NCBI PubMed NLMPubMed
Entrez PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
 Search for
  Limits  Preview/Index  History  Clipboard  Details     
About Entrez

Text Version

Entrez PubMed
Overview
Help | FAQ
Tutorial
New/Noteworthy
E-Utilities

PubMed Services
Journals Database
MeSH Database
Single Citation Matcher
Batch Citation Matcher
Clinical Queries
LinkOut
Cubby

Related Resources
Order Documents
NLM Catalog
NLM Gateway
TOXNET
Consumer Health
Clinical Alerts
ClinicalTrials.gov
PubMed Central
 Show: 
1: J Neurophysiol. 2005 Jan;93(1):281-93. Epub 2004 Aug 11. Related Articles, Links
Click here to read 
Synaptic integration in rat frontal cortex shaped by network activity.

Leger JF, Stern EA, Aertsen A, Heck D.

University of Tennessee Health Science Center, Dept. of Anatomy and Neurobiology, 855 Monroe Ave., Room 405, Memphis, TN 38163. dheck@utmem.edu).

Neocortical neurons in vivo are embedded in networks with intensive ongoing activity. How this network activity affects the neurons' integrative properties and what function this may imply at the network level remain largely unknown. Most of our knowledge regarding synaptic communication and integration is based on recordings in vitro, where network activity is strongly diminished or even absent. Here, we present results from two complementary series of experiments based on intracellular in vivo recordings in anesthetized rat frontal cortex. Specifically, we measured 1) the relationship between the excursions of a neuron's membrane potential and the spiking activity in the surrounding network and 2) how the summation of several inputs to a single neuron changes with the different levels of its membrane potential excursions and the associated states of network activity. The combination of these measurements enables us to assess how the level of network activity influences synaptic integration. We present direct evidence that integration of synaptic inputs in frontal cortex is linear, independent of the level of network activity. However, during periods of high network activity, the neurons' response to synaptic input is markedly reduced in both amplitude and duration. This results in a drastic shortening of its window for temporal integration, requiring more precise coordination of presynaptic spike discharges to reliably drive the neuron to spike under conditions of high network activity. We conclude that ongoing activity, as present in the active brain, emphasizes the need for neuronal cooperation at the network level, and cannot be ignored in the exploration of cortical function.

PMID: 15306631 [PubMed - in process]


 Show: