
Adaptive Classification for Brain Computer Interfaces

Julie Blumberg, Jörn Rickert, Stephan Waldert, Andreas Schulze-Bonhage, Ad Aertsen, Carsten Mehring

Abstract— In this paper we evaluate the performance of a
new adaptive classifier for the use within a Brain Computer-
Interface (BCI). The classifier can either be adaptive in a
completely unsupervised manner or using unsupervised adap-
tation in conjunction with a neuronal evaluation signal to
improve adaptation. The first variant, termed Adaptive Linear
Discriminant Analysis (ALDA), updates mean values as well
as covariances of the class distributions continuously in time.
In simulated as well as experimental data ALDA substantially
outperforms the non-adaptive LDA. The second variant, termed
Adaptive Linear Discriminant Analysis with Error Correction
(ALDEC), extends the unsupervised algorithm with an addi-
tional independent neuronal evaluation signal. Such a signal
could be an error related potential which indicates when the
decoder did not classify correctly. When the mean values of the
class distributions circle around each other or even cross their
way, ALDEC can yield a substantially better adaptation than
ALDA depending on the reliability of the error signal. Given
the non-stationarity of EEG signals during BCI control our
approach might strongly improve the precision and the time
needed to gain accurate control in future BCI applications.

I. INTRODUCTION

Brain Computer Interfaces (BCIs) infer the movement in-

tentions of subjects by analyzing electrophysiological signals

of the brain [1]. A prominent approach to BCIs uses a

supervised training phase where brain signals as well as

movement imagery are recorded and a classifier is trained

to separate different movements, e.g. left or right hand

movement [2]. Later, in the feedback mode with direct

online control, the classifier uses the current brain activity to

estimate the movement intention. The classification outcome

is presented to the subject for instance as a cursor movement

on a screen. However, the recorded signals can undergo

considerable changes between training and feedback mode

as well as during feedback itself [3], [4], [5]. Such non-

stationarities in the signals can be due to

• task differences between training and feedback, e.g. real

vs. imagined actions,

• variability of the recording caused by drying gel or

micro movements of the electrodes,

• plasticity of the brain, due to experience with the task,

• modulation of cognitive states like attention, motivation

and vigilance [3].
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The last two causes are due to properties of the human

brain and can thus hardly be avoided. The readout of

movement intentions of a BCI user therefore benefits from

adaptive decoding algorithms which are able to track the

brain signal changes. As revealed in [3], adaptive meth-

ods can significantly increase the decoding performance in

the case of non-stationarities, but most adaptive algorithms

suggested so far (e.g. [3], [4], [6], [7]) are based on su-

pervised learning techniques, which require the knowledge

of the true movement intention during the adaptation. For

a BCI application it would be highly desirable to use an

algorithm that can interpret the movement intention of the

user in an unsupervised manner, because this allows the

persons to interact with their environment without the need

to constantly reaffirm their intended motion in an external

modality. In addition, neuronal evaluation signals, like error

related negativity, might be used to improve adaptation. Here,

we propose such an adaptive BCI decoding approach by an

extension of the widely used Linear Discriminant Analysis

classification algorithm.

II. METHODS

A. Linear Discriminant Analysis (LDA)

A commonly used classification algorithm in BCI research

is the Linear Discriminant Analysis (LDA). A linear classifier

in general tries to establish a hyperplane separating the signal

space into individual subspaces for all classes. In the binary

case, the decision rule for a given vector x to belong to class

c1 and not c2 reads:

p(c1|x) > p(c2|x), (1)

These probabilities can be computed using Bayes’ for-

mula:

p(ck|x) =
p(ck)p(x|ck)

p(x)
(2)

where p(ck) is the the prior probability for a class k and

p(x|ck) is the class distribution. Assuming that all classes

are a priori equally probable, the priors can be neglected

here. Therefore, the decision rule reduces to

p(x|c1) > p(x|c2). (3)

In the case of LDA, a multivariate Gaussian distribution is

assumed for each of the classes ck,

p(x|ck) =
1

√

(2π)f det(C)
exp(−

1

2
(x−µk)T C−1 (x−µk))

(4)
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where x is the vector to be classified, f is the dimension

of this vector, C is the common covariance matrix for all

classes and µk is the mean value of class k. In this case

the decision surface is given by a hyperplane separating the

signal space in two subspaces.

The classification performance of a classifier can be mea-

sured by the decoding power, i.e. the percentage of correctly

classified samples.

