NCBI PubMed NLMPubMed
Entrez PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books
 Search for
  Limits  Preview/Index  History  Clipboard  Details     
About Entrez

Text Version

Entrez PubMed
Overview
Help | FAQ
Tutorial
New/Noteworthy
E-Utilities

PubMed Services
Journals Database
MeSH Database
Single Citation Matcher
Batch Citation Matcher
Clinical Queries
LinkOut
Cubby

Related Resources
Order Documents
NLM Catalog
NLM Gateway
TOXNET
Consumer Health
Clinical Alerts
ClinicalTrials.gov
PubMed Central
 Show: 
1: J Neurosci. 2004 Mar 10;24(10):2345-56. Related Articles, Links
Click here to read 
Neuronal integration of synaptic input in the fluctuation-driven regime.

Kuhn A, Aertsen A, Rotter S.

Neurobiology and Biophysics, Institute of Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany.

During sensory stimulation, visual cortical neurons undergo massive synaptic bombardment. This increases their input conductance, and action potentials mainly result from membrane potential fluctuations. To understand the response properties of neurons operating in this regime, we studied a model neuron with synaptic inputs represented by transient membrane conductance changes. We show that with a simultaneous increase of excitation and inhibition, the firing rate first increases, reaches a maximum, and then decreases at higher input rates. Comodulation of excitation and inhibition, therefore, does not provide a straightforward way of controlling the neuronal firing rate, in contrast to coding mechanisms postulated previously. The synaptically induced conductance increase plays a key role in this effect: it decreases firing rate by shunting membrane potential fluctuations, and increases it by reducing the membrane time constant, allowing for faster membrane potential transients. These findings do not depend on details of the model and, hence, are relevant to cells of other cortical areas as well.

PMID: 15014109 [PubMed - indexed for MEDLINE]


 Show: