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Abstract

It is difficult to relate the structure of a cortical neural network to its dynamic activity analytically. Therefore we employ machine
learning and data mining algorithms to learn these relations from sample random recurrent cortical networks and corresponding
simulations. Inspired by the PageRank and the Hubs & Authorities algorithms, we introduce the NeuronRank algorithm, which assigns a
source value and a sink value to each neuron in the network. We show its usage to extract structural features from a network for the
successful prediction of its activity dynamics. Our results show that NeuronRank features can successfully predict average firing rates in
the network, and the firing rate of output neurons reflecting the network population activity.
r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Most functions of our brain are mediated by the
operation of complex neuronal networks. The relation
between structure and function of the various types of
networks has been subject of many theories and intense
computational modeling. Fundamental questions, how-
ever, remain unanswered: How important is the structure
of a network for its function? Is a certain type of structure
essential for a particular function? Can one and the same
structure support different functions? Can different struc-
tures support the same function? How does the repeated
usage of a network change its structure and its function,
respectively? How does the interaction between networks
affect the function of the whole system?

We approach some of these questions by systematically
exploring the relation between network structure and
activity dynamics in network models of the cortex. The
analysis of Brunel [3] and others showed how the complex
dynamics of a random-topology cortical network is

determined by various structural parameters. In particular,
the influence of the relative strength of the inhibitory
synaptic couplings in the network and the role of external
inputs was elucidated. The question how structural
variations contribute to variations in activity dynamics,
however, was not tackled in this work. Several recent
papers indicate that structural variations indeed influence
the network dynamics [1,12].
Neural networks in the brain have, at the structural level,

the same format as social networks, food webs, citation
networks, the Internet, or networks of biochemical
reactions: They can be represented by large graphs, linking
many interacting elements to each other. Empirical data of
this format are also called ‘networked’ data. Recently,
mining networked data has gained a lot of interest and has
resulted in a new subfield called link mining [6,7]. Kleinberg
[8] proposed the Hubs & Authorities algorithm, which is
able to detect authoritative sources of information on the
web by exploiting its link structure. Page et al. [11]
introduced the PageRank algorithm underlying the Google
search engine, which successfully predicts the relevance of a
web page to the user and ranks the page for him, by again
exploiting link information.
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This note investigates the applicability of link mining
techniques to reveal structure–activity relations in biologi-
cal neural networks. In particular, we are interested in
learning a function that maps structural features of neural
networks to activity-related features. We introduce the
NeuronRank algorithm, which yields structural features
describing the level to which neurons are functionally
excitatory and/or inhibitory within a recurrent network.
NeuronRank is inspired by the Hubs & Authorities
algorithm, and is shown to yield good predictions of
network activity. We proceed by giving an overview of our
approach in Section 2. In Section 3, we present our
network model. We explain how we analyze the network
activity in Section 4. We introduce our key contribution,
the NeuronRank algorithm, in Section 5. We describe our
structural feature extraction methodology in Section 6. In
Section 7, we refer to the machine learning algorithms we
employ. We finally present our experimental results in
Section 8 and our conclusions in Section 9.

2. Overview of the method

Aiming at discovering structure–activity relations in
recurrent cortical networks, we focus here on the following
specific problem: can we extract meaningful structural
features from a random-topology network and use these to
predict the characteristics of its activity dynamics? As this
problem cannot be solved with current analytical techni-
ques, we tackle it with machine learning and link mining
methods. These algorithms learn the desired mappings
from a set of examples. In our case, an example consists of
a set of values for structural features and the corresponding

activity features. Fig. 1a depicts a schematic overview of
our approach.
Various structural features of the networks were

extracted, based on simple counting statistics and on the
new NeuronRank algorithm. We also performed numerical
simulations of the activity dynamics exhibited by these
networks, and then measured the mean firing rates and
other characteristic parameters describing the activity
dynamics. Eventually, machine learning and data mining
algorithms were applied to those data, allowing us to detect
any relations between structure and dynamics. Our
methods generated statistical models, which were able to
predict the dynamics of unseen networks based on their
structural features. We assessed the quality of these models
by determining their predictive power.