B. Adaptive Linear Discriminant Analysis (ALDA)

In brief, the adaptive LDA (ALDA) works as follows: Us-

ing data from a supervised training period like for the LDA,

the initial data distributions in feature space are estimated

for the different classes. In every following feedback step

the discriminative condition is then updated via Expectation-

Maximization [8], where

• In the Expectation step, the current probability is esti-

mated using Gaussian distributions for K classes:

p(ck|x) =
p(ck)p(x|ck)

p(x)
=

p(ck)p(x|ck)
∑K

k=1
p(x|ck)p(ck)

(5)

• In the Maximization step, the resulting probability of the

expectation is used to update the means for all classes,

calculated of the last N vectors xi weighted with their

class probabilities (for training data, where a class label

k is known, the probability for the correct class is 1, for

all other classes 0),

µk =
1

p(ck)N

N
∑

i=1

p(ck|xi)xi (6)

and to update the common covariance

C =
1

N − 1

K
∑

k=1

N
∑

i=1

p(ck|xi)(xi −µk)(xi −µk)T . (7)

For every new sample and its estimated probabilities, the

oldest of a N-sample window of the former training samples

is replaced, resulting in a sliding window, which constantly

updates the training set for the classifier.

C. ALDA with Error Correction (ALDEC)

The limits of unsupervised adaptive methods lie in large

shifts in the data or a crossing of class distributions, cor-

responding to a class label switch. Unsupervised methods

in principal are not capable to follow such a switch. To

tackle this problem, we developed an enhancement of ALDA

which is able to profit from an additional signal elicited by

the presentation of wrong classification results. Error-related

potentials (ERP) are widely reported in the literature: When a

person’s action was incorrectly interpreted, for instance by a

computer, or incorrectly performed, characteristic potentials

can be measured for example in EEG and fMRI [9], [10],

[11].

Our Adaptive Linear Discriminant Analysis with Error Cor-

rection (ALDEC) uses a probabilistic model of a binary error

signal in addition to the neuronal signal related to the action

to be decoded. Based on the reliability R of the error signal,

its influence on the adaptation of the decoder is weighted.

This reliability could be inferred from training experiments

with every subject, where one presents a random decoding

error to a subject and registers, how often the corresponding

error related neuronal activity is detected. In detail, ALDEC

works as follows: In every step, after applying ALDA, the

probabilities of ALDA are updated with the error probability.

Incorporating the neuronal error signal e, equation (2) reads

p(ck|x, e) =
p(ck)p(x, e|ck)

p(x, e)
(8)

and assuming the neuronal signal x and the error related

potential as independent

p(ck|x, e) =
p(ck)

p(x, e)
p(x|ck)p(e|ck). (9)

In the ideal case where every error is detected, the distribu-

tion of an error signal is

p(e|ck) =

{

1 for ck 6= cest

0 for ck = cest
(10)

depending on the real class ck and the estimated class cest.

More generally, the reliability R indicates, given an error

occurred, how probable the error is detected. We assume the

symmetric case, where this is equal to the probability that no

error was detected if no error happened. The probability that

there was no classification error equals the decoding power

DP . Out of this conditions the following probabilities can

be deduced:

Error occurred No error occured

Error detected (1 − DP )R DP (1 − R)
No error detected (1 − DP )(1 − R) (1 − DP )R

III. RESULTS

A. ALDA with Error signal

In simulation studies with a two dimensional signal vec-

tor, we introduced shifts of the mean values of the class

distributions between training and feedback mode. First, we

calculated the theoretically maximal decoding power DPmax

by training the classifier at each trial on the actual simulated

distributions. Then, we compared DPmax with the decoding

power of LDA, ALDA and ALDEC.

Two scenarios were distinguished:

1) Class distributions rotate around the center of the

vector between the two means by 90 or more degree.

