the CV2 method to classify all ISIs in an SS
train as belonging to either regular patterns or singles (Shin et al.,
2004). A regular pattern was defined as consecutive ISIs where all
CV2 values calculated with those ISIs were smaller than or equal to

0.24. The start of a regular pattern can be defined at a spike where CV2

calculated with two ISIs surrounding the spike was larger than 0.24
followed by a spike with a CV2 value lower than 0.24. All ISIs not
belonging to regular patterns were called singles, which was 43% of
all spikes (see Shin et al., 2004 for details).
Data are represented as mean ± SEM unless otherwise stated. All

P-values refer to Student’s t-test unless otherwise specified.

Stochastic modelling

Both the estimation of parameters (gamma order and rate) and
generation of random intervals were performed using matlab. The
order and rate parameters for the best-fitting gamma distribution were
obtained using the built-in matlab function gamfit(). In all simula-
tions, a refractory period equal to the minimum ISI of corresponding
spike trains was explicitly implemented because intrinsically gener-
ated refractory periods by gamma processes (especially when the order
was less than 10) were often shorter than the actual minimum ISIs
measured.
As a control, we first determined how many ISIs were required to

obtain a proper estimate of the order parameters. We estimated the
orders for a certain number of ISI (5, 10, 20, 50, 100, 200, 500 and
1000) taken from known gamma distributions with a fixed order (1, 2,
5, 10, 20, 50 and 100). We then calculated the ratio of the estimated
order, determined as the average over 10 simulations, to the
theoretically expected order for firing rates of 20 and 50 Hz
(Fig. 1A). In both cases, the ratio was significantly greater than 1
(P < 0.001, v2 test) when the estimate was made with only five or 10
ISIs. We checked for any systematic relation between this ratio and the
computed order when only five ISIs were used. We did not find any
relation athough there was clearly more fluctuation when the firing rate
was lower (Fig. 1B) (see also Nawrot et al., 2003).
The same number of simulated as recorded CS trains (n ¼ 39) was

generated using the stochastic model constructed in this study, where
parameters for each train were estimated from each experimental
recording. The number of ISIs in each simulated CS spike train was
the same as that in the corresponding recorded CS train. Forty
simulated CS trains were generated using the matlab toolbox ‘Filter
Design’ based on an explanatory model described in the Results
(simulation duration, 200 s; sampling frequency, 1 ms). In these
simulations, simulated CS trains were accepted only if their mean
firing rate fell within the range of the experimental data (0.19–
1.60 Hz).

Fig. 1. Required number of interspike intervals (ISIs) to estimate a correct order parameter. (A) The averaged ratio of estimated order to expected order (1, 2, 5,
10, 20, 50 or 100) for different numbers of ISIs used in the estimate (x-axis) from 10 trials. The order was significantly overestimated when the number of ISIs was 5
or 10 (*P < 0.001, v2 test) for rates of both 20 (d) and 50 (s) Hz. The dotted line marks a quotient of 1 obtained for correct estimates. (B) Fluctuating estimated
order for 20- or 50-Hz frequency when the number of ISIs was 5.
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Results

Characteristics of complex spike spiking patterns

We first established whether spontaneous CS trains observed in
anaesthetized rats can be considered as realizations of a renewal
process. This requires that the consecutive intervals ISIi and ISIi+1 are
statistically independent. If this is the case, a joint interval histogram
of consecutive ISIs will be the same as that obtained by cross-
multiplying two corresponding marginal histograms because the
marginal histogram (i.e. the conventional ISI histogram) does not
contain any temporal order information. To test this, we compared two
joint histograms, one the actual joint interval histogram counting the
number of successive interval pairs in each bin (Fig. 2A) and the other
obtained by cross-multiplying the ISI distribution [shown on the top
(ISIi) and right side (ISIi+1) of Fig. 2A] with itself (Fig. 2B). These two
histograms were not significantly different (P > 0.99, v2 test),
indicating that successive intervals were indeed independent and
hence that CSs were generated by a renewal process.

However, CS trains could not be described by a simple gamma
process. In fact, most CS trains showed significantly higher mCV2

values (1.00 ± 0.02, range 0.71–1.30) than CV (0.89 ± 0.02, range
0.76–1.22, P < 10)6), implying that CS ISIs were more variable over
short time ranges than for long-term averages. This is suggestive of a
sudden switch of two very different distributions of ISIs. This was
confirmed by inspection of the ISI distribution of CS trains, which
clearly revealed a mixture of at least two ISI distributions, one with a
narrow peak at around 100 ms and the other with a very broad peak
between 1 and 2 s (Fig. 3). To separate these two distributions, we set
a threshold at 400 ms, chosen by visual inspection. On average,
25.1 ± 1.7% of ISIs were shorter than or equal to 400 ms. The
corresponding frequency distributions were unexpectedly narrow,
from 4 to 8 Hz (5.70 ± 0.13 Hz, Fig. 4, dotted line with open circles)
for the group with short ISIs and from 0 to 1 Hz (0.55 ± 0.03 Hz,
Fig. 4, solid line with filled circles) for the other group. Note that no
frequencies were observed around 2.5 Hz, the chosen threshold value.
This confirms that there were indeed two clearly separated groups of

Fig. 2. Renewal complex spike (CS) spiking. (A) Joint interval histogram of consecutive interspike intervals (ISIs) in a representative CS train. Individual ISI
distributions are shown on the top (ISIi) and on the right side (ISIi+1). (B) Joint interval histogram obtained by multiplying two individual ISI distributions shown in
A. Both joint interval histograms have variable bin size containing at least 10 ISIs (see Materials and methods).

Fig. 3. Firing pattern of complex spike (CS). ISI histogram of a representative CS train (number of spikes, 126; recording duration, 259.9 s). Inset: raster plot of CS
firing for 20 s.
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ISIs in each CS train, one longer than or equal to 1 s and the other
shorter than 250 ms.
In the next step, we tested whether CS trains could be fitted by a

random mixture of two gamma processes, separately obtained from
groups of ISIs shorter or longer than 400 ms. Both order and rate
parameters were obtained for each group separately from the best-
fitting gamma distribution. Shorter ISIs exhibited higher orders
(5.8 ± 0.4) than the longer ISIs (3.0 ± 0.1, P < 10)6, Fig. 5). The
rate parameters were equal to the mean values of the ISIs divided by
their estimated orders. From the two sets of estimated parameters from
each CS train, i.e. two order parameters and the associated two rate
parameters, two groups of random ISIs were generated and then
randomly mixed to obtain a final simulated CS train by permuting all
random ISIs that were a sequence of two groups of randomly
generated ISIs. We found that these simulated CS trains were indeed
very similar to the real ones (Fig. 6A, gray), with a similar ISI
histogram (Fig. 6B, gray, correlation coefficient ¼ 0.88 for the
example; on average correlation coefficient ¼ 0.80 ± 0.03) and
similar statistical properties, such as CV, mCV2, mean and median
of ISI (Fig. 6, inset, open bar, P > 0.4).

A possible neuronal mechanism to generate the two groups of ISIs
is depicted in Fig. 7. Here, we assumed that the membrane potential of
the inferior olivary neurones, the only source of climbing fibre
activity, fluctuates with a mixture of two noisy frequency bands.
These two frequency bands were generated by filtering white noise
using two equiripple band-pass filters, ranging either from 4 to 8 Hz
(Fig. 7A, dotted line) or from 0 to 1 Hz (Fig. 7A, dashed line). The
resulting combined oscillatory process depends on the relative gains
(amplitudes) of the two component bands. Defining the amplitude of
the fast oscillation as a, that of the slow oscillation is (1 ) a). An
additional important parameter necessary to generate spikes from the
fluctuating membrane potential is the spiking threshold. Thus, in
addition to the frequency bands used, this explanatory model requires
two parameters, the relative amplitude a and the spiking threshold. To
tune these parameters to fit the neuronal data, we calculated the mean
firing rate, CV and mCV2 for different a values (from 0 to 1 with
intervals of 0.1) at two different thresholds (0.2 and 0.3, Fig. 7B–D).
By comparing the mean ± SD, we found a unique set of parameters
that, for the entire set of CS recording data (N ¼ 39), produced
simulated CS spike trains in the physiological range (a ¼ 0.2 and
threshold ¼ 0.3, Fig. 7B–D, open arrows). Figure 8A shows solid line
an example with the spikes generated from the summation (solid line)
of two individual oscillations with gains of 0.2 (fast oscillation, dotted
line) and 0.8 (slow oscillation, dashed line) at the threshold of 0.3
(thin solid line). The resulting simulated spike train (Fig. 8B, inset)
revealed very similar firing patterns and ISI histogram (Fig. 8B) as the
real data (Fig. 6). The statistical properties (mean and median of ISI,
CV and mCV2) of the simulated spike trains (N ¼ 40) were also
similar (P > 0.1) (Fig. 8B, inset), suggesting that the precise temporal
structure of the two different gamma processes may not be important
at least for spontaneous CS trains.

