
Abstract. Common to most correlation analysis
techniques for neuronal spiking activity are assumptions
of stationarity with respect to various parameters. How-
ever, experimental data may fail to be compatible with
these assumptions. This failure can lead to falsely assigned
significant outcomes. Here we study the effect of nonsta-
tionarity of spike rate across trials in a model-based
approach. Using a two-rate-state model, where rates are
drawn independently for trials and neurons, we show in
detail that nonstationarity across trials induces apparent
covariation of spike rates identified as the generator of
false positives. This finding has specific implications for
the ‘‘shuffle predictor.’’ Within the framework developed
for our model, covariation of spike rates and the mech-
anism by which the shuffle predictor leads to wrong
interpretation of the data can be discussed. Corrections
for the influence of nonstationarity across trials by
improvements of the predictor are presented.

1 Introduction

The analysis of the spatial structure, task dependence,
and dynamics of spike time correlation is a central tool
in the investigation of neuronal interaction and cortical
processing (Perkel et al. 1967; Abeles 1982; Gerstein
et al. 1989; Singer 1993). Assumptions about various
aspects of the temporal statistics of the spike-generating
processes underly most crosscorrelation techniques.
Typical assumptions are that spike trains are generated
by Poisson processes and that the rate functions driving
the processes are stationary. Presumably the simplest
example of a correlation technique is the peristimulus
time histogram (PSTH) obtained from many realizations
(‘‘trials’’) of a single Poisson process. Here spike times

are correlated with the occurrence of a ‘‘stimulus,’’ a
point in time used to align the individual trials. The
histogram is only a meaningful measure of the poten-
tially time-dependent rate if the spike-generating process
is in each trial driven by the same (time-dependent)
parameter.
Figure 1 illustrates a categorization of ways in which

assumptions used in the analysis of spike data can be
violated. While Fig. 1a is concerned with the nature of
the spike-generating process, the remaining three panels
distinguish basic types of nonstationarity of spike rate.
An arbitrary experimental data set will contain contri-
butions of all these aspects, and in general they need to be
considered simultaneously when analyzing experimental
data (e.g., Vaadia et al. 1988 provides instructive dot
displays). Deviations of neuronal spiking from the sta-
tistics of a Poisson process have been demonstrated (see,
e.g., Reich et al. 2000 for a recent study) and are incor-
porated in theoretical studies (e.g., Pauluis and Baker
2000; Baker and Lemon 2000; Baker and Gerstein 2000).
A time dependence of the spike rate (Fig. 1b) naturally
occurs if neurons exhibit a rate ‘‘response’’ to the event to
which the trials are aligned. A standard method of coping
with this type of nonstationarity is to perform the anal-
ysis in a sliding window of limited width (e.g., MacLeod
and Laurent 1996; Roelfsema et al. 1997; Grün et al.
2002b). Within this window stationarity is assumed.
However, the onset of a change in spike rate may vary
across trials. This type of nonstationarity is called ‘‘la-
tency variability’’ (Vaadia et al. 1988; Miller et al. 1992;
Brody 1999a). Note this is not the stimulus-dependent
difference in the onset of the observed response (e.g.,
Richmond et al. 1987; Coburn et al. 1990; Gawne et al.
1996) sometimes also called latency variability. Correc-
tions for latency variability can in some cases be carried
out by aligning the trials to a different event (Grün et al.
2002b) or by realignment of the trials exploiting simi-
larity of the rate profiles of individual trials (Nawrot
et al. 2002). Methods have been developed to include the
effects of latency variability in the predictor for the cor-
relation measure (Pauluis and Baker 2000; Baker and
Gerstein 2001). Rate level differences across trials
(‘‘excitability,’’ Brody 1999b; Fig. 1d, e.g., Gur et al.
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1997; Nawrot et al. 2001) may be due to external or in-
ternal events not under the control of the experiment
(‘‘ongoing activity,’’ Arieli et al. 1996), variability of at-
tention, or drifts in anesthesia level. This is what we call
‘‘nonstationarity across trials.’’ The above categorization
considers nonstationarity in the activity of a single neu-
ron. It is the presence of nonstationarity in single neurons
that permits an additional relevant phenomenon: co-
variation of spike rate (e.g., Friston 1995; Vaadia et al.
1995a; Brody 1999b). Again, covariation of spike rate is
an effect that can occur in time and across trials and does
occur in neuronal data (e.g., Fries et al. 2001). Recent
studies explored corrections for covariation of spike rates
(Pauluis and Baker 2000; Baker and Gerstein 2001;
Ben-Shaul et al. 2001).
In the ongoing debate in neuroscience on the role of

temporal coordination of neuronal spike response for
coding principles in the cortex, the occurrence of non-
stationarity across trials and covariation of spike rate
has gained importance. Spike rate is the classical mea-
sure for neuronal response, and its selectivity for specific
stimuli and/or behavior has been contrasted to the in-
formation contained in spike timing (e.g., Oram et al.
2001, 1999; Shadlen and Newsome 1998; Baker and
Lemon 2000; Richmond et al. 1999). Considering
ensembles of neurons, the covariation of spike rate (or

spike count) was suggested as a potential code (Oram
et al. 2001). On the other hand, there is evidence for the
involvement of the (fine) temporal coordination of
spikes in neuronal processing (e.g., Singer and Gray
1995; Vaadia et al. 1995b; Riehle et al. 1997; Prut et al.
1998; Grün et al. 2002b). Thus, there is the possibility
that both types of dynamics are present in a single data
set. In order to disentangle the two coding strategies, a
thorough understanding of the effects of nonstationarity
on the predictors for correlation measures is required. In
the present work, we use a model-based approach to
investigate the effects of nonstationarity across trials.
Simplicity of the model permits an analytical treatment
and insight into the key mechanisms. The spike gener-
ators of the model neurons are assumed to be completely
independent with nonstationary (stochastic) spike rates
across trials (no covariation of spike rate). The system is
analyzed in a realistic setting, where an experimental
outcome consists of a finite number of trials. Surpris-
ingly, although covariation of spike rate is not built in-
to the model, it generates coherent rate changes in
particular experimental outcomes and enables a char-
acterization of the coherence in rate fluctuations. Non-
stationarity across trials and covariation of spike rate
can be analyzed in a common framework. Statements
about the ensemble average as well as individual
experimental outcomes can be made.
We begin our investigation by introducing a model

for nonstationarity across trials (Sect. 2). Then (Sect. 3),
the notion of ‘‘false positives’’ used throughout the study
to quantify the effect of nonstationarity is presented.
Basic properties of the model are explored using simu-
lations. The next section (Sect. 4) develops a framework
for the detailed analysis of the mechanisms by which
nonstationarity enters correlation measures. Consider-
ation of the mean coincidence count in a system of two
trials already provides qualitative insight. The general-
ization of the approach to M trials explains model
results with high precision. It is demonstrated that false
positives in the two-rate-state model are fundamentally
related to the effects of covariation of spike count.
Consequences for the interpretation of individual
experimental outcomes and possible corrections for
nonstationarity across trials are discussed in Sect. 5 and
illustrated using an experimental data set. Our frame-
work enables a rigorous analysis of a widely used tool in
correlation studies – the shuffle predictor – under
conditions of nonstationarity across trials.

2 Two-rate-state model

Consider a system of two neurons, where in each trial a
neuron can only be in one of two possible rate states
(k1; k2). The difference of the two-rate levels Dk ¼
k1 � k2 defines the ‘‘degree’’ of nonstationarity across
trials; rates are uniquely described with the additional
specification of the mean rate ðk1 � k2Þ=2. For each
trial and neuron (stationary) spike rates are indepen-
dently chosen according to occupation probabilities
Pkðk1Þ and Pkðk2Þ. The normalization condition
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Fig. 1. Categorization of possible violations of assumptions conven-
tionally used in the analysis of spiking activity. a Deviations from
Poisson statistics. Spiking activity of a single neuron observed over
some time interval Tw (spikes marked by dots, time t progresses
horizontally) for a number of repetitions (trials, vertically arranged)
under the same experimental conditions. Spike trains exhibit structure
(here regularly spaced spike intervals) in conflict with the properties of
a Poisson process (spike probability at t independent of position of
last spike). bNonstationarity of spike rate over time. Curves represent
the time course of the rate function driving the spike-generating
process in individual trials (indicated by arbitrary vertical offset). The
spike rate is stationary across trials (identical curves); however, it
varies in the course of time. c Latency variability. While the spike rate
exhibits an identical time course in all trials, the rate profiles are not
aligned with respect to the onset of the trial (curves show step at
different locations in time). d Nonstationarity across trials. Although
the spike rate is stationary during Tw in each trial, the spike rate varies
across trials (curves show steps of different amplitudes)
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Pkðk1Þ þ Pkðk2Þ ¼ 1 allows us to capture the asymmetry
in the distribution of rates by a single parameter
q ¼ Pkðk1Þ. Independent Poisson processes with
individual parameters k 2 fk1; k2g, as specified above,
generate the spike trains for each trial and neuron. A
sketch of our model of nonstationarity across trials is
shown in Fig. 2a.
A typical example of the raw data generated by the

two-rate-state model is illustrated in Fig. 2c. The hori-
zontally stripy appearance of the dot displays with in-
dividual ‘‘lines’’ or ‘‘bands’’ of dots popping out from a
background of lower spike density is often observed in
experimental data. Figure 2b shows the spike count
histograms corresponding to the data set in Fig. 2c.
Apart from fluctuations, the histograms for the two
neurons are identical. The distribution of spike counts is
bimodal. For each rate state, the spike counts k are
distributed according to a Poisson distribution P, the
parameters being k1T and k2T , respectively. T ¼ T =h
specifies the length of a trial, i.e., the number of time
steps with bin size h ¼ 1 ms. The bimodality stems from
the relative contributions of the rate states to the en-
semble of trials.

