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Abstract

Cortical activity in vivo is characterized by asynchronous irregular spiking. Additionally, pre-
cise spike synchronization is observed with respect to the experimental protocol. Attempting
to model this behavior, theoretical studies have focused on two extreme cases: random and
feed-forward networks (syn(re chains). Here, we combine both descriptions by successively
converting an isolated syn(re chain into a completely embedded one. This method systemati-
cally reveals the e*ects of di*erent aspects of the embedding scheme on the stability of the
system. At realistic network sizes common-input correlations play a major role. Surprisingly,
their impact is reduced by the dynamics of the embedding recurrent network.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the absence of speci(c stimuli, cortical activity in vivo is characterized by asyn-
chronous irregular (ring of the neurons at a low rate. However, the same system
exhibits precise spatio-temporal spike patterns with respect to the experimental proto-
col (e.g. [9,10]). During the past decade several theoretical studies (e.g. [3]) explored
the existence and stability of asynchronous irregular activity states in random networks
of integrate-and-(re neurons. The mechanism of spike synchronization and the gener-
ation of spatio-temporal spike patterns in divergent-convergent feed-forward networks
(“syn(re chains”, [1]) is also well understood (e.g. [5]).
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Recent simulation studies pointed out the destabilizing e*ect of introducing non-
random elements into balanced random networks. The embedding of feed-forward
subnetworks increases the tendency of the whole network to start oscillating in a
synchronous manner [2,7]. This (nding is challenging for a concept of the cortical
network in which syn(re chains serve as the building blocks or substrate for process-
ing. So far, theoretical descriptions of destabilizing mechanisms in syn(re chains have
been documented only for the simple case, in which the “embedding” is modeled by
providing the neurons in an isolated chain with independent Poissonian background
inputs [2,11]. Both studies derive an upper bound wcrit on the number w of neurons in
each syn(re layer, above which the asynchronous ground state is unstable. This upper
bound on group size is well above the minimal w required for a stable propagation of
synchronous spike volleys [4]. Thus, there is a range of w where a stable asynchronous
ground state and a stable synchronous mode coexist. The question arises whether this
state space structure required for functionally relevant syn(re chains is also exhibited
by more realistic network architectures.
In the present study, we systematically investigate how the interactions between a

feed-forward and a random architecture a*ect the stability of the asynchronous state.
For this purpose we focus on three aspects which were not taken into account in the
case of an isolated syn(re chain with uncorrelated Poissonian background:

(i) Cortical neurons receive a large amount of their synaptic inputs from the local
area (≈ 1 mm3, [6]). Consequently, it is reasonable to assume that neurons of
the same layer in a syn(re chain share not only the inputs of their preceding
group but also a certain amount of inputs from the background. Hence, the total
background inputs of di*erent neurons in a syn(re group are correlated, even if
the individual inputs are described by Poisson processes.

(ii) Due to (nite size e*ects, the asynchronous irregular states in unstructured random
networks exhibit some small degree of global oscillations [3], even for network
sizes of the order of 105. Therefore, the assumption that the neurons in the chain
are driven by stationary Poisson inputs may have to be abandoned.

(iii) A major postulate of the isolated chain theories is that the activity in the chain
does not a*ect the embedding network. It remains to be seen whether the neglect
of these feedback connections can be justi(ed.

2. Model

The behavior of an embedded syn(re chain is studied with the help of computer
simulations [8]. The nodes of the considered network architectures are modeled as
single compartment leaky integrate-and-(re (I & F) neurons (membrane time con-
stant �m = 10 ms, membrane capacity 250 pF, resting potential 0 mV, spike thresh-
old #= 20 mV, refractory period 0:5 ms). Interactions between neurons are described
by �-function shaped synaptic currents resulting in exponential postsynaptic mem-
brane potential responses (amplitude ĥ = 0:14 mV for excitatory and −5ĥ for in-
hibitory synapses). Each neuron receives KE=9000 excitatory and KI =2250 inhibitory
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inputs from the local region. In addition, there are KX=9000 non-local excitatory inputs.
All synaptic delays are chosen to be 2 ms. Each layer in the syn(re chain consists of
w neurons. The chain is fully connected, i.e. every neuron in the chain (except those
in the (rst layer) receives exactly w inputs from all neurons in the preceding group.
Intra-chain connections are assumed to be purely excitatory, the remaining KE − w
excitatory inputs are provided by the local excitatory background.
In the simplest background model, which we refer to as the independent Poisson

case, background inputs are described by uncorrelated Poissonian processes with rates
(KE − w)�, KI� and KX�X for the excitatory and inhibitory local and the non-local
contributions, respectively (�= 7:7 s−1; �X = 1:5 #=KXĥ�m). The rates are chosen such
that in a stationary state the neurons will respond in a self-consistent way with a (ring
rate of �. Three di*erent embedding paradigms extending the simple scheme of an
isolated chain with independent Poissonian background inputs are considered:
Finite Poisson case: As a (rst step we randomly draw the background inputs of the

individual neurons in the chain from two large but (nite pools of NE=90 000 excitatory
and NI =22 500 inhibitory non-interacting Poissonian processes. This way, we take the
common input correlation caused by (nite network size into account, while the Poisson
approximation still holds. The numbers NE and NI approximately correspond to the
number of neurons found in the local vicinity of a pyramidal neuron (≈ 1 mm3) in
rat cortex [4,6]. External inputs are still modeled by uncorrelated Poissonian processes
with rates KX�X. The input statistics of a single neuron is identical to the independent
Poisson case. However, due to the overlap between the input ensembles, the background
inputs of di*erent neurons in the chain exhibit a certain degree of correlation.
Interacting background: In the next stage, background inputs are chosen from a

large random network of interacting pools of NE excitatory and NI inhibitory I & F
neurons (NE and NI as in the previous case) driven by a Poissonian external source
with rate KX�X [3]. For the given parameters, the resulting state of the background
network is characterized by more or less asynchronous irregular (ring. However, the
collective activity exhibits some small degree of oscillation. The input overlap structure
is statistically identical to the (nite Poisson case. Feedback from the chain to the
recurrent background network is still absent.
Complete embedding: In the last step, the behavior of a completely embedded syn(re

chain is studied. Here, background inputs of the chain as well as the rest of the network
are randomly drawn from the total network (including the syn(re chain). This way,
feedback connections between the chain and the recurrent network emerge as well as
loops inside the chain.

3. Results

To quantify the network dynamics under the four di*erent conditions (independent
Poisson case included), we record the spikes of the neurons in the 16th layer for 1 s,
compute the population activity histogram (bin size 10 ms) and determine the ratio F
between its variance and mean (Fano factor).
Fig. 1 shows the measured Fano factors as a function of the group size w for three

di*erent embedding scenarios. In all cases we observe a transition from low Fano
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Fig. 1. Ground state stability of embedded syn(re chains for di*erent background models: independent
Poisson (solid curve), (nite Poisson (dashed curve), recurrent I & F network (dotted curve). The population
activity in layer 16 of syn(re chains with di*erent group sizes w (horizontal) is characterized by the Fano
factor F (vertical, bin size 10 ms). The transition from low to high Fano factors indicates the entrance into
the synchronous mode. The vertical dashed gray line marks the minimal group size required for a stable
propagation of synchronous spikes.

factors at small w to high values at larger w, indicating the transition of the system
from the asynchronous into the synchronous regime. The latter is characterized by dense
volleys of synchronized spikes which spontaneously emerge out of the asynchronous
state and stably propagate along the chain. In the remainder we focus on the location
of the transition point wcrit .

Observe that the value of wcrit for (nite Poisson background (dashed curve) is con-
siderably smaller than the one we (nd for the independent Poisson case (solid curve). In
fact, here the transition into the synchronous regime occurs close to the minimal group
size required for a stable propagation of synchronized spikes (vertical gray dashed line;
[5]). Hence, there is no appreciable range of group sizes left where synchronized spike
volleys can be initiated in a controllable manner and stably travel along the chain.
Surprisingly, replacing the Poisson background by a recurrent random network (dot-

ted curve) causes wcrit to return to larger values. The impact of background correlations
seems to be compensated by the dynamics of the background network. Adding feedback
connections from the chain to the rest of the network does not change this situation as
long as the network load is small, i.e. as long as the size of the syn(re chain is small
compared to the total network size (not shown). In contrast to the network designs
without feedback, here for the (rst time the length of the embedded chain becomes
relevant.

4. Discussion

In the present work we demonstrated that the (nite size of the local cortical net-
work seriously challenges the functional relevance of feed-forward subnetworks. Due to
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correlations caused by common input, a clear separation between an excited syn-
chronous state and a quiescent ground state can only be achieved with diKculty. The
dynamics of the embedding recurrent network seems to compensate for the e*ects of
the common input. The underlying mechanism still needs to be uncovered.
Clearly, it is important to establish to what extent the results are dependent on the

simplifying assumptions. The simulations presented are based on �-type synaptic cur-
rents, but we were able to verify that the results qualitatively hold when -function
shaped currents, generating postsynaptic potentials with (nite rise times are used in-
stead. We are currently investigating whether the observed e*ects persist in heteroge-
neous networks with synaptic delay and amplitude distributions and variability of the
membrane time constant. Finally, it is clear that the membrane potential statistics de-
pends on the synapse model. Whether synapses modeled by currents, as studied here,
and more realistic models involving conductances lead to qualitatively di*erent system
behaviors is an open question.
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