3. The network model

We used the leaky integrate-and-fire neuron model with
the following parameters: membrane time constant 20ms,
membrane capacitance 250 pF, spike threshold 20mV,
reset potential 10mV, refractory period 2ms. Synaptic
currents were modeled as d-pulses, delayed by 1.5ms with
respect to the inducing action potential, the amplitude of
excitatory postsynaptic potentials was 0.1mV, inhibitory
postsynaptic potentials had an amplitude of !0:6mV.
We created recurrent neural networks of n ¼ 1000

integrate-and-fire neurons, according to a simple statistical
characterization of the neocortex with respect to neuron
types and synaptic connectivity [2]. Each of the nðn! 1Þ
potential synapses was established with probability 0.1,
independently of all the others. Neurons were inhibitory
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Fig. 1. (a) Mining structure–activity relations in biological neural networks. (b) Setup of the numerical simulations. We simulated recurrent cortical
networks of 1000 neurons. Each neuron in the network received external input in the form of a excitatory Poisson spike train with mean rate slightly above
the threshold for sustained activity. All neurons in the network projected to a single ‘readout’ neuron, which did not receive extra external inputs.
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with probability 0.2 and excitatory otherwise. All synapses
on the axons of any particular neuron had the same sign.
All network simulations were performed using the NEST
simulator [5,10].

4. Activity-related features

We studied steady-state dynamics of activity in the
network, based on the spike firing characteristics of the
neurons. We focused on two particular aspects of activity
dynamics.

Average firing rate: The networks were simulated for
1.2 s. Spike counts and rates were determined and averaged
over all neurons

navg ¼
1

n

Xn

i¼1

1

T

Z T

0

X
k
dðt! tikÞdt,

where n is the number of neurons in the network, T is the
duration of simulation and tik is the time of the k-th spike
in the i-th neuron.

Firing rate of a readout neuron: The cortex is composed
of many interacting local networks. It is, therefore, an
interesting question how the activity of a local network
affects other neurons or networks it is connected to. Here
we considered the case of a single readout neuron that
receives input from all neurons of a network (Fig. 1b). We
were particularly interested in how the firing rate of the
readout neuron depends on the structural variations in
the local network. The firing rate of the readout neuron
was defined as

nout ¼
1

T

Z T

0

X

k

dðt! tkÞdt,

where T is the duration of simulation and tk is the time of
the kth spike that the readout neuron fires.

5. The NeuronRank algorithm

The NeuronRank algorithm, which is introduced below,
assigns a source value ai and a sink value oi to each neuron
i, based only on structural information. The source value ai
of a neuron encodes the net effect on the network induced
by a spike in that neuron. As a rule, excitatory neurons will
have positive source values, whereas inhibitory neurons
will have negative source values. Exceptions from this rule,
however, may exist. Namely, if an excitatory neuron excites
many inhibitory neurons, it may attain a negative source
value. On the other hand, if an inhibitory neuron inhibits
many other inhibitory neurons, it may attain a positive
source value. The absolute source value of a neuron is an
indicator for its total impact on network activity. The sink
value oi, on the other hand, encodes the sensitivity of a
neuron for activity somewhere else in the network.
Neurons with higher sink values tend to be excited more
by other neurons and therefore tend to have higher
firing rates.

In a recurrent network, the source value of a neuron
depends on the source values of all other neurons. In other
words, the vector of all source values in a network
recursively depends on itself, and the same holds for the
vector of sink values. We propose here to use the
NeuronRank algorithm to find a consistent set of source
and sink values in a network. It iteratively updates the
source value of a neuron according to the source values of
its postsynaptic nodes. If A denotes the weighted adjacency
matrix of the network

Aij ¼

1 for an excitatory synapse j! i;

!g for an inhibitory synapse j! i;

0 otherwise;

8
><

>:

where g40 is a number that encodes the relative impact of
inhibitory couplings relative to excitatory ones. The update
rule for the row vector of source values a ¼ ða1; . . . ; anÞ is
given by

a aA

starting with initial values ai % 1 depending on whether
neuron i is excitatory or inhibitory. In contrast to source
values, the sink value of a neuron is updated according to
the sink values of its presynaptic nodes. The update rule for
the column vector of sink values o ¼ ðo1; . . . ;onÞT is
therefore given by

o Ao,

starting with initial values oi ¼ 1 for all neurons. In each
step of the iteration both a and o are normalized to unit
length, and the iteration stops upon convergence. The
detailed algorithm is depicted in Table 1.

6. Structural features

Upon convergence of the NeuronRank algorithm,
statistical summary information about the source and sink
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Table 1
The NeuronRank algorithm

Input: A directed labeled (inhibitory/excitatory) recurrent
network N, represented by a weighted adjacency matrix A.
Output: Source (a) and sink (o) values of all nodes in N
for each node i in N

oi  1
if i is excitatory

ai  1
else if i is inhibitory

ai  !1
endif

endif
endfor
repeat

a aA
o Ao
normalize a and o such that

P
ia

2
i ¼ 1 and

P
io

2
i ¼ 1

until convergence
return a and o
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values in a network is passed on to data mining algorithms.
We considered in particular mean and variance of the
source values, and separately of the sink values of all
neurons. In addition, mean, sum and variance were
computed separately for excitatory or inhibitory neurons
only. This yielded a set of total 16 structural features.