Stochastic description of regular spike patterns and single
intervals in simple spike trains

In a previous study, we reported that SS trains contain highly regular
spike patterns (see Materials and methods for details), comprising
series of 2–182 similar ISIs, which contain more than half of all SS
ISIs (Shin et al., 2004). The ISIs not belonging to regular patterns
were called singles and represented mostly the high-end tail of the ISI
distribution. We also showed that SSs are not generated by a simple
renewal process, like a Poisson process. However, it remains possible
that the ISIs in patterns are generated by a high-order gamma process
that renders it regular, whereas singles are generated by another more
irregular, i.e. lower order, gamma process.
To test this hypothesis, we searched for possible gamma order

parameters for regular patterns and singles separately. We computed
the orders of regular patterns. As we needed at least 20 ISIs to obtain
the correct order estimate (see Materials and methods), we estimated
orders only for patterns with more than 20 ISIs. This resulted in 1546
orders from 1.3 ± 0.6% of all regular patterns. Surprisingly, the
distribution of orders (mean, 110.1 ± 1.7; median, 97.5; Fig. 9A,
black) was itself a gamma distribution, with order parameter of 2.8 and
a rate parameter of 39.5 (Fig. 9A, dashed line; N ¼ 1546). The orders
of regular patterns were not related to their mean ISI (Fig. 9B). On
average, more than 80% of pattern mean ISIs were shorter than 20 ms
(Fig. 9C). As short patterns (less than 20 ISIs) are otherwise
statistically indistinguishable from long patterns (Shin et al., 2004),
we assumed that short patterns are generated by a similar process to
long patterns. Thus, we will later use the fit of Fig. 9A to generate all
regular patterns, both short and long.

Fig. 4. Rate distribution of complex spike (CS). Rate histogram for two
groups of interspike intervals (ISIs) estimated in each CS train, computed as the
inverse of the means for each group, obtained from all 40 CS trains. Dotted
line, ISIs shorter than or equal to 400 ms; solid line, ISIs longer than 400 ms.
Bin ¼ 0.5 Hz.

Fig. 5. Distribution of order parameters. Distributions of orders estimated
from the distribution of interspike intervals shorter than or equal to 400 ms
(dashed line with s) and those longer than 400 ms (solid line with d).
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The interval distribution of single ISIs differed significantly from
that of regular patterns (P < 10)6, v2 test, Fig. 10A vs. Fig. 9C).
Specifically, the singles comprised distinctly fewer short intervals. If
all singles were generated by the same gamma process, the estimated
order from the distribution of all singles should be equal to CV)2

(Gabbiani & Koch, 1998). We found, however, that the orders were
significantly different from CV)2 (P < 0.04, Fig. 10B), indicating that
singles are not caused by a single gamma process. This still leaves
open the possibility that they were caused by a mixture of multiple
processes. To estimate the orders of these presumed processes, we first
took all singles from each SS train. For each of these we estimated the
order for the first 20 singles, then moved to the next single and
performed the next estimation, and repeated this procedure until the
end of the singles, which is a similar procedure to estimating rates
using sliding windows. After each estimation, we checked if the
obtained order estimate was 1 or larger and that it was similar to CV)2

within a 20% error range. In total, 29.3% (N ¼ 5978) of the orders
thus estimated satisfied this criterion. The orders of the regular patterns
also exhibited a gamma distribution (mean, 4.63 ± 0.03; median, 4.12)

but with different parameters (order parameter 5.35 and rate parameter
0.87) (Fig. 10C, equal N ¼ 5978; correlation coefficient ¼ 0.98).
To test the feasibility of a statistical description of regular patterns