In this case, the error signal is needed and signifi-

cantly improves the decoding power. For an example

see the temporal evolution of two real (R1, R2) and

estimated (E1, E2) class distributions in Fig.1 and the

corresponding decoding power over time in Fig.2 for

different classification techniques. As the real distri-

butions in feedback are rotated 90◦ compared to the

training, a purely unsupervised ALDA in the lowest

row is not capable to follow the change. The upper row

shows the ideal case of an adaptive LDA plus a 100%
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Fig. 1. Temporal evolution of estimated class distributions for a 90◦ rotation between training and feedback The left plot shows the situation at
the beginning of the feedback session: The classifier is based on the training data, therefore the estimated class distributions E1 and E2 are not the same
as the real feedback distributions R1 and R2. Three methods are compared: ALDEC with reliability R =100% in the first row, ALDEC with R = 80%
in the second row and in the third row ALDA without the use of an error signal. In contrast to ALDEC, ALDA cannot follow the 90◦ rotation of two

classes with mean distance 3 and covariance
(

1 0

0 1

)

.

reliable error signal. The estimated distributions are

quickly approaching the real ones and are completely

overlapping at the end. In the middle row the error

signal is only 80% reliable but still has a remarkable

effect. This result, which can also be seen in the cor-

responding decoding power values in Fig.2, indicates

that even a non-perfect detection of the error will be

of much help.

2) The means of the class distributions were shifted

equally. In this case, ALDA already substantially out-

performs LDA and after a sufficient number of trials,

nearly reaches DPmax as shown in Fig.3. In this

case, adding an error signal does hardly increase the

performance of adaptive decoding.

B. Application of ALDA to EEG-BCI experiments

To test its performance with real data, we applied ALDA

to non-stationary EEG BCI data using the data set IIIb of

BCI-Competition III [7]. This dataset contains information of

the bipolar EEG channels C3 and C4 for cued motor imagery

with online feedback and was provided by the BCI-Lab, Graz

University of Technology, (G. Pfurtscheller, A. Schlögl) to
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Fig. 2. Decoding power over time for 90◦ rotation between training and
feedback LDA and ALDA show a decoding power at chance level 0.5. If an
error signal with reliability of 100% or 80% is additionally considered, the
decoding power nearly reaches DP max after 150 or 300 trials, respectively.
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Fig. 3. Decoding power over time for a linear shift between training

and feedback. The class distributions with distance 5 and covariance
(

1 0

0 1

)

were linearly shifted by 10 and rotated by 20◦ from training to feedback
session. In this case, the performance of ALDA comes very close to the one
of ALDEC 100%, and to the maximal decoding power. LDA is not able to
track the changes and its decoding power stays at chance level 0.5.

test adaptive classifiers. We used the labels for two movement

classes (left hand, right hand) of the first 200 trials to train a

LDA decoder. For the following trials regarded as test data

we compared three algorithms:

1) The static LDA

2) ALDA, where we updated every step based exclusively

on our class label estimation (see part II.B)

3) A supervised LDA, updated with the real class labels.

Before applying the discriminant analysis, the data was

smoothed with a Gaussian kernel of 400ms standard devi-

ation and binned into a 20 dimensional vector taking data

from the 2 recording electrodes every 400ms from start till

end of the feedback presentation time. The decoding power

is calculated by comparing the estimated labels with the real

labels that were provided together with the data, averaged

across a sliding window of the last 20 test trials. The result

of one such analysis (subject S4b) is shown in Fig.4. For

this example, ALDA (blue) clearly outperforms LDA (green)

after trial 300 and the decoding power achieved by ALDA

nearly reaches that of the completely supervised approach

where the real labels were used (red).

IV. DISCUSSION & CONCLUSION

In a real-life BCI application it is not feasible to use

supervised adaptation techniques as they always need an

additional information mode to provide the real class labels.

Our adaptive approach is not as accurate as the supervised

one but it allows the user to act independently and it clearly

outperforms the static case. Moreover, it is very flexible:

while it is not necessary to know the real movement intention

it is still possible to use this information, if it becomes

available at certain points in time. This could be due to

an additional neuronal signal that does not interfere with

the patient’s actions but can indicate if the decoding was
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Fig. 4. Adaptive vs. non-adaptive LDA for EEG-BCI data In a binary
task of the BCI-Competition III, data set IIIb, ALDA achieves much higher
decoding power as the static LDA, nearly as high as for the supervised
case.

correct. This might be particularly useful in cases where

the shifts of the distributions are too large or complicated

to be tracked by a purely unsupervised method alone. As

in many relevant cases already an 80% reliable error signal

significantly improves the performance, we think that the

use of error related potentials to adapt the decoder is very

helpful. Taken together, we demonstrated that our adap-

tive decoding approach for BCIs can substantially increase

decoding performance in presence of non-stationary brain

signals without requiring external knowledge of the subject’s

intentions beyond an initial training period.
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