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Abstract

Recently, a quantitative wiring diagram for the local neuronal network of cat visual cortex was described [T. Binzegger, R.J. Douglas,
K.A.C. Martin, A quantitative map of the circuit of the cat primary visual cortex, J. Neurosci. 39 (24) (2004) 8441–8453.] giving the first
complete estimate of synaptic connectivity among various types of neurons in different cortical layers. Here we numerically studied the
activity dynamics of the resulting heterogeneous layered network of spiking integrate-and-fire neurons, connected with conductance-
based synapses. The layered network exhibited, among other states, an interesting asynchronous activity with intermittent population-
wide synchronizations. These population bursts (PB) were initiated by a network hot spot, and then spread into the other parts of the
network. The cause of this PB is the correlation amplifying nature of recurrent connections, which becomes significant in densely coupled
networks. The hot spot was located in layer 2=3, the part of the network with the highest number of excitatory recurrent connections.
We conclude that in structured networks, regions with a high degree of recurrence and many out-going fibres may be a source for
population-wide synchronization.
r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Random network models have emerged as a useful tool
to understand the dynamical properties of local cortical
networks. At its simplest, the cortical networks are
modeled as homogeneous networks of spiking model
neurons. These simple models have been successful in
characterizing the dynamics of cortical networks [5].
However the cortex is not a homogeneous network. It
can be clearly identified as a structure composed of up to
six layers in sensory cortices, with each layer differing in
neuron types, their density and connection probability
[11,4,6]. Even though the heterogeneous nature of cortical
networks was known for long [2,6], only few studies have
attempted to model this heterogeneity [8,12,7].

This small number of studies on heterogeneous network
dynamics was primarily due to a lack of detailed

information on the neuron type specific inter- and intra-
layer connectivity. Recent advances in techniques have
greatly increased the knowledge of the cortical neuro-
anatomy and a quantitative wiring diagram of the local
neuronal network of cat visual cortex was described [3],
which provided the first realistic estimate of synaptic
connections among various neuron types in different
cortical layers. Here we numerically studied the dynamics
of the resulting heterogeneous layered network of spiking
integrate-and-fire neurons, connected with conductance-
based synapses.

2. Network

Binzegger et al. [3] specified the total number of neurons
in cat area 17 to be approx. 31! 106. However, it is still not
possible to simulate such large networks, so we downscaled
the network to a size of 10; 000 or 50; 000 neurons. While
downscaling the complete network of area 17, we
conserved the proportion of excitatory (NE) and inhibitory
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(NI) neurons across the layers. The number of synapses
within a layer was restricted to have a maximum network
connectivity (fraction of possible couplings that are
realized) of ! ¼ K

N ¼ 0:1. As neurons in different layers
received different numbers of synapses due to layer-specific
wiring, the resulting connectivity ! was also different in all
layers. The neurons were modeled as point neurons with
leaky-integrate-fire dynamics. All neurons had identical
parameters (membrane capacitance 250 pF, leak conduc-
tance 16.7 nS, spike threshold 15mV above rest). Besides
the inter and intra layer connectivity, neurons also received
a balanced external input ðnextGroundÞ, mimicking the
cortico-cortical inputs the area 17. Synaptic inputs were
modeled as conductance transients using the same a-
functions (time constant 0.3ms) for excitation and inhibi-
tion. Fig. 1 shows the resulting circuit of a network with
103 neurons. The simulations were performed using a
parallel kernel of NEST [10].

3. Network dynamics

3.1. Descriptors of network activity dynamics

To characterize the activity states of the network both at
population level and single neuron level we used the
following state descriptors:

Synchrony in the network was measured by pair wise
correlations (PwC)

PwC½Ci;Cj& ¼ Cov½Ci;Cj&=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Ci&Var½Cj &

p
, (1)

where Ci and Cj are the joint spike counts.
Mean firing rate was estimated from the spike counts

collected over 1 s simulation time, averaged over all
neurons in the network.
Irregularity of individual spike trains was measured by

the squared coefficient of variation of the corresponding
inter-spike interval (ISI) distribution. Low values reflect
more regular spiking, a clock-like pattern yields CV ¼ 0.
On the other hand, CV ¼ 1 indicates Poisson-type beha-
viour.

3.2. Dynamics of network activity

In vivo the cortical activity is characterized by irregular
spike trains of individual neurons and with a low pairwise
correlation among neurons in the network [1]. The
membrane potential of individual neurons is close to
threshold, and the spikes are elicited by synaptically
induced membrane potential fluctuations. In our simula-
tions we excited the network with a balanced input
ðnextGroundÞ to a uniform asynchronous-irregular (AI)
activity state [5] with similar average firing rates in each
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Fig. 1. Schematic diagram of the network:NE and NI are the numbers of excitatory and inhibitory neurons, respectively. The labels xyf! ee; ei; ie; iig for
each arrow indicate the number of synapses of type x projecting onto a neuron of type y, where e stands for ‘excitatory’ and i for ‘inhibitory’.
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layer. Here we assumed a uniform AI state (firing rate
' 2 spikes=s) across layers. The across-layers distribution
of firing rates in real brains is not known. To study the
stability of the AI state of the layered networks we
systematically varied the ratio of recurrent inhibition and
excitation ðgÞ and the external excitatory input ðnextÞ which
was added to nextGround.

The network activity states were characterized using the
descriptors introduced above. The firing rates showed an
expected trend: they increased with next, while increasing g
reduced the firing rate (Fig. 2A). The irregularity of the
individual spike trains, increased with the firing rates in the
network (Fig. 2C). In the parameter space we explored
here, the AI state was observed only in a small region
(Fig. 2B). Intriguingly, the pairwise correlation (PwC)
showed high values even at low firing rates (Fig. 2A,B).

4. Population burst

The high degree of synchrony at low firing rates was
caused by a population wide synchronization in the
network. Fig. 3A1 shows the raster diagram of the state
marked (*) in Fig. 2A. Neurons are arranged in layers, with
layer 2=3 on top. The black and gray lines define the
excitatory and inhibitory population, respectively, within a
layer. The population bursts (PB) occurred in a stochastic
fashion (Fig. 3A1;C1), however the frequency and regular-
ity of the PB increased with next (Fig. 3B1). The PB followed
a stereotypic temporal evolution (Fig. 3A2). It started in
layer 2=3, invaded layer 5, and then spreaded across the
remaining network. To demonstrate that this indeed was
a general feature, we performed PB-triggered averaging,
(Fig. 3B2), which revealed a clear temporal structure, with
layers 2=3 and 5 leading the activity (Fig. 3B2).

However, why does the PB start in layer 2=3? Layer 2=3
differs from other layers in three main aspects which

explain the origin of the PB: it is characterized by highest
connectivity ð!Þ, highest recurrent excitation, and max-
imum out-degree to other layers. Due to the high
recurrence any transient synchrony gets amplified, and
the high out-degree spreads the synchronous activity from
layer 2=3 to other layers, where it eventually causes all
layers to fully synchronize and thereby create the PB.
The strong excitatory recurrence of layer 2=3 seem to be

important to determine the initiating layer, however, would
it also be possible to change the probability of the PB by
reducing the effect of recurrence e.g. by reducing synaptic
strength? To further support that the excitatory recurrent
connections in layer 2=3 (L2toL2EE) are indeed critical for
the occurrence of PBs, we reduced their strength by about
50% from 0.25 to 0.13mV peak amplitude at resting
potential. This was reasonable since synaptic strengths are
reported to be as low as 0.1mV and can reach up to several
millivolts [13,9]. This weakening reduced the frequency of
the PBs (compare Fig. 3C1 and C2), emphasizing the
sensitivity of the network dynamics for this particular
parameter.

