
Abstract. Random network models have been a popular
tool for investigating cortical network dynamics. On the
scale of roughly a cubic millimeter of cortex, containing
about 100,000 neurons, cortical anatomy suggests a
more realistic architecture. In this locally connected
random network, the connection probability decreases
in a Gaussian fashion with the distance between
neurons. Here we present three main results from a
simulation study of the activity dynamics in such
networks. First, for a broad range of parameters these
dynamics exhibit a stationary state of asynchronous
network activity with irregular single-neuron spiking.
This state can be used as a realistic model of ongoing
network activity. Parametric dependence of this state
and the nature of the network dynamics in other regimes
are described. Second, a synchronous excitatory stimu-
lus to a fraction of the neurons results in a strong
activity response that easily dominates the network
dynamics. And third, due to that activity response an
embedding of a divergent-convergent feed-forward sub-
network (as in synfire chains) does not naturally lead to
a stable propagation of synchronous activity in the
subnetwork; this is in contrast to our earlier findings in
isolated subnetworks of that type. Possible mechanisms
for stabilizing the interplay of volleys of synchronous
spikes and network dynamics by specific learning rules
or generalizations of the subnetworks are discussed.

1 Introduction

Investigations of cortical network models face two
structural problems. Analytical approaches necessitate
a strongly simplified architecture, possibly to the degree
that it becomes arguable whether results can still be

related to real brains. On the other hand, more realistic
computer simulations may obscure underlying mecha-
nisms if the system becomes too complex, and often
cannot handle the relevant numbers of neurons and
connections due to restrictions in computation time and
memory.
In this study, we chose a compromise. To investigate

the activity dynamics in the cortical network at the scale
of one cubic millimeter, containing on the order of
100,000 neurons, we explored a network model that, we
will argue, is more realistic than a random network but
simple enough to, in principle, allow for analytical
treatment.
The rules we adopted to construct our network to-

pology were derived from statistical neuroanatomy.
Recent anatomical results in rat visual cortex (Hellwig
2000) provide a quantitative local connectivity rule: the
probability for two pyramidal neurons to share a syn-
apse decreases with distance in a Gaussian fashion, with
a space constant of about 0:3 mm. While this rule ig-
nores axonal patches (Amir et al. 1993) and long-range
connections (for a new quantitative result see Schüz and
Liewald 2001), this does not pose a problem here since
the size of the simulated network of about 100,000
neurons coincides with the range governed by local
connectivity. For this reason our network layout and
connectivity scheme are based on these data, and we
describe here the dynamics in such locally connected
random networks (LCRNs). The idea of local connec-
tivity is not new (Wilson and Cowan 1973; Amari 1977),
and it is well conceivable that mean field theories in the
spirit of that work can be extended to include our
findings.
Sparsely connected random networks admit states of

activity in which the average excitation and inhibition
are in equilibrium and the neurons sustain a level of low
firing rates (‘‘Balanced Networks’’; van Vreeswijk and
Sompolinsky 1996; van Vreeswijk and Sompolinsky
1998; Amit and Brunel 1997). A recent analytical study
of Brunel (2000) discerned the dynamic states in large
networks of integrate-and-fire neurons and classified
them by the combination of two properties: a population
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activity that ranges from Synchronous to Asynchronous,
and the firing patterns of single neurons ranging from
Regular to Irregular. Hence, four prototype states were
named according to the four possible combinations: SR,
AR, SI, and AI.
The first question that arises when we make the

transition from random to neighborhood coupling in
LCRNs is whether these states still exist. In comparison
to the study of Brunel (2000), the dynamics of our
LCRN are altered not only by the local connectivity, but
also by the more realistic modeling of synaptic trans-
mission: we shaped postsynaptic currents (PSCs) as
a-functions with a rise and decay time, whereas Brunel
(2000) used d-functions without a rising or decaying
phase. The crucial point is to at least achieve a stable
stationary asynchronous-irregular (AI) state. This
enables us to use the network activity as a more realistic
substrate to mimic the different types of ongoing activity
than the uncorrelated noise that is commonly applied to
model neurons.
It turns out that this AI state is indeed achievable in

LCRNs for a wide range of parameters. It thereby
provides a useful tool for investigating the propagation
of volleys of synchronous spikes in divergent-convergent
subnetworks (‘‘Synfire Chains’’, Abeles 1991) that are no
longer isolated and fed with artificial Poissonian back-
ground as in Diesmann et al. (1999). It was even pre-
dicted that the connectivity in LCRNs inherently
provides for such subnetworks for statistical reasons
(Hehl et al. 2001; Hehl 2001). Here we consider whether
they are dynamically functional within an LCRN, i.e.,
whether a volley of synchronous spikes is sustained and
propagated in stable fashion.
We addressed this question in two stages. First, we

stimulated a fraction of neurons in the network with a
single volley of synchronous spikes. The result was
devastating, as the network responded with an explosion
in activity. A thorough parametrical study of this
‘‘synfire explosion,’’ as we called it, demonstrates this to
be a general feature of the network.
Since the inherent convergence of the neurons con-

nected to the stimulus is obviously too weak to propa-
gate the spike volley in the presence of a synfire
explosion, we modified the LCRN connectivity by ex-
plicitly embedding a synfire chain. We found that, de-
pending on the embedding scheme, the ability to
propagate synchronous spike volleys varies from barely
to not at all, which is in sharp contrast to the isolated
case (Diesmann et al. 1999; Gewaltig et al. 2001). In
addition, the whole network is strongly affected by the
volley; the AI state is not conserved and only reentered
after the volley has dissipated.
At least at first glance, this appears to be a severe

blow against the synfire hypothesis. Thus, we will sug-
gest modifications of the synfire chain definition to cope
with the above-described phenomena.
This study starts with a methods section describing

the neuron model, network architecture, and simulation
tools. The results section provides quantitative evidence
for the claim that an AI state exists in LCRNs. Also, we
discuss which other states were observed and how they

depend on network parameters. Then we describe the
parametric dependence of the synfire explosion and its
implications for the functionality of an embedded synfire
chain. Finally, in the discussion section, we review the
relevance and possible shortcomings of our LCRN
concept, evaluate whether the synfire explosion is a
general phenomenon independent of this particular
network topology, and discuss possible means by which
the synfire chain theory may escape this explosion.

2 Methods

2.1 Model neuron

Neurons were modeled as leaky integrate-and-fire neu-
ronswith voltage threshold (Tuckwell 1988 and references
therein). Model parameter values were chosen consistent-
ly with the experimental literature. Whenever the mem-
brane potential crossed the threshold of H ¼ �50 mV, a
spike was elicited and the neuron reset to its resting
potential Ur ¼ �70 mV, followed by a refractory period
of 2 ms. The membrane time constant was set at
s ¼ 10 ms. Excitatory postsynaptic currents were taken
to be a-functions, with a rise time of 0.3 ms and a current
peak amplitude that leads to a realistic postsynaptic
potential (PSP) with a peak of J ¼ 0:14 mV occurring
1:7 ms after the onset. IPSPs had the same shape, but a
peak amplitude scaled by a factor g. The dynamics were
integrated on a time grid with constant spacing of 0.1 ms
(Rotter and Diesmann 1999). Further details are
described in Diesmann et al. (2001).

2.2 Network architecture

One source of motivation to study LCRNs was the
quantitative anatomical result that the local connection
probability of two pyramidal neurons in rat visual
cortex as a function of their cell body distance (Hellwig
2000) can be described by a Gaussian with standard
deviation rn ¼ 0:3 mm. This holds true for the distance
within a cortical layer; the connectivity across layers has
a more complicated structure (Krone et al. 1986).
Therefore, in addition to wanting to keep matters
simple, we decided on a 2D network layout, where the
neuron density in layers II/III of approximately 75,000
excitatory neurons per cubic millimeter (Peters et al.
1985) is adapted as if one had taken layers II and III of
rat visual cortex and squeezed their total thickness of
0.3 mm (Gabbott and Stewart 1987; Hellwig 2000) into
a 2D sheet.
Our simulation capacities restricted us to a network

of about 100,000 neurons. With a physiological ratio of
about one inhibitory neuron per four excitatory neurons
(Braitenberg and Schüz 1998), a choice of a square area
with l ¼ 2 mm in length contains 0:3mm� ð2mmÞ2�
75; 000mm�3 ¼ 90; 000 excitatory neurons and, conse-
quently, 22,500 inhibitory neurons. In our simulations,
these were positioned on a regular orthogonal grid with
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a space constant of 0.007 mm, which is well below the
connectivity space constant rn.
To avoid the effect that a neuron near the boundary

receives less input, the area was folded as a torus. For
activity to reach the neuron it originated from, it must
cover l=rn ¼ 6 standard deviations. This is a concession
to the inevitable constraints of computing resources and
enough to minimize short-term reverberations, but it
does not suffice to state that there are no boundary ef-
fects at all.
To our knowledge, no data are available concerning

the distance dependence of the connectivity probability
for inhibitory neurons, one reason being their larger
variability in cell type. Therefore, we assumed the same
Gaussian profile for connections involving inhibitory
neurons. The synaptic delay D was set to D ¼ 1:5 ms
regardless of distance, as signals are fast on this spatial
scale.
Figure 1a illustrates the choice of the KE ¼ 9; 000

excitatory and the KI ¼ 2; 250 inhibitory presynaptic
connections per neuron, and the network layout is de-
picted in Fig. 1b.

The connectivity on a population basis is shown in
Fig. 1c, analogous to that of Brunel (2000). Assuming
equal mean firing rates of excitatory and inhibitory
neurons, the weight g of the inhibitory vs. excitatory
PSP naively would range in the order of 4 to obtain a
balanced network despite the lower number of inhibi-
tory neurons. Furthermore, each neuron receives a
Poissonian external input at a rate KEmextmthr, reflecting
longer-ranged connections from additional KE excitato-
ry neurons. We express external input by the parameter
mext, which is the input rate at each external synapse
divided by the threshold rate mthr ¼ ðH � UrÞ=ðsJKEÞ,
with the various parameters as defined in Sects. 2.1 and
2.2.

2.3 Simulation tools

The computational requirements of the simulations are
quite demanding. The simulation software NEST/SYN-
OD (Diesmann et al. 1995; Diesmann and Gewaltig
2002) had to be extended with the help of the Message
Passing Protocol (MPI, Pacheco 1997) to make use of
parallel computing. We performed simulations both on
clusters of LINUX PCs and on a parallel computer (SGI
Origin 2000, Computing Center at University of Frei-
burg). Still, with ten processing units it takes about 10
min simulation time for 1 s of simulated ‘‘brain’’ time for
our network design as described.

3 Results

3.1 Dynamic states of network activity

A sparsely and randomly connected network of excit-
atory and inhibitory integrate-and-fire neurons exhibits
different dynamical states, depending on the inhibition
weight g and the external input mext (Brunel 2000). We
briefly review two characteristics that are used to classify
the states and directly apply these to the results of a
parameter scan in the g; mextð Þ space for our LCRN.
Synchronicity is defined as a property of the popu-

lation activity (cf. Brunel 2000): a network state is
termed either asynchronous in the case of stationary
global activity or synchronous in the case of oscillatory
global activity. To quantify the synchronicity and the
fluctuations in the network activity, we calculated the
coefficient of variation of the population activity as a
function of the control parameters g and mext (Fig. 2a).
Synchronicity is high in three different regions of the
parameter space: for very low external inputs (mext � 0:9)
and (g � 4), for an intermediate inhibition weight
around 4.5 and intermediate to high external inputs
(mext > 2), and in the case of dominating excitation
(g < 4), where synchronicity is always high, indepen-
dently of the external input.
The regularity of the spike train of a single neuron is

measured by the coefficient of variation (CV) of the
interspike interval. A low CV reflects more regular
spiking, with the extreme of a clocklike pattern for CV
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Fig. 1. Locally connected random network (LCRN) architecture. a
Illustration of connectivity for a sample neuron (location indicated by
‘‘+’’). Connections are established from KE ¼ 9; 000 excitatory
(marked as ‘‘x’’) and KI ¼ 2; 250 inhibitory (‘‘o’’) presynaptic
neurons, chosen at random with a probability decreasing with
distance according to a Gaussian (gray shading; solid curve shows
cross-section profile). b Layout of the network. 90,000 excitatory
neurons (‘‘x’’) are arranged on a regular square grid spanning
2� 2 mm2, with 300 neurons along each line at a 6:7lm spacing.
22,500 inhibitory neurons are positioned on every fourth grid point,
overlying the excitatory population (‘‘o,’’ plotted on top of the
excitatory neuron). The boundaries are connected (arrows), leading to
a torus-shaped network. c Network connectivity. Excitatory and
inhibitory neurons each receive input from 11,250 recurrent synapses
as described in a, here depicted as connections feeding back into the
same and projecting to the other population. Additionally, each
neuron in both populations receives KE Poissonian external inputs at a
total rate of KEmextmthr to represent the part of the embedding
network that is not explicitly incorporated. The strength of inhibitory
synapses is scaled by a factor g as compared to the excitatory synaptic
strength J
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zero. On the other hand, a Poisson process has a CV of 1
as a prototype of ‘‘random’’ behavior. The regularity of
the neuronal activity in the network as a function of the
control parameters g and mext is shown in Fig. 2c. It
exhibits two regimes: for g � 4:5, neurons fire highly
irregularly with CVs between 0.5 and 1.8, in contrast to
the area of g < 4, where neurons exhibit a clocklike
firing pattern with CVs near zero. The borderline at
g ¼ 4 is characterized by decreasing irregularity for high
external input.
Taking these two characteristics, synchronicity and

regularity, we can now classify four network states, lo-
cate their occurrence in the parameter space, and com-
pare them to the states observed in networks with
random connectivity and without synaptic current dy-
namics (Brunel 2000).
In the case of dominating excitation (g < 4), the

population activity is oscillatory with individual neurons
firing regularly; this state is, thus, termed synchronous-
regular (SR). Sample spike trains together with the time
trace of the population activity for this state are shown

in Fig. 3a. This state is similar to the SR state observed
in networks with random instead of local connectivity
(Brunel 2000).
For intermediate values of the inhibition weight

(4 < g < 6) and external inputs above � 2, a regime with
synchronicity at high oscillation frequencies (around 100
Hz) and irregular firing, named SI (fast), was observed
(Fig. 3b). With increasing external input, the parameter
regime of this state enlarges to higher values of g (cf.
Fig. 2a and Fig. 2c). Remarkably, random networks
without synaptic current dynamics do not exhibit strong
oscillations in this parameter region. However, a com-
parable SI state with high oscillation frequencies is
found in random networks with strong inhibition and
high external input (Brunel 2000). Due to the synaptic
current dynamics included in our neuron model, the
frequency of the oscillation in this state is determined
not only by the synaptic delay D but also by the rise time
of the PSP (postsynaptic potential).
Very low external input and g � 4 leads to oscillatory

behavior at low frequencies with individual neurons
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Fig. 2. Phase diagram of dynamic states in LCRN. Subfigures a–d
show different characteristics of the network dynamics in dependence
of the network parameters g and mext. The parameter space was
sampled on a grid with values of g equal to 3:5; 4:0; . . . ; 9:0 and values
of vext equal to 0:7; 0:9; 1:9; . . . ; 5:9. The values at the grid points were
linearly interpolated to obtain the equidistant contour lines shown in
the graphs. To guarantee a reliable estimate of the different
characteristics, the network was simulated for a period of ten times
the average interspike interval. White text labels name the regimes of
four distinct network states and are placed at parameter values
corresponding to the examples shown in Fig. 3. a Color-coded
synchronicity of the global activity measured by coefficient of variation
of the population activity. Contour lines are drawn in steps of 0:3.

Three different regimes with high synchronicity, in contrast to one
broad asynchronous regime, can be observed. b Color-coded sharp
spike correlations (	1 ms) averaged over 1000 neuron pairs with
distances between 0.035 mm and 0.140 mm. Generally, spike correla-
tions increase with decreasing inhibition strength and increasing
external input. c Color-coded coefficient of variation (CV) of the
interspike intervals of single neurons with contour lines in steps of 0:3.
The CV was calculated by averaging the CVs from 1000 individual
neurons. High values were observed for g � 4:5, whereas neurons fire
regularly for low inhibition weight (g < 4). d Average firing rate of
excitatory neurons with contour lines every 5 Hz. For g � 4, firing
rates decrease with increasing inhibition and decreasing external input.
For weak inhibition (g < 4), neurons fire at their maximum rate
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firing irregularly (Fig. 3c). This state corresponds to the
state SI (slow) found for similar network parameters g,
mext in random networks (Brunel 2000).
An asynchronous irregular state (Fig. 3d) is observed

for a broad range of inhibition weights and external
input strengths. In contrast to networks with random
connectivity, the AI state becomes unstable for inter-
mediate values of g (around 4.5) if external inputs are
strong enough, but it remains stable for strong inhibition
and high external inputs, where random networks
exhibit a transition to a fast oscillation. To clarify if
an oscillation occurs locally, we measured the sharp
spike correlation (	1 ms) between nearby neurons
(0.035 mm – 0.14 mm) as a function of g; mext (Fig. 2b).

Clearly, local correlations remain low in the whole AI
regime, but do not vanish completely. In the AI state,
correlations are strongly distance-dependent and de-
crease more rapidly than the connection probability, as
shown in Fig. 4a for the set of network parameters used
in Fig. 3d. Local correlations are higher than in random
networks, whereas correlations decrease to zero at large
distances.
As an additional characteristic of the network activity

we computed the average firing rate of the excitatory
neurons (Fig. 2d). Two regimes can be clearly distin-
guished: for values of g smaller than 4, neurons fire
almost at their maximum rate (500 Hz) given by their
absolute refractory period, independently of the external
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Fig. 3. Examples of network states. Subfig-
ures a–d show the population activity
(number of neurons firing in bins of 0.1 ms)
and sample spike trains for four different
states of the network dynamics. The first
200 ms are omitted from the graphs, this
period being an upper bound for the time
needed by the network to reach its station-
ary state. The four examples shown corre-
spond to parameter values marked by white
labels in the phase diagrams of Fig. 2. a
Synchronous-Regular (SR) with g ¼ 3:5,
mext ¼ 1:9. The upper panel shows sample
spike trains of 50 randomly selected excit-
atory neurons firing clock-like at a rate of
almost 500 Hz. The overall population rate
of the excitatory neurons (black) and the
inhibitory neurons (grey) in the lower panel
shows a pronounced regular oscillation at
the same frequency. b Synchronous-Irregu-
lar (SI fast) state with g ¼ 4:5, mext ¼ 3:9.
Same panels as in a but different scaling. The
population activity is highly oscillatory at
around 100 Hz with population bursts of
varying size. c Synchronous-Irregular (SI
slow) state with g ¼ 4:5, and mext ¼ 0:7. In
contrast to b, the frequency of the oscillation
is much smaller, and the number of neurons
and spikes in a population burst is less than
in b. As the firing rate is very low in this state
(around 1.5 Hz), the upper panel shows the
spike trains of 50 selected neurons, each of
them participating in at least one of the two
bursts shown in the graph. d Asynchronous-
Irregular (AI) state with g ¼ 5:5, mext ¼ 1:9.
The overall population rate in the lower
panel does not exhibit a pronounced oscil-
lation at any one frequency but rather an
irregular fluctuating trace
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input. For stronger inhibition (g � 4), the firing rate
decreases with increasing inhibition strength and de-
creasing external input.
We emphasize that, in particular, a network state

exists with low firing rate, irregular single-neuron spike
patterns, and the absence of overall synchrony in the
network (AI; Fig. 3d; an illustrative membrane potential
trace of one neuron is shown in Fig. 4b). This is the kind
of activity that one typically describes as cortical back-
ground activity (e.g., Arieli et al. 1996), and we focus on
this AI state for the remainder of this study.

3.2 Impulse response of LCRN: the synfire explosion

What happens if the network is stimulated with a
transient volley of synchronous spiking activity? To
generate such a transient stimulus, we forced a number
of s neurons to emit a spike within a single simulation
step, regardless of their membrane potential, and
afterwards let their dynamics develop as if the spikes
had been elicited by a regular threshold crossing. These
s neurons were randomly chosen with a probability
decreasing from the center according to a Gaussian with
standard deviation rs, just as in the selection of
presynaptic neurons during network setup. The strength
of the spike volley s and its spatial extent rs were
systematically varied, as shown in Fig. 5a. In view of the

torus nature of the network and due to symmetry, the
center is distinguished in no other respect than its
position on the display.
Figure 5b shows the immediate effect of the stimulus.

It is quite obvious that it needs only a moderate number
of neurons s to have large effects. We call this response a
‘‘synfire explosion,’’ because it shakes the whole net-
work, temporarily forcing it out of the stationary AI
state.
An even more severe effect is caused by the inhibition.

Simultaneously with the excitatory explosion shown, an
inhibitory explosion of essentially the same size and
shape is elicited (not shown here). It takes one more
synaptic delay for this inhibitory explosion to quench
almost all activity in the network. Afterwards, the
external input restarts the ongoing activity, and further
explosions may develop (Fig. 5c–e).
To better understand this time evolution of the synfire

explosion, let us first examine the activity in the transient
phase after initialization of the network simulation,
where all membrane potential values are at resting value
and all currents set to zero (Fig. 6a). There are no spikes
traveling, and all neurons are initially affected solely by
the external input. Since this Poissonian input represents
a large number of external neurons, the network neurons
are nearly uniformly driven across threshold to generate
a large peak in population rate. Those neurons that spike
are all reset to the same resting potential. At first sight,
therefore, one would expect a second peak of equal
strength sometime later. But the temporal distribution of
spikes in the first peak, together with the differences in
individual Poisson inputs, starts to disperse the mem-
brane potential distribution. Consequently, the second-
ary and later peaks (‘‘echoes’’) gradually become smaller,
until they vanish, and the network settles into the stable
AI state. Before stimulating the network with a
synchronized volley of spiking activity, we always waited
until the network had settled into the stable AI state.
We are now in a position to explain the time evolu-

tion of the synfire explosion (Fig. 5c–e). After the first
activity explosion all neurons are simultaneously reset to
the same resting potential. If the explosion is strong
enough to locally recruit almost all neurons, these neu-
rons will be subject to the same mechanism that causes
the large activity transient at simulation start: the synfire
explosion creates echoes as well, and it may take up to
three such echoes for the explosion to dissolve.
We can better observe the strength of the explosion

and its echoes in a population rate profile (Fig. 6b). All
in all, the network needs about 50 ms to recover from a
synchronous stimulus of about 100 spikes or more.
During this time, the network dynamics are dominated
by the stimulus, and the network is temporarily out of
balance.
Figure 6c quantitatively evaluates the strength of the

synfire explosion, i.e., the total number of spikes within
the time window of the first excitatory response. Obvi-
ously, a stronger stimulus causes a larger explosion. A
larger spatial spread of the stimulus helps to decrease the
explosion size, unless it is strong enough to activate the
whole network (Fig. 6d).
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as if this spike were elicited upon a regular threshold crossing. Stimuli
cover the whole range from weak and localized (upper left) to strong
and diffuse (lower right). b Network response in the asynchronous-
irregular (AI) state with g ¼ 5:5, mext ¼ 1:9 (cf. Fig. 2, 3). The stimulus
parameters match those in a. The color coding shows the number of
spikes of the excitatory population, summed in a bin of 5� 5 grid
points from millisecond 1 to 2, i.e., around one synaptic delay (1.5 ms)
after the stimulus. Spikes are pooled from ten repetitions of the
stimulus, each time presented after waiting 100 ms for the network to
resettle into the stationary AI state. Stimuli of less than s ¼ 50 neurons
evoke only small center peaks, provided the stimulus is strongly