PkðkÞ ¼
X
i

PkðkiÞPðk; kiT Þ

¼ qPðk; k1T Þ þ ð1� qÞPðk; k2T Þ : ð1Þ

This distribution clearly deviates from the unimodal
distribution of spike counts obtained on the basis of
the average spike rate qk1 þ ð1� qÞk2. A measure for the
variability of neuronal spiking is the variance of the
spike count divided by the mean spike count, known as
the Fano factor (see Rieke et al. 1997 and references
therein). As long as spikes are generated by a Poisson
process, a Fano factor exceeding unity indicates non-
stationarity across trials. Conversely, if the system is
stationary across trials, conclusions about the nature of
the process can be drawn.

3 Simulation results

Let us now utilize the model introduced in the preceding
section to investigate the effect of nonstationarity across
trials on measures of spike time correlation (e.g.,
Perkel et al. 1967; Abeles and Gerstein 1988; Aertsen
et al. 1989; Martignon et al. 1995). We concentrate on
correlations at zero time delay: spike coincidences. The
unitary event method evaluates the statistical signifi-
cance of the number of coincidences occurring in a given
experimental data set (see Grün et al. 2002a for a
detailed description and a discussion of the assump-
tions). At a predefined temporal precision h (discrete
binning) the empirical coincidence count nemp is com-
pared to the expected coincidence count �nnpred. Assuming
stationarity across time and trials the expected value is
obtained from the spike rates as the total number of time
bins TM multiplied by the probability of observing a
coincidence in a single bin:

�nnpred ¼ TM � 1
M

XM
i¼1

p1;i

 !
� 1
M

XM
i¼1

p2;i

 !
: ð2Þ

pj;i is the probability of neuron j emitting a spike in a
time bin of trial i and M the number of trials. In
experimental data, the underlying spike rates are
unknown. Therefore, the probability of spike emis-
sion needs to be estimated from the average of the
spike counts kj;i of individual trials. Consequently, with
respect to our model, �nnpred is expressed in terms of the
average pj;i. While in model calculations we use pj;i ¼
kj;ih, for experimental data sets and in simulations the
pj;i are replaced by the corresponding estimators
p̂pj;i ¼ kj;i=T . The significance of the number of coinci-
dences in the data set is evaluated by the probability
(‘‘joint-p-value’’) of observing nemp or more coincidenc-
es, assuming that for independent neurons the number
of coincidences can be described by a Poisson distribu-
tion with parameter �nnpred. If the significance measure is
smaller than a requested significance level a (usually 0:01
or 0:05), the number of coincidences is said to deviate
significantly from expectation.
The significance test implies that at a given signifi-

cance level a, data sets from independent neurons should
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Fig. 2. Two-rate-state model of nonstationarity across trials (cf.
Fig. 1d). a Distribution of spike rate Pk across trials. During a trial
spike rate is stationary at ki. Only two rate states, k1 and k2 separated
by Dk ¼ k2 � k1, are allowed. For each trial and neuron the spike rate
is drawn independently from the two possible rate levels and used as
the parameter of a Poisson process. The probability of being in the
lower rate state k1 is denoted by q and, by normalization, 1� q for the
higher rate k2. b Spike count distribution of the model defined in a.
Two neurons are simulated for M ¼ 1000 trials of duration
T ¼ 1000 ms, with parameters k1 ¼ 25 s�1, k2 ¼ 75 s�1, and
q ¼ 0:8. Apart from statistical fluctuation the spike count histograms
(gray bars, spike count k horizontal, probability of occurrence Pk
vertical) of neuron 1 (left panel) and 2 (right panel) are identical. The
thick black curve indicates the theoretical distribution given by Eq. 1.
The thin black curve represents the distribution of spike counts
expected on the basis of the average spike rate qk1 þ ð1� qÞk2
assuming stationarity. c Visual appearance of cross-trial nonstation-
arity in the dot display. The two boxes show the simultaneous spiking
activity of the simulation described in b (upper box: neuron 1, lower:
2). Dots represent the spike times of the first 100 trials. In each box
one vertical position is reserved for every trial; time t is advancing
along the horizontal axis
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contain a significant number of coincidences in a frac-
tion a of all cases. This ratio is called the fraction of false
positives. False positive levels larger than a indicate that
certain assumptions underlying the analysis are violated.
Thus, ignorance of the presence of nonstationarity
across trials may lead to a wrong interpretation of the
experimental data.
In our model, nonstationarity across trials for a fixed

mean spike rate ðk1 þ k2Þ=2 is characterized by two pa-
rameters: the difference in spike rate Dk and the relative
occurrence of the two rate levels q. A simulated data set
of M trials of duration T with a given nonstationarity
ðDk; qÞ represents the outcome of one experiment.
Figure 3 shows the fraction of experiments �FFa in which a
significant number of coincidences is reported as a

function of Dk and q. With increasing Dk the percentage
of false positives increases monotonically. Above a rate
level difference of 40 s�1, �FFa strongly deviates from a
(Fig. 3a). For smaller Dk, �FFa is somewhat smaller than a
due to the discrete nature of coincidence counts (Roy
et al. 2000; Grün et al. 2002a) and the approximation of
the distribution of coincidence counts by a Poisson
distribution (Gütig et al. 2002). The dependence of �FFa on
q, however, is nonmonotonic. False positives increase
with increasing q, reach a maximum at q  0:7, and drop
back to the expected level for q approaching 1.
Clearly both parameters of nonstationarity control

the fraction of false positives provided the other pa-
rameter does not force the system to remain stationary.
By definition the system is independent of q if Dk ¼ 0
and independent of Dk if q ¼ 0 or q ¼ 1. The numerical
values of Dk and q at which large deviations of �FFa are
observed suggest that without correction for nonsta-
tionarity across trials, unitary event analysis (Grün et al.
2002a) exhibits a certain robustness.
In the next section, we develop an analytical de-

scription of the effects observed in the two-rate-state
model. This framework allows us to attain an under-
standing of the dependence of �FFa on ðDk; qÞ and, more
importantly, insight into the meaning of �FFa for the single
data set with which the experimenter is confronted.

4 Analysis of the two-rate-state model

Let us start the investigation with experiments composed
of only two trials (M ¼ 2). The limited combinatorics of
the setup allows us to visualize all possible rate
constellations and derive conclusions in a straightfor-
ward manner. At the same time the system is rich enough
to show most of the effects observable in a system of
more realistic size, say, M  30. Equipped with basic
insight into the properties of the model, we introduce, in
the second step, a compact notation permitting an
analytical treatment of systems with M > 2.

4.1 Two trials

In order to arrive at interpretable expressions, we pursue
a strategy introduced earlier (Grün et al. 1999; Grün
et al. 2002b) and develop the theory for the mean
coincident count. Results are verified afterwards by
simulations incorporating the full variability of coinci-
dence counts originating from the variability of spike
counts and random spike timing. The first task is to
compute the expected number of coincidences npred for
the constellation of rate states in a particular experi-
ment:

npred ¼ T �
XM
i¼1

p1;i � p2;i

 !
: ð3Þ

The expected number of coincidences in a single trial is
the product of the spike probabilities in the trial
multiplied by the number of time steps T . The total
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Fig. 3. False positives in the evaluation of spike coincidences
under conditions of cross-trial nonstationarity. Data are generated
according to the model described in Fig. 2. A set of M ¼ 100 trials of
duration T ¼ 1000 ms defines an experiment. Five thousand exper-
iments are performed for a given parameter set ðk1; k2; qÞ. In each
experiment, the number of spike coincidences is compared to the
predicted count, based on the estimated average spike rate across
trials, and checked against a significance level a. The number of
experiments with a significant outcome defines the fraction of false
positives �FFa. a Effect of the rate level difference Dk. At q ¼ 0:5 and
mean spike rate ðk1 þ k2Þ=2 ¼ 50 s�1, Dk is varied from 0 s�1 to
70 s�1 in steps of 10 s�1. The upper graph illustrates the structure of
the data set. Curves visualize the rate levels (vertical) k1 (black), k2
(gray) used in different experiments (horizontal) organized by
increasing Dk. Staircase-like appearance indicates the number of
experiments performed for a particular parameter set. The lower
graph shows the fraction of false positives �FFa (vertical) as a function
of Dk (horizontal). Each data point is computed from the
corresponding ensemble of experiments in the upper graph. Analysis
is performed for three significance levels a: 0:01 (disks), 0.02
(diamonds), and 0.05 (squares); data points for corresponding a are
connected by straight lines. Dashed lines indicate the theoretical
fraction of false positives fa ¼ a. At small Dk, �FFa falls below a
because of discreteness of the distribution of coincidence counts and
its approximation by a Poisson distribution. At large Dk, nonsta-
tionarity causes an excess in �FFa. b Effect of the occupation probability
q. Same organization of graphs as in a. Curves in upper graph
visualize occupation probability Pk (vertical) of the two rate states,
experiments (horizontal) organized by increasing q varied from 0:1 to
0:9 in steps of 0:1 with k1 ¼ 20 s�1 (black) and k2 ¼ 80 s�1 (gray).
The lower graph shows �FFa (vertical) as a function of q (horizontal). �FFa

exhibits a maximum at about q ¼ 0:7
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number of coincidences npred is the sum of the
predictors for individual trials (see also Pauluis and
Baker 2000; Grün et al. 2002b). The expected number
of coincidences based on averaging over trials is given
by Eq. 2.
In single trials we can find one of four possible rate

constellations:

s1 ¼
p1
p1

� �
; s2 ¼

p2
p2

� �
; s3 ¼

p1
p2

� �
; s4 ¼

p2
p1

� �
;

ð4Þ

where the rate state kk is indicated by the corresponding
probability pk of spike emission in time bin h. Row l of
vectors si represents the rate state of neuron l. Possible
experimental outcomes are described by the set of
combinations ðsi; sjÞ. Thus, we have a natural arrange-
ment of the 42 different experimental outcomes in a
4� 4 matrix. For each of the 16 constellations we can
compute npred as well as �nnpred and display the resulting
expressions in matrix form (Fig. 4b,c; matrix elements
show coincidence probability, and T is omitted for
clarity). The two matrices differ only in their antidiag-
onal elements. In Fig. 4b pairs of elements on the
antidiagonal are identical because of symmetry. In
Fig. 4c all elements on the antidiagonal are identical
because both neurons have an identical number of
contributions from p1 and p2. It can be shown that all
elements off the antidiagonal are identical for npred and
�nnpred because at least one of the neurons is stationary
across trials. Independent of Dk (assuming Dk > 0), the
relationship between npred and �nnpred for the different
experimental outcomes is

�nnpred < npred for ðs1; s2Þ; ðs2; s1Þ
�nnpred > npred for ðs3; s4Þ; ðs4; s3Þ ð5Þ
�nnpred ¼ npred else :

The effect of the second parameter q describing nonsta-
tionarity is expressed by the fact that different experi-
mental outcomes generally do not occur with equal
probability. The probability of a specific constellation
ðsi; sjÞ occurring is

Qðsi; sjÞ ¼ qr1 � ð1� qÞr2 ; ð6Þ

where rk denotes the total number of data segments
(irrespective of neuron and trial) in ðsi; sjÞ subject to
spike rate kk. Using the same layout as for npred and
�nnpred, Q can be arranged in a matrix (Fig. 4a). Obviously,
the sum over all matrix elements equals unity and for
q ¼ 0:5, all constellations are equally likely to occur
(0:54) because of r1 þ r2 ¼ M . In general, there are five
different occupation probabilities. Due to the permut-
ability of the trials, Q is symmetrical with respect to the
diagonal. Elements on the antidiagonal are identical.
The sum over all matrix elements npred, weighted by

the corresponding probability of occurrence Q, repre-
sents the coincidence count obtained in the average
taken over the ensemble of possible experimental out-
comes. Interestingly, the ensemble average of npred is

identical to the ensemble average of �nnpred. Thus, the
ensemble average of the mean coincidence count does
not provide us with any knowledge about nonstationa-
rity across trials.

a

b

c

Fig. 4. Occupation probability and coincidence probability for a
system of two neurons and two trials. The system has 16 joint-rate
states defined by the possible combinations of the two spike rates k1
and k2 at four independent positions. a Probability of finding the
system in a specific rate state, organized as a matrix. Rate kk is
expressed by the probability pk of observing a spike in a time bin of
duration h. Matrix elements of a row correspond to identical rates in
trial 1, elements of a column to identical rates in trial 2. Component l
of the vector to the left of row i and above column j specifies the
probability pk for neuron l in the respective trial. The matrix elements
represent the probability that the system is in the specified state, where
p1 occurs with probability q and p2 with 1� q (Fig. 2a). b Expected
number of coincidences per time bin, summed over the two trials (same
layout as in a). c Expected number of coincidences per time bin based
on rate average across trials summed over all trials (same layout as in a)
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Note that for M > 2 a different matrix arrangement is
more suitable: the two neurons (instead of the trials)
span the dimensions of the matrix, and the 2M rate
combinations of the trials make up the rows and
columns. This way the object remains two-dimensional.
In this arrangement it is easy to see that the number of
rate constellations where at least one of the neurons is
stationary is 4 � 2M � 4.

4.2 False positives

In the last section, we saw that the relationship between
npred and �nnpred is different for different experimental
outcomes, while the comparison of the ensemble average
of the two measures does not uncover the effect of
nonstationarity. Therefore we need to investigate the
origin of false positives in individual rate constellations
ðsi; sjÞ. For a specific rate constellation, npred is the
parameter of a Poisson distribution describing the
distribution of coincidence counts occurring in realiza-
tions of this constellation of rates. Thus, the fraction of
false positives fa is the probability of obtaining a
coincidence count equal to or larger than the significance
threshold na:

fa ¼
X1
n¼na

ðnpredÞn

n!
� exp �npred

� �
; ð7Þ

approximating the adjusted a from below. However,
given an experimental data set, npred is unknown and
�nnpred represents our estimate of the expected coincidence
count. For some rate constellations npred and �nnpred are
not identical. Thus, the distribution of coincidence
counts describing a realization of ðsi; sjÞ (with mean
npred) is shifted with respect to the distribution (with
mean �nnpred) assumed for the significance test.
This situation is depicted in Fig. 5. fa is still given by

Eq. 7, but now the significance threshold na is adjusted
for a distribution (with mean �nnpred) incompatible with
the distribution underlying the data. For �nnpred < npred

(constellations ðs1; s2Þ and ðs2; s1Þ) the probability of
observing coincidence counts larger than na exceeds a,
and therefore a surplus in false positives is generated.
When the estimate of the mean coincidence count �nnpred is
larger than the real mean of the distribution npred

(constellations ðs3; s4Þ and ðs4; s3Þ), the fraction of false
positives fa falls below a.
Figure 6 shows the dependence of fa on the parame-

ters of nonstationarity ðDk; qÞ for the individual rate
constellations ðsi; sjÞ. The dependence on Dk is shown in
Fig. 6a. As expected from our analysis above, fa is in-
dependent of Dk for matrix elements off the antidiagonal
(�nnpred ¼ npred). For the two constellations where both
neurons change their rate in corresponding trials, ðs1; s2Þ
and ðs2; s1Þ, fa increases rapidly with increasing Dk. In
contrast, fa vanishes for the two constellations, ðs3; s4Þ
and ðs4; s3Þ, where both neurons have opposing rates in
corresponding trials.
The dependence of fa on q for constant Dk is shown

in Fig. 6b. Variation of q does not lead to a variation

in the fraction of false positives for individual con-
stellations since q does not enter Eq. 7. However,
assuming homogeneous sampling of the possible
experimental outcomes, we need to consider that indi-
vidual constellations do not occur with equal proba-
bility. The contribution of a rate constellation to the
false positives observed in the ensemble is given by fa,
weighted by the probability of occurrence of the rate
constellation

Fa ¼ fa � Q : ð8Þ

The dependence of Fa on q is shown in Fig. 6b
superimposed on the results for fa. Different rate
constellations exhibit a maximum of Fa at different
values of q. The two homogeneous rate constellations
ðs1; s1Þ and ðs2; s2Þ reach their maximum at q ¼ 0 and
q ¼ 1, respectively. Here the probability of occurrence is
unity and Fa ¼ fa. Rate constellations with the same
contributions from k1 and k2 reach the maximum at
q ¼ 0:5. At this value all matrix elements occur with
equal probability 1=16. In particular, at q ¼ 0:5 the two
rate constellations ðs1; s2Þ and ðs2; s1Þ, with an fa of
practically 1 (Fig. 6a, at large Dk), exhibit the maximal
Fa ¼ 1=16 a matrix element can obtain. For comparison
Fig. 6a shows the Dk dependence of Fa for a fixed q of
0:5. The contribution of ðs1; s2Þ and ðs2; s1Þ to the
ensemble average limited by a maximal occurrence
probability of 1=16 is visualized by the saturation of Fa
at large Dk.
We are now in a position to construct the ensemble

average of false positives �FFa and compare our results to
the simulations shown in Fig. 3. Independently of Dk,
the different rate constellations can be arranged into
three classes (Eq. 5). Elements in the class with
�nnpred ¼ npred generate a fraction of false positives fa ¼ a,
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Fig. 5. Definition of false positives in the detection of significant spike
coincidences. The significance of an empirical coincidence count n is
evaluated on the basis of the distribution of coincidence counts w.
Assuming a Poisson distribution (thin curve) parameterized by the
expected coincidence count �nnpred and a significance level a, na or more
coincidences are required for significance. �nnpred is estimated by
averaging over trials. Under conditions of nonstationarity across
trials, �nnpred may be lower than the real expectation value npred (e.g.,
matrix elements ð1; 4Þ and (4,1) in Fig. 4). The distribution of
coincidence counts of the system (thick curve) does not correspond to
the distribution used for testing significance (thin curve). The
probability fa of obtaining a coincidence count � na (gray area)
may exceed the adjusted fraction a (gray area below thin curve). fa is
the probability of obtaining a significant outcome in a data set of
independent neurons: the fraction of false positives
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and we term their collective contribution to the ensemble
average Fa;0. The elements in the class with �nnpred < npred

have identical values for �nnpred and identical values for
npred. Therefore, fa is identical for all elements of this
class and the total contribution to the ensemble average
is called Fa;þ. The same statement is valid for the re-
maining class with �nnpred > npred and contribution Fa;�.
Thus,

�FFa ¼ Fa;0 þ Fa;þ þ Fa;� ð9Þ

and with factorized q-dependence

�FFa ¼ ð1� 2wÞ � fað�nnpred ¼ npredÞ
þ w � fað�nnpred < npredÞ
þ w � fað�nnpred > npredÞ ð10Þ

where w ¼ 2q2ð1� qÞ2.
Fig. 6c shows �FFa and its constituents as functions of

Dk. Clearly, the ensemble average �FFa is dominated by
Fa;þ, summarizing the effect of the corresponding rate

constellations ðs1; s2Þ and ðs2; s1Þ. The offset a � 12=16 is
explained by the contribution of Fa;0. The dominance of
Fa;þ is preserved in the q-dependence of �FFa (Fig. 6d). The
bell-shaped q-dependence of ðs1; s2Þ and ðs2; s1Þ observed
in Fig. 6b shapes the ensemble average. The drop of the
contribution by Fa;0 from a at q ¼ 0 and q ¼ 1 to
a � 12=16 at q ¼ 0:5 is irrelevant.
Comparison of Fig. 6c,d with the simulation results in

Fig. 3 already shows a good qualitative correspondence.
The monotonic dependence of �FFa on Dk and the non-
monotonic dependence on q are captured.However, there
are important differences. In the simulation, �FFa starts de-
viating from a at larger Dk and does not reach saturation
(Fig. 3a). Furthermore, the q-dependence of �FFa observed
in Fig. 3b is asymmetrical and has a maximum at  0:7,
while Fig. 6d predicts a bell-shaped curve, the maximum
located at q ¼ 0:5.
The differences between the analytical treatment and

the simulation are the Poisson approximation for the
distribution of coincidence counts and the restriction to
only two trials (M ¼ 100 trials in the simulation). In the
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Fig. 6. False positives for possible experimental outcomes (upper row)
and contributions to the ensemble average (lower row). Nonstation-
arity across trials parameterized by difference in rate levels Dk (left
column) and occupation probability of rate states q (right column). a
False positives fa (gray curves, a ¼ 0:05) for individual states as a
function of Dk. Same system and layout of matrix as in Fig. 4, the
four possible rate states of a single trial are specified by si (trial 1
vertical, trial 2 horizontal). The black curve shows the contribution to
the ensemble average �FFa: fa weighted by the Dk-independent
probability of finding the system in the particular state (Fig. 4a).
Graphs are computed for ðk1 þ k2Þ=2 ¼ 50 s�1, q ¼ 0:5, trial
duration T ¼ 50 s, and bin size h ¼ 1 ms. Only the antidiagonal
exhibits a dependence on Dk. Matrix elements representing correlated
rate changes, ð1; 4Þ and ð4; 1Þ, show a dramatic increase in fa. For
anticorrelated rate changes, elements ð2; 3Þ and ð3; 2Þ, fa decreases
with increasing Dk. b False positives for individual states as a function
of q. Same system, organization, and parameters as in a. Graphs are
computed for Dk ¼ 60 s�1; here certain states exhibit large fa in a (at

q ¼ 0:5). Gray curves represent the q-independent value of fa taken
from a at the specified Dk (not shown: fa  0:5 in ð1; 4Þ,ð4; 1Þ and 0
in ð2; 3Þ; ð3; 2Þ). Also elements off the antidiagonal show a q-depen-
dence of �FFa. The two states contributing most of the false positives
exhibit a maximum of the weighted fa at q ¼ 0:5. c Contributions to
the ensemble average �FFa as a function of Dk. �FFa (black curve) is the
sum of the fa in individual states weighted by the probability of
occurrence (sum of black curves in a). �FFa can be decomposed into a
sum over contributions from three classes of states: Fa;þ (gray solid) is
the sum over states where the expected number of coincidences npred is
larger than the cross-trial estimate �nnpred (elements ð1; 4Þ and ð4; 1Þ in
A), Fa;0 (thin dashed) collects the states with npred ¼ �nnpred (off
antidiagonal elements in a), and Fa;� (thick dashed) the remaining
ones with npred < �nnpred (elements ð2; 3Þ and ð3; 2Þ in a). With Fa;0 close
to a (up to discreteness of the distribution) and Fa;� close to 0, Fa is
dominated by Fa;þ. d Contributions to the ensemble average as a
function of q. Same representation as in c. The classification
introduced in c also decomposes �FFa with respect to q
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next section, we extend the analysis to M > 2 trials to
check whether deviations from the simulations are due to
our arbitrary restriction of the theory to two trials. In the
analytical treatment, we have identified specific rate
constellations dominating the fraction of false positives.
This idea guides the analysis in the next section and is
extended to provide a compact classification of rate
constellations interpretable in the light of experimental
data. It is demonstrated that the peak location of �FFa at
q ¼ 0:7 is typical for a larger, and more realistic, number
of trials.

4.3 Framework for M trials

The number of possible rate constellations in M trials is
given by 4M and thus increases rapidly with the number
of trials. In electrophysiological experiments, the num-
ber of trials is typically in the range of 20–100.
Therefore, we must leave the direct approach used in
Sect. 4.1, where we evaluated each individual rate
constellation, and find a more compact description that
is immune to the combinatorial explosion of possible
constellations. In the study of a system with two trials,
we have seen that the sequence of trials does not enter
the calculation of false positives (and it should not do so
by the definition of a ‘‘trial’’). This leads us to a
description where only the possible rate constellations in
a single trial and the number of their occurrences in a
data set of M trials are specified. We have already
introduced a notation (Eq. 4) for the four possible rate
constellations a trial can exhibit: s1, s2, s3, s4. Ignoring
the sequence of rate constellations sið1Þ; . . . ; siðMÞ, an
experiment is described by a vector ½n1; n2; n3; n4� spec-
ifying the number of trials ni with rate constellation si. A
valid experiment trivially fulfills M ¼ n1 þ n2 þ n3 þ n4.
Thus, we have now changed our point of view (see
illustration in Fig. 7). Instead of dealing with two
neurons, we describe the system in terms of the M
indistinguishable trials, each occupying one of four
possible states. Thus, the total number of system states
½n1; n2; n3; n4� is given by the number of ways M
indistinguishable ‘‘particles’’ can be distributed over
four states. Equivalently, this is the number of ‘‘com-
positions’’ of M into four integers ni � 0 (Petkovsek
et al. 1996; Nijnhuis and Wilf 1978):

KM ¼ M þ 4� 1
4� 1

� 	
¼ M þ 4� 1

M

� 	
: ð11Þ

The two forms found in the literature are connected by
the symmetry identity. We call ½n1; n2; n3; n4� a macro-
state of the system because the ‘‘energies’’ (variables of
interest) npred and �nnpred depend only on the quadruplet.
The corresponding number of different M-trial se-
quences (microstates) is given by the multinomial
coefficient

K½n1;n2;n3;n4� ¼
M

n1; n2; n3; n4

� 	
¼ M !

n1! � n2! � n3! � n4!
:

ð12Þ

The expressions for the coincidence counts in a macro-
state (Eqs. 3 and 2) can now be stated in explicit form.
The expected number of coincidences in a macrostate is

npred ¼ T � ðn1 � p1p1 þ n2 � p2p2 þ n3 � p1p2 þ n4 � p2p1Þ
ð13Þ

and the number of coincidences predicted on the basis of
rate averages reads

�nnpred ¼ T � 1
M

ðn1p1 þ n2p2 þ n3p1 þ n4p2Þ

� ðn1p1 þ n2p2 þ n3p2 þ n4p1Þ : ð14Þ

Note that each macrostate is assigned a unique value for
npred and �nnpred; however, different macrostates may have
identical values. The probability of observing a micro-
state (cf. Eq. 6) corresponding to ½n1; n2; n3; n4� is given
by

Q½n1;n2;n3;n4� ¼ ðqqÞn1 � ðð1� qÞð1� qÞÞn2

� ðqð1� qÞÞn3 � ðð1� qÞqÞn4 ; ð15Þ

and consequently the occupation probability of the
macrostate is

P½n1;n2;n3;n4� ¼ K½n1;n2;n3;n4� � Q½n1;n2;n3;n4� : ð16Þ
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Fig. 7. Trials as particles. For M > 2 trials the viewpoint is changed
from two particles (the neurons) being in any of 2M combined rates
states to a system of M particles (the trials) each being in one of four
possible states. a Sketch of a particular M-trial rate constellation
(microstate) of the system. Each trial (horizontal 1 . . .M , duration T
indicated by length of bars) is in one of the states fs1; s2; s3; s4g (cf.
Fig. 4). States correspond to possible rate level combinations (k1, k2
vertical) of neuron 1 (black bars) and neuron 2 (gray bars). The
microstate of the system is described by the sequence sið1Þ; . . . ; siðMÞ
(shown for example constellation). b Corresponding macrostate of the
system. Same representation as in a, now trials are sorted with respect
to si. The canonical arrangement of trials (a different microstate)
represents a coherent rate step from low rate (s1) to high rate (s2)
followed by anticorrelated rates (s3 and s4). The macrostate is
described by ½n1; n2; n3; n4� specifying the number of trials ni in si
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Trivially, the sum over the occupation probabilities of
all macrostates equals unity.
The fraction of false positives fa in a given macrostate

can be calculated as shown for the case ofM ¼ 2 (Eq. 7).
Hence, the contribution of the macrostate to the en-
semble average is

Fa½n1;n2;n3;n4� ¼ P½n1;n2;n3;n4� � fa½n1;n2;n3;n4� : ð17Þ

The expression for the fraction of false positives
observed in the ensemble average �FFa results from a
generalization of Eq. 8:

�FFa ¼
X

½n1;n2;n3;n4�
P½n1;n2;n3;n4� � fa½n1;n2;n3;n4� ; ð18Þ

where the sum extends over all macrostates (composi-
tions of M). Algorithms for the evaluation of Eq. 18 are
available (e.g., Nijnhuis and Wilf 1978).