and singles, we constructed a new, artificial spike train by replacing
regular patterns and individual singles from a given recorded SS train
with randomly generated regular patterns and singles using the above-
described distributions (Figs 9A and 10C). A single parameter
estimation was performed for all ISIs of each pattern and for each
single. More specifically, ISIs of regular patterns (respectively,
individual single ISIs) were created by randomly choosing an order
from the distribution of Fig. 9A (respectively, Fig. 10C) and
converting each pattern mean ISI (respectively, single ISI) to a rate
parameter by dividing it by the chosen order. The randomly created
spike trains showed firing patterns that were very similar to the
original spike trains (Fig. 11A). On average, the simulated spike trains
revealed very similar ISI distributions (Fig. 11B) and autocorrelo-
grams (Fig. 11B, insets) with high correlation coefficients of
0.989 ± 0.002 and 0.969 ± 0.005, respectively. Statistical properties,
such as the mean firing rate, mean, median, CV and mCV2, were also

Fig. 6. Simulated complex spike (CS) train. (A) Raster plots of the same CS train as one demonstrated in Fig. 3 (black lines) and of the simulation of mixed two
gamma processes (gray lines) for 200 s. The order parameter was 6.3 (2.6) and rate parameter was 6.4 (0.4) for interspike intervals (ISIs) shorter than or equal to
400 ms (or longer than 400 ms). (B) ISI histograms of the spike trains shown in A. Inset: mean correlation coefficients (CCs, gray filled bar), mean (s), median (s),
coefficient of variation (CV) and mean of the CV2 values (mCV2) of ISIs were similar in actual (black filled bars) and simulated (open bars) CS trains (P > 0.4).
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similar (P > 0.5, Fig. 11C). Only in cases with a slow modulation of
firing rate in the recorded data, such as the 1- or 2-Hz oscillation in the
right panel of Fig. 11B, was this oscillation not captured by the model
that, by its stationary nature, only captured the average firing rate.
Unfortunately, this stochastic description of SS trains does not

include any switching rule for the transitions between regular patterns
and singles. As a first step in this direction we computed the switching
probabilities for different processes. There are five possible transitions
between two consecutive ISIs: from a pattern to the same pattern, from
a pattern to a different pattern, from a pattern to a single, from a single
to a pattern or from a single to another single. In our data sets, these
transitions occurred with probabilities of 0.39 ± 0.03, 0.04 ± 0.00,
0.12 ± 0.00, 0.12 ± 0.00 or 0.33 ± 0.03, respectively, suggesting high
chances that if an ISI belonged to a regular pattern (single), the next
ISI would belong to the same regular pattern (respectively, single). In
addition, on average 26.6 ± 1.3% of regular patterns were followed by
a different regular pattern. However, these probabilities do not give
any information on the change in rate accompanying a transition
between regular patterns or between singles and regular patterns,
which is essential to model the spike trains. There was a significant
difference of median ISIs between regular patterns (12.9 ± 0.8 ms,
Fig. 9C) and singles (17.6 ± 0.9 ms, Fig. 10A) (P < 10)6; see also
Shin et al., 2004). There was also a significant difference between the
mean ISIs of regular patterns switching to other patterns
(12.5 ± 0.8 ms) and those switching to singles (13.0 ± 0.9,
P < 0.0005) but this difference was too small to explain the threefold
difference in transition probabilities.

Discussion

In this study, we have shown that spontaneous cerebellar PC CS and SS
firings in anaesthetized rats can be described by a mixture of multiple
gamma processes. CS spiking may be a random mixture of two gamma
processes, which can be caused by two independent subthreshold
oscillatory processes of the input system, the inferior olivary neurones.
Subthreshold oscillations of membrane potential in inferior olivary
neurones with a frequency between 4 and 10 Hz, and amplitudes
varying between 3 and 10 mV have been reported in guinea pig inferior
olivary neurones in vitro (Llinas & Yarom, 1986; Manor et al., 1997;
Yarom & Cohen, 2002). However, it is not yet clear whether the PC CS
activity is oscillatory or not. For example, no oscillatory behaviour was
reported in the PC CS activity recorded in awake monkeys (Keating &
Thach, 1995), whereas rhythmic activity was found in PC CS trains
recorded in awake rats (Lang et al., 1999). Both studies were based on
the autocorrelogram obtained from overall CSs. However, the absence
of a significant serial correlation in the CS train (Fig. 2) suggests that the
autocorrelogram may not be an optimal measurement to capture the fast
switching oscillatory behaviour proposed here, which may have led to a
misinterpretation regarding the CS firing patterns.
We showed that the short-range variability found in CS trains can be

explained by a mixture of two different oscillatory processes with very

Fig. 7. Parameter search for an explanatory model to generate complex spike
(CS). (A) Membrane potential, which is a combination of two normalized
band-pass-filtered noises (dashed line, 0.5–1 Hz; dotted line, 4–8 Hz),
generated by adding them with a variable multiplier (a for 4–8 Hz; 1 ) a for
0.5–1 Hz). Mean firing rate (B), coefficient of variation (CV) (C) and mean
of the CV2 values (mCV2) (D) of spikes that were generated by setting two
different thresholds at 0.2 (black circles) or 0.3 (white circles) were calculated
for different a (x-axes). Dashed lines, mean values of recorded CS trains; gray
area, ± SDs of measurements. Open arrows show a set of parameter (a ¼ 0.2,
threshold ¼ 0.3) in the physiological range.
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different frequencies, one with a frequency range from 0.5 to 1 Hz and
the other ranging from 4 to 8 Hz. In fact, such division of frequency
bands is already suggested by the ISI distribution of CS trains showing
two clearly separated distributions. Moreover, we found that, in order
to obtain similar firing properties to those of CS trains recorded from
anaesthetized rats, the amplitude of the low-frequency band should be
some five times larger than that of the higher frequency band. This
suggests that, in the anaesthetized in-vivo situation, an additional slow
oscillatory process may modulate the faster oscillations observed in
inferior olivary neurones in vitro.

Our results are limited to the spontaneous activities recorded in
anaesthetized rats. In general, the CS mean firing rates reported in
awake animals are higher than those in this study (Keating & Thach,
1995; Lang et al., 1999). However, single trial traces of CS firing in
awake monkeys show some shorter CS ISIs intermingled with longer
ones (Keating & Thach, 1995). Thus, an interesting question is
whether the higher mean firing rates of CS trains recorded in awake
animals are caused by higher proportions of the high-frequency band
and whether different behavioural tasks increase specific frequencies.

In contrast to CS firing, which was shown to be a renewal process,
SS firing cannot be a simple renewal process as it contains regular
patterns that imply strong serial correlations (Shin et al., 2004). Thus,
in the present study we focused on characterizing the stochastic
properties of regular patterns and singles separately. The simplest
scenario is that regular patterns are generated by gamma processes of
higher orders and singles by lower order processes, more similar to
Poisson processes. As expected, regular patterns were about 20 times
more regular than singles. Moreover, orders estimated from both
regular patterns and singles were not fixed but they showed a gamma
distribution, suggesting that there are separate processes that inde-
pendently regulate two distinct levels of regularity in SS firing. Note
that we could obtain fairly good descriptions about regular patterns
and singles from the order distributions obtained from only 1.3 and
29.3% of all patterns and singles, respectively. Unfortunately at
present we cannot formulate a stochastic model that includes the
transitions between regular patterns and singles.
The question then is how PCs can generate regular patterns and

singles separately. One possible mechanism for regular patterns is that

Fig. 8. Explanatory model for complex spike (CS) generation. (A) Expected CS (black vertical lines) by setting a threshold at 0.3 (thin solid) for the fluctuating
membrane potential (thick solid), which is the sum of two band-pass-filtered noises (dashed line, 0.5–1 Hz; dotted line, 4–8 Hz), where a¼ 0.2 and threshold ¼ 0.3.
(B) Raster plot for the overall simulated CS (top) and ISI histogram of simulated CS (duration 200 s). Inset: mean (s), median (s), coefficient of variation (CV) and
mean of the CV2 values (mCV2) of interspike intervals (ISIs) were similar in actual (filled bars) and simulated (open bars) CS trains (P > 0.1).
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PCs passively integrate strong excitatory inputs composed of numer-
ous small PF inputs, which are not balanced by inhibitory inputs
(Softky & Koch, 1993). Several conditions must be fulfilled for this

Fig. 9. Characteristics of regular patterns. (A) Distribution of orders estima-
ted from patterns that contained 20 or more interspike intervals (ISIs) (solid
line, bin ¼ 10) of all simple spike (SS) trains was fitted [correlation coefficient
(CC) ¼ 0.97] with a gamma process whose order parameter was 2.8 and rate
parameter was 39.5 (dotted line). (B) There was no relation between pattern
mean ISI and their order. (C) Averaged distribution of pattern mean ISIs of
regular patterns.