localized (upper left). Strong stimuli always elicit an explosion in
activity, which is more pronounced and more localized, the more
localized the stimulus neurons are. c Time evolution of activity
explosion. Sample for s ¼ 500 and rs ¼ 0:13 mm. Number of
repetitions, spatial and temporal bin size as in b. The second picture
at 2 ms is the same as that in b for corresponding s; rs. The synfire
explosion rapidly recruits neurons in a growing disk that collapses once
the effect of the inhibitory explosion takes over (4 ms). An echo of the
explosion with a larger temporal spread starts at 17 ms. The second
echo at 37ms takes almost 12ms, as compared with only 4 ms for the
initial explosion. Later, a third echo has almost dissolved (not shown),
the network afterwards resettling into the stationary AI state. d Time
evolution of activity explosion for s ¼ 200, rs ¼ 0:67 mm. The weaker
and more diffuse stimulus elicits both an explosion and echoes that are
considerably smaller. e Time evolution of activity explosion for
s ¼ 200, rs ¼ 1:33. This even more diffuse stimulus causes only a weak
explosion with almost no echoes
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3.3 Survival of embedded synfire chains

A synfire chain of width w consists of pools of w
neurons each, the groups arranged in sequence and all
neurons in a group projecting to all neurons in the next
group in a divergent-convergent fashion (Abeles 1991).
It was shown that if a sufficient fraction of the neurons
in the first group of such a chain fires in synchrony,
this spike volley reliably travels down the chain
(Diesmann et al. 1999; Gewaltig et al. 2001). Moreover,
the all-to-all connectivity of the synfire chain definition
can be relaxed to a diluted connectivity if one
compensates by either augmenting the intergroup
connection strength or by adopting a larger chain
width (Hehl et al. 2002). However, these results on the
dynamics were obtained for isolated chains, i.e., spikes
of the chain neurons did not affect the background
activity.
The stimulus investigated in the previous section

qualifies as a synfire volley: the stimulated neurons can
be understood as the first group of a synfire chain of
width s. It was previously shown that in a realistic
LCRN at least another s neurons exist with a suffi-

cient multiplicity in connectivity to the first group to
qualify as a second synfire group (Hehl et al. 2001;
Hehl 2001).
In principle, it should therefore be possible that the

spike volley propagates to this second group. As it
turned out, however, any such attempt was effectively
masked by the synfire explosion: the excitatory popula-
tion activity involves far more neurons than only the
potential second group, and, worse, the overwhelming
inhibition in its aftermath quenches any potential
propagating spike volley.
To make the synfire connections stronger, we now

explicitly embedded a fully connected chain into the
network. The mean membrane potential does not differ
much from the resting potential. As it takes
w
 ¼ ðH � UrÞ=J ¼ 147 simultaneous input spikes to
activate a neuron from resting potential to firing
threshold, we chose a width that is considerably larger
(w ¼ 250) in order to obtain a reliable chain (an argu-
ment for taking w � 2w
 as a choice of width for stable
propagation is found in Gewaltig et al. 2001).
There is one remarkable difference in the input a

neuron receives in our LCRN and in the isolated chain
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Fig. 6. Strength of synfire explosion and echoes. a Initial transient
after network initialization. Time trace of population rate during the
first 200 ms. The large initial peak causes several echoes before the
network settles into a stationary state. b Sample averaged population
rates for 25 repetitions of a stimulus of fixed spatial spread
rs ¼ 0:67 mm and varied strength s as indicated in the legend. The
inset shows a zoom into the time interval of the first explosion response
from 1.6 ms to 4.0 ms after the stimulus. c Average number of spikes
fired in response to a stimulus. Stimulus strength s is varied along the
abscissa; the colors encode spatial spread rs as shown in the legend.
The number of spikes in the response activity explosion is calculated as
the time integral over the first peak in the averaged population rate
(i.e., the inset in b). Stimuli with s ¼ 100 or more result in a response

that is more than ten times stronger. The response saturates when the
pool of adjacent neurons is exhausted. Thus, the more diffuse stimuli
(blue and black solid curves) can affect most neurons, but only the
strongest one (s ¼ 500) manages to fully use this advantage (black
curve). For lower s, the more localized stimuli (other colors) recruit
their lower number of potential target neurons more efficiently.
Therefore, both classes intersect (s � 350). d Same data as in c, but in
dependence of rs along the abscissa and color coding for strength s.
The response to stimuli of strength s ¼ 200 and lower becomes weaker
at larger spatial spread. Only the s ¼ 500 stimulus (black curve) is
strong enough to recruit even the large region of its extent. This is the
same effect of pool exhaustion and efficiency dependence on
localization as described in c
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case of Diesmann et al. (1999). In the LCRN, a balanced
input was obtained by a higher amplitude of the inhib-
itory than the excitatory PSP, whereas Diesmann et al.
(1999) used a higher inhibitory firing rate. As an in-
creased IPSP size results in higher input fluctuations, the
distance to firing threshold must be larger if the same
neuronal firing rate is desired. Consequently, our group
width exceeds the one used by Diesmann et al. (1999),
where a width of w ¼ 100 was sufficient.
For the embedding, chain neurons were selected as

follows. The w neurons of group 1 were drawn at ran-
dom, obeying a Gaussian probability with standard
deviation rg. This is the same procedure as was used for
the stimulus neurons when investigating the impulse
response (Sect. 3.2). For the next group, the center of
the Gaussian was moved over a distance d at a random
angle, and the neurons of group 2 were drawn in anal-
ogous fashion without replacement and all-to-all con-
nected to those of group 1. Iteration of this procedure
(for various choices of rg and d) was used to construct a
chain (Fig. 7a). Clearly, one would prefer a larger net-
work to avoid boundary effects.
Drawing without replacement guarantees that each

neuron can be part of the chain in at most one group. On
wiring the LCRN, all chain neurons received w fewer
excitatory connections to maintain balance. Under these
conditions, the length of the chain is limited if one does
not want too large a fraction of the network involved in
the chain. On the other hand, a long chain is necessary
to observe the spike volley propagation. For this reason,
we chose a total of ten groups and connected the last
group to the first to arrive at a synfire loop.
From the previous section, we already know the

strength of the response to a stimulus of s ¼ w ¼ 250
simultaneous spikes. Here, we selected parameter set-
tings for rg and d that promised qualitatively different
results from inspecting the explosion sizes in Fig. 6c,d.
Long simulation times forced us to restrict ourselves

to 20 trials for each parameter set, one trial being one
realization of the embedding rules stimulated once. The
example of the pulse packet propagation in Fig. 7b is
representative; variation in qualitative behavior across
trials was low. Observe that there are two modes of pulse
propagation. One relies on small groups that elicit lo-
calized explosions, the next group being situated far
enough to not be extinguished by this explosion (e.g.,
rg ¼ 0:17 mm, d ¼ 0:5 mm or d ¼ 1:33 mm, compare
Fig. 7c,d). In the other mode, neurons in each group are
spread wide enough to restrict the explosion such that
the synfire volley may survive, even if it cannot escape
(rg ¼ 0:67 mm, d ¼ 1:33 mm). For all other parameter
sets, the volley sooner or later dies out, with few ex-
ceptional trials where it survived over the observation
time window.
Even those parameter values for which the volley

propagates do not show a sharp synchronization along
the chain, and the temporal jitter changes from group to
group in an unpredictable manner. At the same time,
network activity is not particularly reliable. On the
contrary, the chain may be ignited spontaneously by the
initial transient (Fig. 6a), with the network never

reaching an AI state where the stimulus could mean-
ingfully be applied. Alternatively, the explosion elicited
by group i may stimulate other groups besides iþ 1,
leading to multiple volleys propagating in the chain that
interfere with each other. The echo of an explosion may
have the same effect, all this leaving groups in a refrac-
tory state when the ‘‘regular’’ volley arrives, which is
then bound to perish.
In summary, under the conditions studied it is indeed

possible to adjust parameters to obtain an embedded
chain that sustains synfire activity. But this is neither the
natural mode in the sense that many such physiologi-
cally plausible parameter settings would exist, nor is the
synfire propagation reliable such that one could predict
the time and shape of the volley at a given group.
Moreover, the chain dynamics dominate the entire net-
work dynamics, kicking them out of the AI state.

4 Discussion

Motivated by the anatomical findings that on a local
scale neocortical neurons are connected with a Gaussian
probability, we explored the activity dynamics of a
locally connected random network (LCRN) of about 105

neurons using simulations. By adjustment of inhibitory
weight and strength of external input, this network settles
in a dynamical state of asynchronous network activity
and irregular single-neuron spiking, similar to the AI
state of sparsely connected random networks (Brunel
2000; Amit and Brunel 1997). However, in these studies it
is assumed that no correlations exist between neurons
beyond a common time-varying rate. For an LCRN we
demonstrated correlations in the spike patterns of
adjacent neurons even in the AI state. The correlations
remain with increasing network size as this leaves the
number of synapses and the spatial localization of the
connectivity unaffected. As a consequence of this net-
work scaling, the phase diagram of the dynamical states
of a sufficiently large LCRN (Fig. 2) is independent of
the network size and is a result of the network parameters
chosen in accordance with anatomy. A network size of
about 105 neurons for the first time allows us to
investigate networks with a realistic connectivity rule
and a realistic number of synapses per neuron. Therefore,
our parameters have an absolute meaning, and it is
pointless to discuss the scaling behavior of observed
effects with increasing network size. A minimal network
size is required to avoid boundary effects, and a sheet of
2� 2 mm proved sufficient to not influence the network
states in our study.
For an LCRN in the AI state, sharp spike correla-

tions rapidly drop to zero for distances between neurons
of more than 0.5 mm. This is in agreement with exper-
imental findings in the cortex of awake monkeys, where
sharp correlations were found for adjacent neurons, but
not any longer if these neurons were more than 0.5 mm
apart (e.g., Vaadia and Aertsen 1992). Therefore, we
consider the activity of the LCRN in the AI state as a
more realistic model of cortical background activity
than uncorrelated noise.
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When an excitatory stimulus of varying spatial spread
and number of affected neurons is applied to the
network, it responds with an explosion in activity that is
afterwards quenched when the inhibitory spikes in the
explosion cut the excitability. Since this is exactly the
kind of stimulus that a synchronous spike volley trav-
eling along a synfire chain would emit, we explicitly

embedded such a subnetwork into the LCRN. We
found that the synfire explosion prohibits reliable pulse
propagation in a synfire chain. Even though by proper
choice of embedding parameters it is indeed possible to
sustain synfire activity, the timing precision within a
pulse packet does not remain constant, nor is its arrival
time predictable. This result is in clear contrast to the
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Fig. 7. Dynamics of an embedded synfire chain. a Synfire chain
embedding scheme. Neurons in each group (w ¼ 250) are selected at
random according to a Gaussian profile with standard deviation rg,
depending on the distance to the group center. From group to group,
this center roams in a random direction (uniform random angle
between 0 and p vs. negative y-axis, forcing a drift to the right) with
step size d. Colors encode the group number. The tenth and last group
(red) is connected to the first (blue), establishing a synfire loop. Group
spread and intergroup distance were varied systematically, as
indicated by the matrix. b Activity of the synfire chain. Each panel
corresponds to the embedding parameters of a. At time 0, all neurons
of the first group are forced to spike. Panels show the time evolution
of spiking activity of the 2,500 chain neurons (neurons sorted at the
ordinate according to the group they belong to). In these sample
responses to a single stimulus each, only a fraction of synfire loops
propagate the synchronous spike volley (upper middle, right, and lower
right). Moreover, the larger the spatial spread in a single group, the
larger the temporal dispersion of the response spikes (compare, e.g.,
upper right and lower right). The probability for a loop to propagate
activity, obtained from 20 different realizations of embedding with