4.4 Evaluation of the M-trial system

The tools developed in the last section allow us to
investigate the fraction of false positives in the ensemble
average in dependence on the number of trials M .
Figure 8 shows �FFa as a function of the parameters of
nonstationarity ðDk; qÞ for different M . Interestingly, �FFa
exhibits a nonmonotonic dependence on M . Starting at
M ¼ 2, �FFa increases with an increasing number of trials,
reaches a maximum, and declines again (Fig. 8a). At
M ¼ 100, �FFa reaches values well below the curve for

M ¼ 2. This dependence on M is also expressed in the
peak amplitude of �FFa in Fig. 8b. In addition, the location
of the peak shifts from q ¼ 0:5 at M ¼ 2 to q  0:7 for
large M . Being defined on q 2 ½0; 1�, the bell-shaped
curve becomes less symmetrical with increasing M .
When �FFa in Fig. 8a for M ¼ 2 has reached saturation
(cf. Fig. 6c), it still increases for larger M .
Comparison with simulations of the full system for

M ¼ 2 and M ¼ 100 (Fig. 8, black curves) shows that
our analysis based on the mean coincidence counts
(Eq. 18) accurately describes the dependence of �FFa on
ðDk; qÞ. In particular, the differences observed between
the simulation results of Fig. 3 and the two-trial model
(see Sect. 4.2, Fig. 6c,d) are explained by the restriction
of the number of trials in the latter.
The surprising dependence of the peak amplitude of

�FFa on M with a maximum at an intermediate value of M
and low values at large M may already indicate that
concentrating solely on the ensemble average is a dan-
gerous procedure. Consider the following scenario: there
are rate constellations that are much more effective in
generating false positives than others and require a
minimal number of trials for maximal performance.
These specific experimental outcomes dominate the en-
semble average at moderateM but become overwhelmed
by the exponentially growing number of microstates
(4M ) at large M . Obviously, for the experimenter con-
fronted with a single data set better indicators than the
ensemble average would be required in the above
scenario. To gain insight into the properties of prob-
lematic rate constellations, further structuring of the set
of macrostates is required. The second problem left
unsolved by the analysis of the ensemble average is the
question of why the peak of Fa shifts to q  0:7 for large
M . The next section approaches both of these problems
and demonstrates their relationship.

4.5 Origin of false positives

In an earlier work (Grün et al. 2002b), we discussed the
effect of temporal nonstationarity of rate on the fraction
of false positives. In this situation, a coherent stepwise
change of rate in the two neurons represents a worst-
case scenario because the predictor for the coincidence
count based on the temporal rate averages strongly
underestimates the mean coincidence count. In the
present study, spike rates are by definition stationary
in time. However, we can think of the consecutive trials
1; . . . ;M as a temporal sequence of time segments. The
ordering of simultaneous rates si in a microstate
corresponding to macrostate ½n1; n2; n3; n4� does not
enter the expressions for npred and �nnpred. Therefore, we
are free to choose any microstates as a canonical
representation of the macrostate. We decide on the
ordering whereby both neurons initially have low rates
(n1 times s1), followed by a region where both neurons
have high rates (n2 times s2), and two regions with
opposing rates (n3 times s3, n4 times s4). This represen-
tation justifies our choice of indices for the different si
(see Fig. 7b for illustration). Viewed as a temporal
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Fig. 8. False positives in systems with more than two trials. Same
graphs and parameters as in Fig. 6c,d for different numbers of trials
(gray M as labeled, a ¼ 0:05, MT ¼ 100 s). a False positives as a
function of Dk. The ensemble average �FFa increases monotonically with
Dk for allM (Dk in steps of 10 s�1). The curve forM ¼ 2 saturates for
Dk > 40 s�1 at about 2=16, for larger Dk curves for moderate M
exceed this level. With further increasingM , �FFa passes a maximum and
drops back below the value for M ¼ 2. For a given Dk, �FFa is
nonmonotonic in M . Superimposed are simulation results (black) for
M ¼ 2 and M ¼ 100 (cf. Fig. 3a). The black solid curves represent the
mean of 5 times 1000 experiments, the dashed curves indicate mean �
standard deviation estimated from the five repetitions. Data for
M ¼ 100 copied from Fig. 3a. b False positives as a function of q. �FFa

generally shows the nonmonotonic dependence on q already observed
forM ¼ 2 (Fig. 6), and the nonmonotonic dependence onM seen in a

(q in steps of 0:1). With increasing M the peak of �FFa shifts from
q ¼ 0:5 to q  0:7. Superimposed are simulation results as described
in a. Data for M ¼ 100 copied from Fig. 3b
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sequence, a coherent rate step is followed by anticorre-
lated rate levels.
Let us now parameterize the first two occupation

numbers n1 and n2 by two measures more directly de-
scribing the coherent rate step. The relative length of the
rate step is defined as

r ¼ n1 þ n2
M

; ð19Þ

and the relative duration of the low rate and the high
rate regime in the rate step is

qr ¼
n1

n1 þ n2
: ð20Þ

In Fig. 9a, we have used the new variables r and qr to
structure the set of macrostates of a system with M ¼ 10
trials in terms of false positives. We conclude that
macrostates containing a rate step generate a high

fraction of false positives. The longer the rate step (large
r), the larger the fraction of false positives. For constant
r, fa reaches a maximum at the largest possible qr
smaller than 0:7. With increasing r the number of the
allowed fractions qr increases (Eq. 20). Hence, the
observed maximum of fa approaches 0:7 with increasing
r due to the discrete nature of qr.
Coherent rate steps are the most efficient generators

of false positives in the ensemble of macrostates. Thus,
structuring of the macrostates by ðr; qrÞ has reduced the
problem to the analysis of false positives in a rate step.
Fig. 9b shows npred and �nnpred as a function of qr. With
the expansion of the low rate regime (increasing qr) the
number of coincidences declines. However, the differ-
ence in the coincidence counts exhibits a maximum at
qr ¼ 0:5 (Grün et al. 2002b). The error in the estimation
of npred is largest when the low and the high rate regimes
occur in equal proportion. The error vanishes if one
regime dominates the average. The fraction of false
positives, however, does not directly depend on the dif-
ference in coincidence counts. As fa is the part of the
distribution of coincidence counts to the right of the
significance threshold na, the difference of npred and na is
more important. This difference exhibits a maximum at
qr  0:7 when the low rate regime already covers the
larger part of the rate step (determines �nnpred), and the
coincidences created by the narrow high rate regime
occur as a ‘‘surprise.’’ The location of the maximum of
fa in the parameterization of the macrostates in Fig. 9a
is now explained.
It remains to be answered at which parameters of

nonstationarity the system becomes susceptible to the
occurrence of macrostates contributing large fa. Using
Eq. 15 the occupation probability of a macrostate rep-
resenting a pure rate step ½n1; n2; 0; 0�, r ¼ 1 is

Q½n1;n2;0;0� ¼ q2
n1 � ð1� qÞ2n2 ð21Þ

¼ q2qrM � ð1� qÞ2ð1�qrÞM : ð22Þ

Thus, Q½n1;n2;0;0� has a maximum at q ¼ qr. In other
words, pure rate steps with a specific proportion of
the low and the high rate regime have the largest
probability of occurring in the ensemble when the
distribution of rates in the nonstationarity matches this
proportion.
We have now seen that the fraction of false positives

in the ensemble average �FFa reaches a maximum at the
nonstationarity q where the probability of occurrence
for pure rate steps with the most effective proportion qr
is maximal. Systems with a low number of trials can only
realize certain qr. Therefore, the location of the peak in
�FFa (Fig. 8b) depends on the number of trials.

5 Discussion

Before we present an experimental data set to exemplify
the results of our model analysis, let us first discuss
solutions to the problem of nonstationarity across trials
and consequences of nonstationarity for individual data
sets.
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Fig. 9. Coherent rate steps explain the origin of false positives in
M-trial systems. The first two occupation numbers of a macrostate
½n1; n2; n3; n4� can be parameterized by the relative length of the
coherent rate step r ¼ ðn1 þ n2Þ=M and the relative duration of the
two regimes in the rate step qr ¼ n1=ðn1 þ n2Þ (cf. Fig. 7b). a False
positives fa (vertical) as a function of rate step duration r and rate step
proportion qr (horizontal) for the individual macrostates of an
example system (Dk ¼ 70 s�1, q ¼ 0:5, M ¼ 10, T ¼ 1000 ms,
a ¼ 0:05). Curves connect data (dots) for macrostates with identical
r (as labeled, dark gray encodes large r, large dots for r ¼ 0:2).
Generally, the longer the rate step, the higher fa. fa is nonmonotonic
in qr. For large r, fa reaches a maximum at qr  0:7. M restricts the
allowed values of qr to fractions of two integers n1=ðrMÞ. For a given
r, the maximum occurs at the largest possible qr � 0:7. Multiple
values of fa at identical ðr; qrÞ reflect macrostates distinguished by n3
and n4 (vertically connected dots). b Analysis of a coherent rate step in
a continuous recording, corresponding to r ¼ 1 and M ! 1 with
MT ¼ 10 � 1000 ms (no discretization of qr). The upper graph shows
the dependence of npred (black solid), �nnpred (dashed), and na (gray,
cf. Fig. 5) on qr. Coincidence counts decrease with increasing fraction
of time spent in the low-rate regime. At intermediate values of qr the
expected number of coincidences npred exceeds the significance
threshold na. The middle graph shows the difference between
expectation value and its estimate npred � �nnpred (dashed) and the
difference between expectation and significance threshold npred � na

(solid). The maximum of npred � �nnpred occurs at qr ¼ 0:5, while the
maximum of npred � na occurs at qr  0:7. The lower graph shows the
fraction of false positives fa as a function of qr. fa is small when one of
the rate regimes dominates. The position of the maximum can be
explained by the maximum of npred � na (middle graph). Steps are due
to the discrete nature of na
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5.1 Correcting for nonstationarity

In experimental data, covariation of spike rates across
trials may occur for various reasons (Sect. 1). Such
covariation of spike rate favors rate constellations
corresponding to the coherent rate steps defined in
Sect. 4.5. Figure 10 illustrates two strategies for coping
with nonstationarity across trials. The first generates the
distribution of coincidence counts on the basis of the
spike counts in individual trials using a Monte-Carlo
approach (Fig. 10a). The procedure still assumes that
data are generated by a Poisson process (independent
spike times). In the different surrogate data sets the spike
counts are conserved, and the distribution assumes the
correct mean npred and shape. In the second strategy, the
expected coincidence count is computed for each trial i
as p1;ip2;i � T . Assuming that the coincidence count in
each trial is a Poisson distributed random variable, we
can use the sum of the expected coincidence counts as
the parameter of a Poisson distribution (see Appendix
B). This is why a Poisson distribution can be used to
approximate the distribution of coincidence counts in
Pauluis and Baker (2000) and Grün et al. (1999). The
approach is motivated by the success in describing the
fraction of false positives in M-trial systems considering
the mean coincidence counts only (Fig. 8).

An application of the two methods to simulated
nonstationary data is shown in Fig. 10b. As we have
done at the outset of our investigation (Fig. 3a), the
fraction of false positives in the ensemble average is
studied as a function of Dk. While �FFa resulting from the
across trial average of �nnpred exhibits the strong depen-
dence on Dk, the �FFa obtained using the alternative
methods stay tightly below the adjusted value of a. �FFa
generated for fixed spike counts (Monte-Carlo ap-
proach) falls below a because of the discrete nature of na.
The approximation of the distribution of coincidence
counts by a Poisson distribution leads to an additional
lowering.

5.2 Individual experiments

In the following two sections, we demonstrate how
nonstationarity across trials is reflected in statements
about individual experimental data sets. To this end we
discuss a standard tool, the shuffle predictor, and the
likelihood of obtaining data with problematic rate
constellations.

5.2.1 Consequences for the shuffle predictor. A common-
ly used predictor in crosscorrelation analysis is the
‘‘shuffle predictor’’ (Perkel et al. 1967; Glaser and
Ruchkin 1976; Palm et al. 1988; Aertsen et al. 1989;
Eggermont 1990). The idea is to generate a prediction
on the basis of the original spike trains by destroying
the intertrial correspondence of the simultaneously
recorded spike trains but otherwise keeping the
properties of the original data set (e.g., spike rate,
temporal structure; see also Pipa and Grün 2002)
intact. If the predictor is based on all possible trial
combinations of the neurons, the predictor is com-
monly called a ‘‘full shuffle predictor.’’ If trial combi-
nations are generated by shifting the trials with respect
to each other in wrap-around fashion (covering all
possible shifts of one) it is called a ‘‘shift predictor.’’
Sometimes a random subset of all possible trial
combinations is used instead of the full shuffle. For
our purposes the mean coincidence count in the
ensemble of shuffles would serve as the predictor for
the number of coincidences found in the original
experiment. Clearly, application of trial shuffling
implies that the processes generating the data are
stationary across trials (i.e., rates are required to be
stationary across trials).
Using the tools developed for our model of non-

stationarity across trials, we can now investigate the
properties of the shuffle predictor under conditions of
nonstationarity. In our language, a particular experi-
mental data set represents a microstate of the system.
Application of trial shuffling destroys the original rate
constellation, and another rate constellation (micro-
state) is created. Under shuffling, the system may
change from the macrostate ½n1; n2; n3; n4� describing
the original data set to another macrostate
½n01; n02; n03; n04�. However, not all possible macrostates
can be reached since the number of trials neuron 1 and
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Fig. 10. Procedures to avoid false positives under conditions of
nonstationarity across trials. a Distribution of coincidence counts w
underlying the significance test for a simulated example experiment
(Dk ¼ 60 s�1, q ¼ 0:7, M ¼ 100, T ¼ 1000ms, ðk1 þ k2Þ=2 ¼ 50 s�1,
see Fig. 2). The experimental outcome is characterized by the M pairs
of spike counts of the two neurons. The gray histogram is the
distribution of coincidence counts generated from 1000 surrogate data
sets with spike counts identical to the original experiment and
homogeneously distributed random spike times (Monte-Carlo). Black
curves are Poisson distributions with parameters (means) npred (thick,
based on spike counts in individual trials) and �nnpred (thin, spike counts
averaged across trials). b Ensemble average of false positives �FFa as a
function of Dk for experiments and distributions as specified in a. For
the Poisson distribution with parameter �nnpred, �FFa (thin black) exceeds
the adjusted level a ¼ 0:05 for Dk > 40 s�1 (Dk in steps of 10 s�1). The
solid curve represents the mean of 5 times 1000 experiments �
standard deviation (dashed). The gray curve shows the results for the
distribution generated by Monte-Carlo simulations (1000 experiments
at Dk ¼ 10; 30; 50; 70 s�1). The thick black curve shows the result for
the Poisson distribution with parameter npred (same representation as
for �nnpred). Both curves account for nonstationarity; �FFa does not exceed
a. Gray curve runs below a because of discretization (na) in
macrostates with low expected coincidence count; thick black curve
additionally lowered by Poisson approximation
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neuron 2 are in one of the two rate levels k1, and k2 is
predefined by the original data set. We have the fol-
lowing constraints connecting the set of reachable
macrostates:

n1 þ n3 ¼ n01 þ n03
n1 þ n4 ¼ n01 þ n04 ;

ð23Þ

where the first equation conserves the number of trials
neuron 1 is subject to rate k1 and the second equation
does the same for neuron 2. The complementary
conditions for k2 are automatically fulfilled. In the
cases where at least one neuron is stationary (e.g.,
n1 þ n3 ¼ M), all shuffles remain in the same macrostate.
In each reachable macrostate all possible microstates
can be realized. Thus, for the full shuffle the probability
distribution for reaching other macrostates can be
constructed by computing the number of microstates
for the individual reachable macrostates (Eq. 12),
and normalization by the total number of reachable
microstates (Fig. 11a). The expected coincidence count
(Eq. 13) in a macrostate ½n01; n02; n03; n04� is generally
different from the one for the original macrostate.
However, due to Eq. 24, the expected coincidence count
based on rate averages �nnpred (Fig. 11a) is the same for
all shuffles

�nnpred ¼ TM � ðp1 � ðn1 þ n3Þ þ p2 � ðn2 þ n4ÞÞ
� ðp1 � ðn1 þ n4Þ þ p2 � ðn2 þ n3ÞÞ

¼ TM � ððp1 � ðn01 þ n03Þ þ p2 � ðn02 þ n04ÞÞ
� ðp1 � ðn01 þ n04Þ þ p2 � ðn02 þ n03ÞÞ :

ð24Þ

It is a general result that in the case of full shuffling, the
average npred equals �nnpred (see Palm et al. 1988; Aertsen
et al. 1989). Figure 11a illustrates the situation for a
simulated experiment. The original data set may repre-
sent a microstate in any of the reachable macrostates.
The distribution of npred is independent of the microstate
from which the shuffling starts. Thus, if the covariation
of spike rate in the experimental data set is high
(Sect. 4.5), shuffling tends to destroy this coherence. In
the example this corresponds to the case where shuffling
starts in the macrostate with the largest npred, and
shuffling predominantly transfers the system into the
remaining three macrostates with considerably lower
coincidence counts. Compared to the coincidence counts
in the shuffle, the count of the experimental data set
appears to be exceptionally large, which may lead to
wrong interpretation of the data. Conversely, if the
experimental data represent a microstate with small
covariation, shuffling predominantly causes transitions
into macrostates with larger rate coherence and larger
coincidence counts. In the example, this corresponds to
the situation where shuffling starts in the macrostate
with lowest npred. Here, it appears that compared to the
npred of the shuffles, the experimental data set has a lack
of coincidences (see Grün et al. 2002a for a discussion of
‘‘false negatives’’).

5.2.2 Probability of false positives. We have analyzed the
dependence of the fraction of false positives in the
ensemble average �FFa (Fig. 8) on the parameters charac-
terizing the nonstationarity ðDk; qÞ. More importantly,
for a given experimental data set a class of rate
constellations was identified (Fig. 9) generating a large
fraction of false positives fa. However, it can be argued
that specific rate constellations generally have only a low
probability of occurrence. Thus, for the interpretation of
an individual experiment the experimenter may be
interested in aspects of the distribution of fa. An
example for such a measure is the probability Pa of
obtaining a ‘‘problematic’’ experimental outcome, where
fa exceeds the adjusted level a. A second, related,
measure is the expected fa for experiments where a is
exceeded. Having the distribution of macrostates
P½n1;n2;n3;n4� (Eq. 16) available, such questions can be
answered. fa is determined by the macrostate ½n1; n2;
n3; n4�, therefore P½n1;n2;n3;n4� directly specifies the distri-
bution of fa½n1;n2;n3;n4�, and we can write

Pa ¼
X

½n1;n2;n3;n4�
fa>a

P½n1;n2;n3;n4� : ð25Þ

Fig. 11b shows the dependence of Pa on Dk for exper-
iments with different numbers of trials. The probability
of obtaining false positives increases with Dk. Pa saturates
for large Dk, with the saturation level increasing with the
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Fig. 11. Effect of nonstationarity across trials on the interpretation of
individual experimental data sets. a Effects on the shuffle predictor
for a particular experimental outcome (microstate) of a system
with parameters (Dk ¼ 70 s�1, M ¼ 10, T ¼ 1000ms, ðk1 þ k2Þ=2 ¼
50 s�1). In trial shuffling, the number of trials where neuron 1 is driven
by rate k1, n1 þ n3 (n1 þ n4 for neuron 2) remains invariant (here 7);
correspondingly, for k2 the invariant is n2 þ n4 (n2 þ n3 neuron 2,
hereM � 7 ¼ 3). The constraints reduce the macrostates accessible by
trial shuffling to 4 (bars) out of 286. The four macrostates (from left to
right) are populated by 4200, 7560, 2520, and 120 microstates with
respective npred 85:5, 134:5, 183:5, and 232:5 (horizontal). Normal-
ization yields the probability (vertical) to reach a specific macrostate in
a random shuffle. The average over all possible shuffles (full shuffling)
leads to an expected number of coincidences of 129:6 (shuffle
predictor corresponding to �nnpred), associating the four macrostates
with false positive levels fa of 0:0000, 0:1506, 0:9976, and 1:0000 (left
to right). b Probability Pa (vertical) to perform an experiment for
which the analysis reports false positives in a fraction of fa > a of the
cases as a function of Dk (horizontal, steps of 5 s�1, ðk1 þ k2Þ=2 ¼
50 s�1, q ¼ 0:5, MT ¼ 10 s). Curves represent results for a constant
number of trials (M , as labeled). Pa is the fraction of microstates with
fa > a at a given Dk. Curves saturate because above a certain Dk
macrostates differentiate into a class with fa � a and a class with
fa > a. For M ¼ 2, Pa saturates at 2=16 (cf. Fig. 4)
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number of trials. The increase in Pa occurs because in
macrostates where a rate step ½n1; n2� is combined with
anticorrelated rates ½n3; n4�, a minimal Dk is required to
achieve dominance of the rate step. Dk differentiates the
macrostates. At a certain Dk of an M-trial system, all
macrostates that potentially create fa > a have separated
and saturation is reached. With decreasing M , the
number of macrostates where rate steps are combined
with anticorrelated rates declines, and saturation is
reached in fewer steps and at lower Dk (e.g., for M ¼ 2
saturation is reached immediately for Dk > 0). At small
M , the 4 � 2M � 4 microstates where at least one of
neurons is stationary constitute a considerable fraction
of the total number of microstates, and control Pa. For
large M , the probability Pa of performing an experiment
in which the probability of observing false positives is
larger than the adjusted level a approaches 0:5.

5.3 Application to experimental data

Figure 12 illustrates the results of the analysis of an
experimental data set from the primary motor cortex of
the awake behaving monkey involved in a motor prepa-
ration task (Riehle et al. 2000). Data are analyzed for
excess spike coincidences in a time-resolved manner
(Grün et al. 2002b; Grün et al. 1999), correcting for the
temporal nonstationarity of spike rate shown in Fig. 12a.
The coincidence count in the data modulates in time and
in certain periods deviates from the predicted coincidence
count (Fig. 12c). Based on the cross-trial average of spike
rate, the coincidence count reaches the significance
threshold (Fig. 12d) in some of the instances where the
empirical coincidence count exceeds the predicted one.
Figure 12b shows the correlation coefficient R of the spike
counts across trials as a function of the position of the
analysis window. In terms of our model, the correlation
coefficient of spike counts is a measure for the covariation
(coherence) of the spike rates of the two neurons. Clearly,
the correlation coefficient is time dependent. During the
waiting period, R initially increases, reaches a maximum,
subsequently decreases assuming negative values, and,
after passing a minimum, returns to positive values. Thus
the question arises of whether the observed deviations of
the coincidence count from expectation are caused by the
nonstationarity of spike count across trials. In order to
check for this option the two methods for coping with
nonstationarity across trials discussed in Sect. 5.1 are
applied. The resulting time courses of the significance
measure differ from the original analysis in detail.
However, the overall time course is preserved (Fig. 12d,e).
At t  250 ms both methods report minor reduction in
significance. This is the location where the correlation
coefficient of spike counts (Fig. 12c) reaches a maximum.
Based on these additional tests, we conclude that the
excess coincidences classified as significant are probably
due to the fine temporal coordinationof spikes andare not
an artifact of the covariation of spike counts.
The concept of the shuffle predictor suggests a useful

reverse approach. Instead of comparing the experimen-
tal outcome to a distribution generated using many
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Fig. 12. Example of experimental data analyzed for unitary events
considering covariation of spike count. Analysis of two simultaneously
recorded neurons (21 trials) from primary motor cortex of the awake
behaving monkey. At time (horizontal) PS the monkey received a
preparatory signal indicating it was to wait until a go-signal (RS)
instructed it to perform an arm movement to a predefined direction
(detailed description of task and preparation in Riehle et al. 2000).
Calculations are independently performed in a window of 100ms
shifted along the temporal axis in steps of 5ms (Grün et al. 2002b).
Results are displayed at the temporal center of window. a Spike rate
averaged over trials (PSTH, neuron 1: dark gray, neuron 2: light gray),
computation in sliding window equivalent to smoothing by a boxcar of
100ms. b Time-resolved covariation R of spike count of neurons 1 and
2. The correlation coefficient of the spike counts of neurons 1 and 2 is
taken as a measure of the covariation of spike counts over trials. c
Number of coincidences. The dark gray curve shows the time course of
the empirical number of coincidences nemp (allowed temporal jitter
5ms, Grün et al. 1999). The light gray curve is the predicted number of
coincidences based on the rate averages (a) across trials (�nnpred). The
black thin curve is the predictor based on trial-by-trial rate estimates
(npred). d-f Different tests for the significance of the empirical
coincidence count (levels a ¼ 0:05 and 1� a, dashed). Significance is
expressed in terms of the joint-surprise S, a logarithmic transformation
of the cumulative probability of finding the observed number of
coincidences ormore (Grün et al. 2002a). S based on the comparison of
nemp and �nnpred (‘‘standard’’ unitary event analysis) is shown in medium
gray in all three panels (copied). d S (Black thin line) based on the
distribution of coincidence counts constructed from surrogate data
with spike count in each trial and for both neurons identical to the
experimental data. e S (Black thin line) based on the Poisson
distribution with parameter npred. f Significance of shuffled experimen-
tal data. Spike trains of noncorresponding trials (repeatedwrap-around
shifting of trials) are analyzed for the significance of the coincidence
count based on a Poisson distribution with parameter �nnpred (invariant).
The average over 21 possible combinations (not full shuffling) is shown
in black; light gray band depicts � standard deviation
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shuffles, one can also apply the standard significance test
to the individual shuffles. If trial shuffling successfully
destroys the effects, causing a surplus in coincidences,
the mean of the significance measure should be 0 with
the fraction of false positives corresponding to a. In this
approach, the rate profiles of individual trials and other
features locked to trial onset are conserved. Figure 12f
illustrates the result of such an analysis. Clearly, it ap-
pears unlikely that features in the original data set are
caused by a random alignment of spikes.
One should be reminded that trial shuffling assumes

stationarity across trials. Shuffling destroys, as intended,
possible fine temporal coordination of spiking activity.
Simultaneously, however, the shuffling procedure de-
stroys the rate constellations of the original trials. Thus,
in the presence of rate covariation across trials, shuffling
decorrelates the rate states (Sect. 5.2.1). Solely due to
this fact, the value of the significance measure for
shuffled data can fall below the value obtained for the
original arrangement (Fig. 11a). The dip in the mean of
the significance measure at t ¼ 250 ms may indicate ef-
fects of nonstationarity across trials.
In summary, although we found indications for

nonstationarity across trials and for covariation of rate,
in this particular data set the results of an analysis as-
suming stationarity are hardly affected. Nonstationarity
does not seem to be strong enough to induce false pos-
itives. Obviously, this statement is not true for arbitrary
experimental data sets. The particular data set was
classified as ‘‘stationary across trials’’ by visual inspec-
tion before unitary event analysis was applied. However,
we suggest that controls for nonstationarity across trials
and covariance of spike rate be performed on a routine
basis to avoid misinterpretation of the data.

6 Conclusions

The effects of nonstationarity across trials on crosscor-
relation-type measures of spiking activity are analyzed
using a model-based approach. The model describes
nonstationarity across trials by assuming that in each
trial neuronal spiking activity results from one of two
spike rates. The difference of the two spike rates and their
relative probability of occurrence constitute the para-
meters of the model. The significance of the number of
coincident spike times found in simultaneous recordings
from two neurons is used as an example for a measure
potentially perturbed by nonstationarity. The effects of
nonstationarity across trials are evaluated in terms of the
occurrence of false positives, the fraction of experiments
in which a significant outcome is falsely reported.
Comparison of the analytical treatment with computer
simulations shows that the system’s properties can be
understood on the basis of the mean coincident count. A
framework that assigns to each possible experimental
outcome a collective ‘‘system state’’ enables the analysis
of situations with a realistic number of trials. This
scheme permits a classification of potential experimental
outcomes uncovering efficient generators of false posi-
tives. Experiments showing coherent rate variations of

the two neurons with the larger proportion of the trials
spent in the low-rate regime rather than in the high-rate
regime are most effective. Note that nonstationarity
across trials is a prerequisite for the occurrence of
covariation of spike rate but not sufficient. The model is
minimal in the sense that nonstationarity is caused by
transitions between just two rate states. In more general,
multiple-rate-state models (the number of rate states is
not restricted byM), coherent rate steps from low to high
rates are still the effective generators of false positives.
However, because of the increased total number of
system states, the probability of occurrence of specific
states is generally decreased. Thus, the two-rate-state
model is extreme in the sense that it exhibits with high
probability the relevant system states of more general
models.
It is common knowledge that the application of the

shift predictor requires stationarity across trials. The
framework developed for our model connects failure of
the shuffle predictor with the notion of covariation of
spike rate. The mechanism by which the shuffle predictor
fails is the following: shuffling reaches a certain subset of
all possible rate constellations. If the original data set
exhibits high covariation of spike rate, shuffling decor-
relates and the prediction falls below the correct one.
The model allows an analysis of the ensemble average

over many experiments but also predictions for indi-
vidual experimental outcomes. While the ensemble av-
erage exhibits a certain robustness with respect to
nonstationarity, in an individual experimental outcome
false positives can be generated with high probability.
The probability that in an individual experimental out-
come false positives are observed with a probability
larger than the adjusted level a approaches 0:5.
The analysis based on surrogate data reduces the

number of false positives to its expected level. In the
simplest case, surrogates are constructed by rando-
mizing the spike times in individual trials while
keeping the number of spikes constant. The distribu-
tion of coincidence counts on the basis of the spike
counts in individual trials is known, however hard
to evaluate by direct methods. Using the Poisson
approximation, the distribution of coincidence is
obtained by calculating the expected coincidence count
on a trial-by-trial basis, using the spike counts or
estimations of the instantaneous rates (Pauluis and
Baker 2000; Grün et al. 2002b). Thus, when analyzing
experimental data for spike coincidences, possible
nonstationarity across trials combined with rate (spike
count) covariations should be monitored. The main
effects are compensated by improving the estimate of
the mean coincidence count. More general approaches
are currently being explored (Grün et al. 2001a; Pipa
and Grün 2002).
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Appendices

A List of symbols used

T : temporal duration of the observation
interval, ½T � ¼ unit of time

h: time resolution, ½h� ¼ unit of time
T : temporal duration of observation interval

in units of h, ½T � ¼ 1
M : number of trials
k1; k2: rate levels, ½k1� ¼ ½k2� ¼ 1=unit of time
Dk: rate level difference, ½Dk� ¼ 1=unit of time
p1; p2: spike probability in rate states k1; k2,

respectively
q; ð1� qÞ: occupation probabilities of rate state

k1; k2, respectively
�nnpred: expected number of coincidences based on

averaged rates
npred: expected number of coincidences based

on the sum of the single trial expectancies
si: vector representing single trial rate con-

stellation i
ni: number of trials with si
½n1; n2; n3; n4�: number of occurrences of rate states

½s1; s2; s3; s4� defining a macrostate
K½n1;n2;n3;n4�: number of microstates in macrostate

½n1; n2; n3; n4�
Q½n1;n2;n3;n4�: occupation probability of macrostate

½n1; n2; n3; n4�
P½n1;n2;n3;n4�: occurrence probability of macrostate

½n1; n2; n3; n4�
fa: fraction false positives of a particular

microstate
Fa½n1;n2;n3;n4�: fraction false positives of macrostate

½n1; n2; n3; n4�
�FFa: fraction false positives in the ensemble

average
S: joint-surprise
a: significance level

B Distribution of coincidence counts in multiple trials

Given the spike counts ki1; k
i
2 of neuron 1 and 2 in a

single trial i, the distribution of coincidence counts
follows a hypergeometrical distribution (Palm et al.
1988; Gütig et al. 2002)

Hðnijki1; ki2Þ ¼

ki1
ni

� 	
� T � ki1

ki2 � ni

� 	
T
ki2

� 	 : ð26Þ

Thus, for the distribution of coincidence counts in M
trials we have

P ðnÞ ¼
X

½n1;...;nM �P
ni¼n

YM
i¼1

H nijki1; ki2
� �

; ð27Þ

where the sum extends over all compositions ½n1; . . . ; nM �
of n with M positions (Nijnhuis and Wilf 1978). The
hypergeometrical distribution (Eq. 26) can be approx-
imated by a Poisson distribution P with parameter

T � k
i
1

T � k
i
2

T ¼ ki
1
ki
2

T :

P ni
ki1k

i
2

T

����
� 	

¼
ki
1
ki
2

T

 �ni
ni!

� exp� ki1k
i
2

T
: ð28Þ

Note that Eqs. 26 and 28 have the same mean
ki
1
ki
2

T . Even
if the spike rates of the generating processes were
known, one would use the spike counts to determine
the appropriate parameter of Eq. 28. Whether kij=T
is a good estimator for kj;i is of no importance in this
view.
For the Poisson distribution we can exploit the fact

that the sum of two Poisson distributed random vari-
ables is again Poisson distributed. Thus, for the Poisson
approximation of Eq. 27 we have

P ðnÞ 
X

½n1;...;nM �P
ni¼n

YM
i¼1

P ni;
ki1k

i
2

T

� 	
¼ P n

1

T

���� XM
i¼1

ki1k
i
2

 !
:

ð29Þ

Because of the importance of the above property of the
Poisson distribution, we restate the textbook proof (e.g.,
Krengel 2000). The expected number of coincidences in
a single trial i is abbreviated by mi ¼ ki1k

i
2=T , and it is

sufficient to show the property for two random variables
(here, i ¼ 1; 2).

P ðnÞ ¼
Xn
j¼0

Pðjjm1Þ � Pðn� jjm2Þ ð30Þ

¼
Xn
j¼0

mj
1

j!
exp ð�m1Þ �

mn�j
2

ðn� jÞ! exp ð�m2Þ ð31Þ

multiplying by unity

¼ exp�ðm1 þ m2Þ �
Xn
j¼0

mj
1m

n�j
2 � 1

ðn� jÞ!j! �
n!
n!

ð32Þ

¼ exp�ðm1 þ m2Þ �
1

n!

Xn
j¼0

n

j

� 	
mj
1m

n�j
2 ð33Þ

using the binomial theorem

¼ exp�ðm1 þ m2Þ �
1

n!
ðm1 þ m2Þn ð34Þ

¼ Pðnjm1 þ m2Þ ( ð35Þ
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Krengel U (2000) Einführung in die Wahrscheinlichkeitstheorie
und Statistik. 5th edn, Vieweg, Braunschweig

MacLeod K, Laurent G (1996) Distinct mechanisms for synchro-
nization and temporal patterning of odor-encoding neural
assemblies. Science 274: 976–979

Martignon L, von Hasseln H, Grün S, Aertsen A, Palm G (1995)
Detecting higher-order interactions among the spiking events in
a group of neurons. Biol Cybern 73: 69–81

Miller J, Riehle A, Requin J (1992) Effects of preliminary percep-
tual output on neuronal acitvity of the primary motor cortex.
J Exp Psych 18: 1121–1138

Nawrot MP, Aertsen A, Rotter S (2002) Elimination of variability
due to response latencies in neuronal spike trains. Biol Cybern
(this issue)

Nawrot MP, Rodriguez V, Heck D, Riehle A, Aertsen A, Rotter S
(2001) Trial-by-trial variability of spike trains in vivo and
in vitro. Abstr Soc Neurosci 27: 6–49

Nijnhuis A, Wilf HS (1978) Combinatorical algorithms: for com-
puters and Calculators, 2nd edn. Academic, New York

Oram MW, Hatsopoulos NG, Richmond BJ, Donoghue JP (2001)
Excess synchrony in motor cortical neurons provides redun-
dant direction information with that from coarse temporal
measures. J Neurophysiol 86: 1700–1716

Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Sto-
chastic nature of precisely timed spike patterns in visual system
neuronal responses. J Neurophysiol 81: 3021–3033

Palm G, Aertsen A, Gerstein GL (1988) On the significance of cor-
relations among neuronal spike trains. Biol Cybern 59: 1–11

Pauluis Q, Baker SN (2000) An accurate measure of the instanta-
neous discharge probability, with application to unitary joint-
event analysis. Neural Comput 12: 647–669

Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains
and stochastic point processes. II. Simultaneous spike trains.
Biophys J 7: 419–440

Petkovsek M, Wilf HS, Zeilberger D (1996) A = B. Peters,
Wellesley, MA

Pipa G, Grün S (2003) Non-parametric significance estimation of
joint-spike events by shuffling and resampling. Neurocomput-
ing (in press)

Prut Y, Vaadia E, Bergman H, Haalman I, Slovin H, Abeles M
(1998) Spatiotemporal structure of cortical activity: properties
and behavioral relevance. J Neurophysiol 79: 2857–2874

Reich DS, Mechler F, Purpura KP, Victor JD (2000) Interspike
intervals, receptive fields, and information encoding in primary
visual cortex. J Neurosci 20: 1964–1974

Richmond BJ, Hertz JA, Gawne TJ (1999) The relation between v1
neuronal responses and eye movement-like stimulus represen-
tations. Neurocomputing 26: 247–254

Richmond BJ, Optican LM, Podell M, Spitzer H (1987) Temporal
encoding of two-dimensional patterns by single units in primate
inferior temporal cortex. I. Response characteristics. J Neuro-
physiol 57: 132–146

Riehle A, Grammont F, Diesmann M, Grün S (2000) Dynamical
changes and temporal precision of synchronized spiking
activity in motor cortex during movement preparation.
J Physiol Paris 94: 569–582

Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike syn-
chronization and rate modulation differentially involved in
motor cortical function. Science 278: 1950–1953

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W
(1997) Spikes: exploring the neural code. MIT Press, Cam-
bridge, MA

Roelfsema PR, Engel AK, König P, Singer W (1997) Visuomotor
integration is associated with zero time-lag synchronization
among cortical areas. Nature 385: 157–161

Roy A, Steinmetz PN, Niebur E (2000) Rate limitations of unitary
event analysis. Neural Comput 12: 2063–2082

Shadlen MN, Newsome WT (1998) The variable discharge of
cortical neurons: implications for connectivity, computation,
and information coding. J Neurosci 18: 3870–3896

Singer W (1993) Synchronization of cortical activity and its puta-
tive role in information processing and learning. Annu Rev
Physiol 55: 349–374

Singer W, Gray C (1995) Visual feature integration and the tem-
poral correlation hypothesis. Annu Rev Neurosci 18: 555–586

350



Vaadia E, Aertsen A, Nelken I (1995a) ‘Dynamics of neuronal
interactions’ cannot be explained by ‘neuronal transients’. Proc
R Soc Lond B 261: 407–410

Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H,
AertsenA (1995b)Dynamics of neuronal interactions inmonkey
cortex in relation to behavioural events. Nature 373: 515–518

Vaadia E, Kurata K, Wise SP (1988) Neuronal activity preceding
directional and nondirectional cues in the premotor cortex of
rhesus monkeys. Somatosens Mot Res 6: 207–230

351