Fig. 10. Characteristics of singles. (A) solid line The averaged distribution
of single interspike intervals (ISIs). (B) The estimated orders from all singles
from each simple spike (SS) train were different from expected orders based on
coefficient of variation CV)2 (P < 0.04, Student’s t-test). (C) Distribution of
correctly estimated orders (see text, solid line, bin ¼ 1) of all SS trains was
fitted [correlation coefficient (CC) ¼ 0.98] with a gamma process whose order
parameter was 3.4 and rate parameter was 0.9 (dotted line).
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hypothesis. First, the multiple PF inputs have to be independent,
which is likely because each PF comes from a different granule cell.
Second, unitary excitatory postsynaptic potentials (EPSPs) should be
small enough to necessitate the summation of many EPSPs to reach

spiking threshold. If all PF inputs are independent and if PCs simply
integrate EPSPs to reach threshold, which may be about 10 mV from
the resting state (Isope & Barbour, 2002), the number of EPSPs
required to make PC firing regular represents the order of the gamma

Fig. 11. Statistical properties of simulated simple spike (SS). (A) Representative raster plots of actual SS firing (black lines) and corresponding simulated SSs
(gray lines). (B) Two examples of interspike interval (ISI) distributions and autocorrelograms (insets). (C) Averaged rate, mean, median, coefficient of variation
(CV) (right) and correlation coefficients (CCs) of ISI histograms and autocorrelograms, and mean of the CV2 values (mCV2) (right) were similar between actual
(black filled bars) and simulated (open bars) SS trains (P > 0.5).
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function (Tuckwell, 1989). Our approximated mean order of regular
patterns (110) would thus require unitary EPSPs to be about 0.09 mV,
which is indeed in the range of reported values of 0.07 ± 0.06 mV
(Isope & Barbour, 2002). However, the spontaneous activity of
granule cells in vivo has been reported to be of very low rate
(0.5 ± 0.2 Hz) (Chadderton et al., 2004). This raises the question of
how enough PF activity could be provided to maintain the long regular
patterns that we observed in spontaneous SS trains (Shin et al., 2004).
An alternative explanation could be that regular patterns are due to
intrinsic firing of PCs (Loewenstein et al., 2005), whereas PF inputs
are only important for triggering them and for controlling the order of
the regular patterns, e.g. by controlling the firing threshold or, rather,
the distance to threshold.
The next question is how singles are generated. It has been reported

that the synapses made by the ascending axon of granule cells may be
stronger than PF synapses (Gundappa-Sulur et al., 1999; Isope &
Barbour, 2002; Grillner et al., 2005). By the argument given above,
larger EPSPs will lower the order of the gamma function (Tuckwell,
1989). Thus, the 20 times lower order of singles is explained if singles
are caused by the ascending input only. A more likely explanation,
however, is that they are caused by the feed-forward inhibition
pathway through molecular layer interneurones considering the longer
ISIs (Fig. 10A) of singles. Activation of the neurones that inhibit PCs
with a latency of 1 ms (Mittmann et al., 2005) will cut short the
regular patterns, hyperpolarize the membrane potential and cause the
next ISI to be longer. We recently reported that pauses in SS firing,
which consist mostly of singles, are synchronized among nearby PCs
(Shin & De Schutter, 2006), a finding that is also most easily
explained by inhibition from common molecular layer interneurones.
This viewpoint is also supported by the observation that PCs become
more regular if molecular layer interneurones are blocked (Hausser &
Clark, 1997). Another potential source of singles with very long ISIs is
the down states of bistable PCs (Loewenstein et al., 2005).
Taken together, these findings indicate that both the very irregular CS

and SS firings can be described with a mixture of gamma processes.
Although this stochastic simplification of PC firing does not explain the
underlying mechanisms per se, it will be a useful constraint for more
mechanistically orientated explanatory models of PC spiking in vivo.
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