identical parameters, is indicated in the lower right of each panel.
c Details for a single sample synfire chain. The upper panel shows the
embedding scheme (same as upper middle in a); the middle panel
presents a close-up of the first 28 ms after stimulus. The first group
fires not only the forced stimulus spikes, but again after about 3 ms.
Propagation of the spike volley along the chain is not reliable; the
strong synchronicity of the initial stimulus gets lost. The lower panel
shows the overall excitatory population rate for this time interval. The
response to the initial stimulus is by far the most pronounced, but all
groups trigger response explosions. d Network activity as a spike
volley propagates along an embedded chain. The same sample is
taken as in c, the binning along spatial coordinates as in Fig. 5. The
volley traveling along the chain can be visually tracked by the
explosions elicited with a delay of a few milliseconds (compare with
the embedding scheme and the group’s activity in c). The initial
stimulus results in a strong activity explosion (1–3 ms). After 2 ms, the
second group is already active, overshadowed by the explosion. This
process repeats along the chain: a small activity spot for the volley,
followed by a larger explosion. After 22 ms, the pulse arrives again at
group 1, starting the second cycle
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simple attractor characteristics in the state space of an
isolated chain (Diesmann et al. 1999).
Previously it was predicted that the connectivity in an

LCRN would suffice to inherently provide for the con-
nections that establish a diluted synfire chain, i.e., a
chain where the requirement of all-to-all connectivity
within the chain is relaxed (Hehl et al. 2001). Although
these structures are indeed present, the spacing of sub-
sequent group centers in that case is much closer than in
our explicit embedding procedure (0.03 mm intergroup
center distance in the inherent chain, compared to the
minimal value of 0.13 mm in Fig. 7). Since the fully
connected embedded chain does not appear to support
stable spike volley propagation, an inherent diluted
chain is even less likely to do so.
A shortcoming of our simulations are the remain-

ders of boundary effects due to the finite network size.
These, however, are not to be held responsible for the
synfire explosion, which, as we will see in a moment, is
a general feature of the network dynamics. Neverthe-
less, activity in the embedded chain could more easily
survive if subsequent groups were located in parts of
the network that were untouched by its previous
activity.
We now want to put forth the argument that the

synfire explosion is a robust phenomenon found in a
large class of networks. Consider a network where all
neurons are connected randomly at a fixed percentage,
say c ¼ 0:1. The instantaneous membrane potential
distribution of these neurons, as they are many, will be
near to a Gaussian. We assume that an estimate for the
number of neurons activated by a stimulus is determined
by that part of the Gaussian that is near enough to the
firing threshold to cross it one synaptic delay later (for
related concepts see Abeles 1982; Boven and Aertsen
1990; Abeles 1991).
This procedure is illustrated by the membrane po-

tential distribution of our LCRN in the AI state, to-
gether with a Gaussian fit (Fig. 8a). The complete
distribution is skewed, as the weight of an inhibitory
PSP is stronger by a factor g compared to the excitatory
PSPs. Additionally, our model does not include any re-
versal potentials that would cut off low membrane po-
tential values and thereby reduce the skewness. As we
are interested in the membrane potential distribution
near the firing threshold, we circumvent problems in-
troduced by this skewness by only considering the falling
edge close to threshold.
An excitatory stimulus from s additional spiking

neurons will, in the mean, add an amount of
d ¼ c� s� J to an individual neuron’s membrane po-
tential. Therefore, the number of neurons activated by
this stimulus is determined as the integral of the mem-
brane potential distribution calculated over the range
½H � d;H. The additional spikes thus elicited are shown
in dependence of s (Fig. 8b). Qualitatively, this simple
model already explains the synfire explosion in Fig. 6c.
There, in the LCRN case, the explosive effect saturates
for large s, because the pool of neighboring neurons is
limited, and these are the ones affected by the stimulus.
In summary, even though there may be quantitative

differences in the severity of the explosion, it appears to
be a universal feature.
In a random network, however, the effect of a fixed

number of neurons, as in this explosion, is negligible as
compared to background activity once the network size
is sufficiently large. Consequently, the inhibitory explo-
sion is smaller and more diffuse and will not quench all
activity in the aftermath. By contrast, increasing the size
of the LCRN preserves the neighborhood coupling and
therefore the effect of the explosion.
It could be argued that our results are an artifact of

homogeneity assumptions that entered the model. We
decided on having the connectivity space constant for
excitatory and inhibitory neurons the same as a forced
guess, due to a lack of quantitative anatomical data.
Different connectivity ranges of the excitation and the
inhibition can lead to different patterns of activity
(Wilson and Cowan 1973; Ermentrout and Cowan
1979a,b). Therefore, we could expect to find different
phase diagrams in these cases, but we assume an AI state
to still exist. The synfire explosion, being an effect of the
excitatory-excitatory connections alone, should not be
affected.
In addition, to obtain more heterogenous networks,