5. Discussion

Using a more realistic network model, based on the
circuitry of a hypercolumn of the cat visual cortex [3], we
studied the consequences of a layer-specific connectivity on
the network dynamics, in particular the stability of the AI
state. The layered network exhibited, among other states,
an interesting asynchronous activity with intermittent
population-wide synchronizations, leading to high pairwise
correlation even at low firing rates. The cause of this PB
was the correlation amplifying nature of the recurrent
network, which becomes significant when the network is
densely coupled. As soon as any one layer entered a
transient state of high correlations, these correlations were
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Fig. 2. Network dynamics:The network was excited with nextGround to a uniform AI activity state and the stability was studied by systematically varying the
ratio of recurrent inhibition and excitation ðgÞ and the external excitatory input ðnextÞ which was added to nextGround. The firing rates and irregularity (CV)
showed the expected behaviour, they increased and became more regular with increasing next while stronger inhibition resulted in lower rates and more
irregular spike-trains (A, C). Interestingly, the synchrony (PwC) was already high at low rates (r ' 6 Spike=s at mark in A) and irregular spike trains
(CV ' 0:9).
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amplified and transferred to the other layers, resulting in a
PB, recruiting all the neurons in the network. The layer of
origin was dependent on the level of excitatory recurrent
connections, which was highest in layer 2=3. PBs occurred
for all the network sizes studied (up to 50; 000). However,
the characteristics of the PBs (e.g. the probability of
their occurrence) were susceptible to changes in the
network architecture. So we conclude that in a hetero-
geneously structured network, the regions with a high
excitatory recurrence and large number of out-going
connections may become a hot spot to induce population-
wide synchronization.

In this work we ignored any specific thalamo-cortical
and cortico-cortical inputs, and focused on the intrinsic
dynamics of the laminar network, elicited by non-specific
Poissonian inputs. A natural extension of the work would
be to study how the stable stationary state of the network
(without the PB) would interact with transient and/or
structured thalamo-cortical and cortico-cortical inputs.
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Fig. 3. Population burst:Synchronous events (population burst or PB), affecting almost all neurons in a numerical simulation of the network (A1). Here
the black and gray lines define the beginning of the exc. pop. and inh. pop., respectively, of a layer, starting with layer 2=3 at neuron ID ¼ 0. The frequency
of the PBs showed the same trend as the firing rate of the network (compare B1 and Fig. 2A). Zooming into a PB revealed a temporal-laminar structure
with layer 2=3 initiating the burst (A2), that was underpinned by averaging the population activity, triggered on the PBs (B2) (here and in the following L2
refers to L2=3). The PB was caused by the high excitatory recurrence in layer 2=3. The probability of PBs could be altered by reducing the synaptic strength
of the excitatory recurrent connections in layer 2=3 (L2toL2EE). In C2 the strength of the L2toL2EE connections was reduced by about 50% and a clear
reduction in PB frequency could be observed (compare C1 and C2).
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Biology in Tübingen, he was Assistant Professor
at the Albert–Ludwigs-University Freiburg (Ger-
many), where he also received his habilitation for

Neurobiology and Biophysics. Currently, he is at the Institute for Frontier
Areas of Psychology and Mental Health, Freiburg, and at the Berstein
Center for Computational Neuroscience, Freiburg. His research interests
are in the field of theoretical and computational neuroscience, with a focus
on analysis and modelling of anatomical structures and physiological
processes in biological neural networks.

Ad Aertsen was born in 1948 in Holland, where
he obtained his MSc (University Utrecht) and
Ph.D. (University Nijmegen) degrees in Physics.
After associations with the University of Penn-
sylvania (Philadelphia), the Max–Planck-Insti-
tute for Biological Cybernetics (Tübingen), the
Hebrew University (Jerusalem), the Ruhr-Uni-
versity (Bochum), and the Weizmann Institute of
Science (Rehovot), he is now Professor of
Neurobiology and Biophysics at the Albert–Lud-

wigs-University in Freiburg, Germany (www.brainworks.uni-freiburg.de)
and Coordinator of the Bernstein Center for Computational Neuroscience
(www.bccn-freiburg.de). His research interests focus on the analysis and
modelling of activity in biological neural networks and the associated
development of neurotechnology.

ARTICLE IN PRESS
J. Kremkow et al. / Neurocomputing 70 (2007) 2069–2073 2073

http://www.brainworks.uni-freiburg.de
http://www.bccn-freiburg.de