In order to assess the quality of the features obtained by
the NeuronRank algorithm, we compared them to features
obtained by counting network motifs [13] of second and
third order. There are 16 third-order network motifs
ignoring the neuron type (excitatory vs. inhibitory), and
93 third-order network motifs that take the neuron type
into consideration. We also computed the average cluster-
ing coefficient [14] in each network and used it as an
additional feature in our machine learning algorithms.

7. Machine learning algorithms

We applied three well-known machine learning algo-
rithms implemented in the WEKA workbench for data
mining [15] to detect structure-activity relations of random
cortical networks. In particular, we employed J48, a
decision tree learner, which uses the information gain as
its heuristic, the K2 algorithm for learning Bayesian
Networks, and Support Vector Machines [4].

8. Experimental results

In order to answer the question whether NeuronRank
features are good predictors for the network activity, we set
up the following experiments.

Predicting the average firing rate: We generated 330
random networks and performed numerical simulations of
their activity dynamics. For each network, we measured
the firing rate averaged across all neurons. Firing rates
above the median were labeled as ‘high’, below the median
as ‘low’. The task then was to predict the firing rate

correctly (‘high’ vs. ‘low’), based on the features extracted
by motif counting (cc: clustering coefficient, inh: inhibitory
neuron count, 3m: third order motifs, 2ie: second order
motifs with signs, 3ie: third order motifs with signs) and by
the NeuronRank algorithm (mean, variance and sum of
source and sink values). Note that running NeuronRank
took 25.2 s in average per network on a computer with a
Pentium-4 3.2GHz processor and Linux Suse 10.0 operat-
ing system, whereas running the third order motif counter
(with signs) took 255.2 s in average per network on the
same system. We tested the prediction accuracy of three
machine learning algorithms, using 10-fold cross valida-
tion. The results are shown in Table 2.
Predicting the firing rate of a readout neuron: In the

numerical simulations, a readout neuron was added to each
of the networks described above. This neuron received
input from all neurons in the network, but no external
input. We considered the same structural features as in the
previous setting (ignoring the readout neuron) and trained
the machine learning algorithms to predict the firing rate of
the readout neuron as ‘low’ or ‘high’ on unseen networks.
The results are shown in Table 2.
The results clearly show the success of the NeuronRank

features. For both experiments, NeuronRank features
contributed significantly to the accuracy of the prediction,
and hence they can be regarded as good indicators of
network activity.

9. Conclusions

We showed that it is possible to gain knowledge about
certain aspects of the activity dynamics in random cortical
networks by employing machine learning and data mining
techniques. Furthermore, we demonstrated that the Neu-
ronRank algorithm, which is related to the Hubs &
Authorities and PageRank algorithms, can successfully
extract structural features that are relevant for predicting
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Table 2
Accuracy of prediction in random networks using three well known machine learning algorithms: K2 Bayesian Network algorithm, J48 decision tree
learner, and Support Vector Machines (SVM) using first and second order polynomial kernels

Average firing rate Readout firing rate

Features BayesNet-K2 (%) J48 (%) SVM* (%) BayesNet-K2 (%) J48 (%) SVM* (%)

cc 48.5 48.5 49.4 50.6 50.6 50.0
inh 87.0 87.0 89.1 89.7 89.7 90.9
inhþ cc 87.0 86.7 88.8 89.7 89.1 90.1
inhþ 2ie 89.7 91.5 88.8 91.2 91.2 91.5
inhþ 3m 87.0 85.8 88.8 89.7 88.5 91.5
inhþ 3ie 86.7 90.1 93.3 92.1 91.5 93.4
inhþ source values 92.7 94.8 94.2 94.5 93.0 95.8
inhþ sink values 93.0 93.0 94.5 91.8 95.2 95.8
inhþ sourceþ sink values 92.1 93.0 94.8 92.7 93.6 95.5
Source values 92.4 93.0 93.3 92.4 92.1 93.0
Sink values 90.9 92.4 92.1 92.1 93.0 93.0
Sourceþ sink values 92.1 93.3 93.6 92.4 93.0 94.2

Note that the presented SVM results are the better ones from both types of kernels. cc: clustering coefficient, inh: inhibitory neuron count in the network,
2ie/3ie: second/third order motifs considering signs, 3m: third order motifs without considering signs.
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activity. We conclude that link mining methods can be
successfully employed for the discovery of structure-
activity and structure-function relations. Building on our
experiences with simulated activity data, we currently
adapt our algorithms to discover structure-activity rela-
tions in biological neuronal networks, like cell cultures
grown on multi-electrode arrays [9].
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