one could introduce varying individual firing thresholds,
synaptic strengths, conduction delays, or membrane
time constants. Random networks have been shown to
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Fig. 8. Gaussian model to illustrate universality of the synfire
explosion. a The model for a simple network architecture. The
membrane potential distribution (gray area) taken from 100 neurons
traced over 400 ms of simulated time is approximated by a Gaussian
with l ¼ �63:00 mV and r ¼ 5:45 mV (nonlinear Levenberg-Mar-
quardt fit (Press et al. 1992)). Neurons with membrane potential larger
than the firing threshold of 50 mV are assumed to fire an action
potential. b Number of spikes elicited in a simple network of 90,000
neurons with constant connectivity c ¼ 0:1. As the number of
stimulating neurons s is increased, the response spike number grows
supralinearly: the gain factor rapidly rises above 1, reaching nearly 20
for s ¼ 500 stimulated neurons
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exhibit an AI state in spite of a varying threshold (van
Vreeswijk and Sompolinsky 1996) and varying conduc-
tion delays (Brunel 2000). It seems unlikely, therefore,
that any of the variations mentioned is a candidate to
cause fundamental changes in the qualitative behavior of
our network model, as long as it can be assumed that all
the parameters listed could still be described by a mean
and a variation that preserve the order of magnitude.
We can divide the properties that might be subject to
variations into two classes, one that describes the like-
lihood that the neuron will fire in dependence of the
number of inputs (firing threshold, synaptic strength),
the other concerned with temporal integration (con-
duction delay, membrane time constant). The variations
in the likelihood to fire will average out and not have a
large impact on the size of the synfire explosion (cf.
model in Fig. 8). The temporal integration properties
would only change the time scale of the synfire explo-
sion. Figure 7 demonstrates that the pulse packet
traveling along the chain causes a synfire explosion in
spite of a time jitter of at least 1 ms. Realistic variations
in the conduction delays are in that regime. As long as
the temporal jitter in the stimulating neurons is smaller
than the rise time of the PSP, different membrane con-
stants essentially do not play a role: PSP time traces are
very similar up to the peak for a wide range of mem-
brane time constants (5–20 ms).
We do not, on the other hand, claim that all dynamic

states in Fig. 2 are unaffected; for instance, the syn-
chronous states might vanish. But homogeneity should
rather disfavor the AI state, the one that is crucial for
our investigation, though the exact shape of the AI re-
gime surely will vary. We conclude that the existence of
the AI state and the emergence of the synfire explosion
are not due to homogeneity.
The size of the synfire explosion, however, depends on

the required width of the synfire chain. Both the synaptic
strength within the chain and the distance from firing
threshold to mean membrane potential will affect this
required width. This suggests that it might be possible,
after properly adjusting these parameters, to prohibit the
occurrence of an activity explosion. However, as the
dependence of the required width on both parameters is

almost linear and the regime of plausible values is re-
stricted, such variation results in a reduction to half the
required width at best. These more than 100 neurons per
group will still elicit an explosion in the order of 1000
activated neurons (Fig. 6c), demonstrating that adjust-
ing synaptic strength is no way out.
Then how could a synfire chain cope with this ac-

tivity explosion? The simplest answer would be to
conclude that synfire groups are not local but spread
over a large cortical area, thereby avoiding an explo-
sion. This may be correct from a dynamics point of
view, but anatomical considerations indicate that non-
local synfire groups are unlikely for a statistical lack of
sufficient multiplicity in intergroup connectivity (Hehl
et al. 2001; Hehl 2001).
It is conceivable that by careful tuning of network

parameters the propagation in a single chain could be
made more reliable. An alternative solution would be
that the fine structure of the cortical network deviates
from that of a random graph in that it is organized to
avoid the malicious intermediate convergence levels of
neurons receiving input from a synfire group. This
would naturally prevent a synfire explosion. A possible
justification for such a scheme would be given if the
synfire chain were the result of an appropriate kind of
learning process. Whether such network structures are
compatible with stability conditions and experimentally
observed membrane potential statistics remains to be
investigated. In any case, adopting such modifications
would appear to violate the universality of the synfire
scheme. Another option would be to include long-range
patchy connectivity, either within the same area (Amir
et al. 1993) or across areas (Schüz and Liewald 2001), to
relax the locality constraints, but not enough anatomical
data are currently available to judge the biological
feasibility of this option.
The more attractive and promising solution would be

to include inhibitory neurons into the chain (Fig. 9). A
similar proposal was made by Hayon et al. (1999) but
for a different purpose: to regulate the level of binding
between multiple synfire chains. These inhibitory cells
are activated by the propagating spike volley, their in-
fluence weakening or even preventing the synfire explo-

a b

Fig. 9. Scheme of a generalized synfire chain. a Connectivity of the
chain (see also Hayon et al. (1999)). Each synfire group includes not
only excitatory neurons (marked as‘‘x’’), but also inhibitory ones
(‘‘o’’), e.g., one fourth their number to suit the overall population
sizes. The excitatory group neurons are completely connected
in divergent-convergent fashion as in the original definition.

Additionally, all excitatory neurons project to all inhibitory neurons
of the succeeding group, but these inhibitory neurons in turn do not
establish any specific chain connections. b Spatial embedding of the
chain. The excitatory neurons of the chain are distributed as in the
embedded chain simulations (see Fig. 7a), but in addition, inhibitory
neurons are interspersed
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sion, while they do not specifically target the succeeding
group, which would terminate the pulse propagation.
Preliminary results indeed show that the explosive
impulse response to a simultaneous excitatory and in-
hibitory stimulus in this case is at least less pronounced,
if it occurs at all.
Previous studies computed capacity limits, specifying

how many synfire groups can be sustained in a network
of a certain size (Bienenstock 1995; Herrmann et al.
1995). Both studies artificially introduced an inhibitory
mechanism alongside the synfire activity. In the case of
Bienenstock (1995), population activity was bounded by
a d-winner-take-all neuron model, whereas Herrmann
et al. (1995) tied an ad hoc global inhibition term to the
synfire activity to restrict overall activity. These types of
inhibition presumably prevent an activity explosion. It is
obvious that these capacity computations cannot be
applied straightforwardly to our LCRN: with the model
as presented, the capacity does not even suffice to sustain
ten groups, several orders of magnitude less than the
capacities cited. An inclusion of inhibition into the chain
could possibly be made compatible with these capacity
estimates.
For the synfire hypothesis to survive, it is vital to

stabilize the pulse packet propagation against the synfire
explosion. Moreover, multiple interacting chains should
not even locally dominate the network activity, as it
is hard to imagine that so many neurons would be
‘‘invested’’ in the survival of only a few stable synfire
chains. Indeed, more insight into the dynamics of real-
istic neural network models is urgently needed to reach a
decision on the biological viability of the synfire scheme.
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